CEN 3313 MASS TRANSFER

Assoc. Prof. Ayşe Karakeçili

Assoc. Prof. Berna Topuz

Definitions of Concentration, Velocities and Fluxes

 ρ_i mass concentration (mass of species i per unit volume of mixture)

$$m_i = \frac{\rho_i}{\rho} = \frac{mass\ concentration\ of\ species\ i}{total\ mass\ concentration\ of\ mixture\ (density)}$$
 $\rho = \sum_{i=1}^{n} \rho_i$

$$\sum_{i=1}^{n} m_i = 1$$

n: total # of species

Definitions of Concentration, Velocities and Fluxes

 C_i molar concentration (# of moles of species i per unit volume of mixture)

$$x_i = \frac{C_i}{C} = \frac{molar\ concentration\ of\ species\ i}{total\ molar\ density\ of\ of\ mixture}$$

$$c = \sum_{i=1}^{n} c_i$$

$$\sum_{i=1}^{n} x_i = 1$$

n: total # of species

For ideal gases;

$$\rho_i = \frac{P_i}{R_i T} \qquad C_i = \frac{P_i}{RT}$$

 R_{i} ; gas constant for species i

R; universal gas constant

$$P = \sum_{i=1}^{n} P_i$$

$$x_i = \frac{C_i}{C} = \frac{P_i/RT}{P/RT} = \frac{P_i}{P}$$

VELOCITIES

 v_i = velocity of ith species w.r.t. stationary coordinate axes for n species, local mass average velocity v is defined as;

$$v = \frac{\sum_{i=1}^{n} \rho_i v_i}{\rho_i}$$

 ρv = local rate at which mass passes through a unit section \perp to the velocity

Local molar average velocity v^* is defined as;

$$v^* = \frac{\sum_{i=1}^n c_i v_i^*}{c_i}$$

cv *= local rate at which moles passes through a unit section \bot to the velocity

In flow systems, one is interested in the velocity of given species i, w.r.t. v or $v^* \rightarrow definition of diffusion velocities$;

 $v_i - v = diffusion velocity of species i w.r.t. v$

 $v_i - v^* = diffusion velocity of species i w.r.t. v^*$

diffusion velocities indicate the motion of species i relative to the <u>local motion of the fluid stream</u>

References

- 1. Geankoplis, C.J., Transport Processes and Separation Process Principles, Prentice-Hall, Pearson Education, 2003
- 2. Incropera F. P., Dewitt D. P., Bergman T.L., Lavine A.S., Fundamentals of Heat and Mass Transfer, John Wiley & Sons Inc.
- 3. Middleman S., An Introduction to Mass and Heat Transfer: Principles of Analysis and Design, John Wiley, High Education, 1997.
- 4. Cussler E.L., Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, 3rd Edition, 2009.
- 5. Bird R.B., Stewart W.E., Lightfoot E.N., Transport Phenomena, John Wiley & Sons, 1960.