## CEN 3313

# MASS TRANSFER 

Assoc. Prof. Ayşe Karakeçili
Assoc. Prof. Berna Topuz

## Boundary Conditions:

1. Concentration at a surface may be specified $\left(\mathrm{x}_{\mathrm{A}}=\mathrm{x}_{\mathrm{A}, \mathrm{s}}\right)$
2. Molar flux at a surface may be specified

$$
N_{A}=N_{A, S}=-\left.c D_{A B} \frac{\partial x_{A}}{\partial x}\right|_{\mathrm{x}=0}
$$

for impermeable surface

$$
\left.\frac{\partial x_{A}}{\partial x}\right|_{x=0}=0
$$

## Boundary Conditions:

3. If diffusion is occurring in a solid,

$$
\mathrm{N}_{\mathrm{A}}=\mathrm{k}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{A}, \mathrm{~s}}-\mathrm{C}_{\mathrm{A}, \infty}\right)
$$

$\mathrm{k}_{\mathrm{c} ;}$ convective mass transfer coefficient
$\mathrm{N}_{\mathrm{A}}$ : molar flux
$\mathrm{C}_{\mathrm{A}, \mathrm{s}}$; surface concentration $\quad \mathrm{C}_{\mathrm{A}, \infty}$; free stream concentration
4. Rate of chemical reaction at a surface may be specified.

$$
\mathrm{N}_{\mathrm{A}, \mathrm{~s}}=\mathrm{k}^{\prime} \mathrm{C}_{\mathrm{A}}\left(\mathrm{k}^{\prime}: \text { first order rate constant }\right)
$$

## Cylindrical Coordinates:

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(C D_{A B} r \frac{\partial x_{A}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial \phi}\left(C D_{A \mathrm{~A}} \frac{\partial x_{A}}{\partial \phi}\right)+\frac{\partial}{\partial z}\left(C D_{A B} \frac{\partial x_{A}}{\partial z}\right)+\mathrm{r}_{\mathrm{A}}=\frac{\partial C_{A}}{\partial t}
$$

Spherical Coordinates:

$$
\begin{aligned}
& \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(C D_{\mathrm{AB}} r^{2} \frac{\partial x_{\mathrm{A}}}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \phi}\left(C D_{\mathrm{AB}} \frac{\partial x_{\mathrm{A}}}{\partial \phi}\right) \\
& \quad+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(C D_{\mathrm{AB}} \sin \theta \frac{\partial x_{\mathrm{A}}}{\partial \theta}\right)+\mathrm{r}_{\mathrm{A}}=\frac{\partial C_{\mathrm{A}}}{\partial t}
\end{aligned}
$$

## Your Turn



Consider tablets that are contained in a blister package composed of a flat lidding sheet and a second, formed sheet that includes troughs to hold each tablet. The formed sheet is $L=50$ micron thick and is fabricated of a Polymer material. Each through is of diameter D $=5 \mathrm{~mm}$ and depth $=3 \mathrm{~mm}$. The lidding sheet is fabricated of aluminum foil. The binary diffusion coefficient for water vapor in the polymer is $D_{A B}=6 \times 10^{-14} \mathrm{~m}^{2} / \mathrm{s}$ while the aluminum may be assumed to be impermeable to water vapor. For molar concentrations of water vapor in the polymer at the outer and inner surfaces of $C_{A, s 1}=4.5 \times 10^{-3} \mathrm{kmol} / \mathrm{m}^{3}$ and $C_{\mathrm{A}, \mathrm{s} 2}=0.5 \times 10^{-3} \mathrm{kmol} / \mathrm{m}^{3}$, respectively. Determine the rate at which water vapor is transferred through the trough wall to the tablet.

## References

1. Geankoplis, C.J., Transport Processes and Separation Process Principles, Prentice-Hall, Pearson Education, 2003
2. Incropera F. P., Dewitt D. P. , Bergman T.L., Lavine A.S., Fundamentals of Heat and Mass Transfer, John Wiley \& Sons Inc.
3. Middleman S., An Introduction to Mass and Heat Transfer: Principles of Analysis and Design, John Wiley, High Education, 1997.
4. Cussler E.L., Diffusion : Mass Transfer in Fluid Systems, Cambridge University Press, 3 ${ }^{\text {rd }}$ Edition, 2009.
5. Bird R.B., Stewart W.E., Lightfoot E.N., Transport Phenomena, John Wiley \& Sons, 1960.
