CEN 3313

MASS TRANSFER

Assoc. Prof. Ayşe Karakeçili

Assoc. Prof. Berna Topuz

Fick's Law of Diffusion

 $\,\circ\,$ For transfer of species A in a binary mixture of A&B

$$J_A^* = -cD_{AB}\nabla x_A \qquad (\text{molar flux of species A})$$

$$J_A^* = -cD_{AB}\frac{dx_A}{dx}$$

(1D molar flux of species A)

 D_{AB} ; Mass diffusivity or binary diffusion constant

 j_A : Amount of A transferred per unit time per unit area \perp to the direction of transfer and it is proportional to mixture mass concentration

Fick's Law of Diffusion

 $\,\circ\,$ For transfer of species A in a binary mixture of A&B

 $j_A = -\rho D_{AB} \nabla m_A$ (mass flux of species A)

$$j_A = -\rho D_{AB} \frac{dm_A}{dx}$$
 (1D mass flux of species A)

 D_{AB} ; Mass diffusivity or binary diffusion constant

 j_A : Amount of A transferred per unit time per unit area \perp to the direction of transfer and it is proportional to mixture mass concentration

J_A*: Molar flux of species A.

It is proportional to $C = C_A + C_B$ and gradient in x_A

when ρ and C = constant

$$j_A = -D_{AB} \frac{d\rho_A}{dx}$$

$$J_A^* = -D_{AB} \frac{dC_A}{dx}$$

Your Turn:

Molecular Diffusion of Helium in Nitrogen

A mixture of He and N₂ gas is contained in a pipe at 298 K and 1 atm total pressure which is constant throughout. At one end of the pipe at point 1 the pressure p_{A1} of He is 0.6 atm and the other hand 0.2 m (20 cm) p_{A2} = 0.2 atm. <u>Calculate the flux of at steady state if D_{AB} of the He-N₂ mixture is 0.687 x 10⁻⁴ m²/s.</u>

References

- 1. Geankoplis, C.J., Transport Processes and Separation Process Principles, Prentice-Hall, Pearson Education, 2003
- 2. Incropera F. P., Dewitt D. P., Bergman T.L., Lavine A.S., Fundamentals of Heat and Mass Transfer, John Wiley & Sons Inc.
- 3. Middleman S., An Introduction to Mass and Heat Transfer: Principles of Analysis and Design, John Wiley, High Education, 1997.
- 4. Cussler E.L., Diffusion : Mass Transfer in Fluid Systems, Cambridge University Press, 3rd Edition, 2009.
- 5. Bird R.B., Stewart W.E., Lightfoot E.N., Transport Phenomena, John Wiley & Sons, 1960.

