CEN 3313

MASS TRANSFER

Assoc. Prof. Ayşe Karakeçili

Assoc. Prof. Berna Topuz

Species Concentration in Binary Systems

$ \rho_A = \text{mass of } A \text{ per unit} $ volume	(A) ^{<i>a</i>}	$c_A = \text{moles of } A \text{ per unit}$ volume	(F)
$\rho = \rho_A + \rho_B = \text{mass density}$ of mixture	(B)	$c = c_A + c_B = \text{molar density}$ of mixture	(G)
$\omega_A = \rho_A / \rho = \text{mass fraction}$ of A	(C)	$x_A = c_A/c = $ mole fraction of A	(H)
$\omega_A + \omega_B = 1$	(D)	$x_A + x_B = 1$	(I)
$\nabla \omega_A = -\nabla \omega_B$	(E)	$\nabla x_A = -\nabla x_B$	D

$\rho_A = c_A M_A$	(A)	$c_A = \rho_A / M_A$	(F)	
$M = x_A M_A + x_B M_B$	(B)	$1/M = \omega_A/M_A + \omega_B/M_B$	(G)	
$\rho = cM$	(C)	$c = \rho/M$	(H)	
$\omega_A = \frac{x_A M_A}{M}$	(D)	$x_A = \frac{\omega_A / M_A}{1/M}$	(I)	
$\nabla \omega_A = \frac{M_A M_B \nabla x_A}{M^2}$	(E)	$\nabla x_A = \frac{M^2}{M_A M_B} \nabla \omega_A$	ወ	
$=\frac{\omega_A\omega_B}{x_Ax_B}\nabla x_A$	(E')	$=\frac{x_A x_B}{\omega_A \omega_B} \nabla \omega_A$	(ľ)	

Bird R.B., Stewart W.E., Lightfoot E.N., Transport Phenomena, John Wiley & Sons, 1960.

• Molecular Diffusion (*random-walk process*)

Molecular diffusion can be explained as the transfer or movement of individual molecules through a fluid as a result of random, individual movements of molecules.

• Molecular Diffusion (*random-walk process*)

Diffusion is caused by random molecular motion that results in complete mixing.

In gases, diffusion progresses at a rate of about 5 cm/min; In liquids, its rate is about 0.05 cm/min; In solids, its rate may be only about 0.00001 cm/min.

• Molecular Diffusion (random-walk process)

Forms of Fick's Law in dilute solutions. No convection in the same direction.

Lack of convection often indicates a dilute solution.

For one-dimensional diffusion in Cartesian coordinates $-j_1 = D \frac{dc_1}{dz}$ For radial diffusion in cylindrical coordinates $-j_1 = D \frac{dc_1}{dr}$ For radial diffusion in spherical coordinates $-j_1 = D \frac{dc_1}{dr}$

A gas of CH4 and He is contained in a tube at 101.32 kPa pressure and 298K. At one point the partial pressure of methane is 60.79 kPa, and a point 0.02 m distance away the partial pressure of methane is 20.26 kPa. If the total pressure is constant throughout the tube, calculate the flux of methane at steady state.

References

- 1. Geankoplis, C.J., Transport Processes and Separation Process Principles, Prentice-Hall, Pearson Education, 2003
- 2. Incropera F. P., Dewitt D. P., Bergman T.L., Lavine A.S., Fundamentals of Heat and Mass Transfer, John Wiley & Sons Inc.
- 3. Middleman S., An Introduction to Mass and Heat Transfer: Principles of Analysis and Design, John Wiley, High Education, 1997.
- 4. Cussler E.L., Diffusion : Mass Transfer in Fluid Systems, Cambridge University Press, 3rd Edition, 2009.
- 5. Bird R.B., Stewart W.E., Lightfoot E.N., Transport Phenomena, John Wiley & Sons, 1960.