CEN 3313 MASS TRANSFER

Assoc. Prof. Ayşe Karakeçili

Assoc. Prof. Berna Topuz

Molecular Diffusion in Gases

Equimolar Counter Diffusion in Gasses

$$J^*_{Az} = J^*_{Bz}$$

The molar flux of A from tank 1 to tank 2 must be the same as the molar flux of B from tank 2 to tank 1.

Temperature and Pressure are constant.

Molecular Diffusion in Gases-

Equimolar Counter Diffusion in Gases

$$J_{AZ}^{\star} = -J_{BZ}^{\star}$$

$$\left[-D_{AB} \frac{d(c_A)}{dz} \right] = - \left[-D_{BA} \frac{d(c_B)}{dz} \right]$$

$$D_{AB} = D_{BA}$$

Molecular Diffusion in Gases-

7

stationary observer:
A is moving faster than the
bulk of the phase

Diffusion of A and B Plus Convection

$$v_i - v^* = diffusion velocity --- \rightarrow v_{Ad}$$

 v_A = velocity of A w.r.t. stationary coordinate

 v^* = molar average velocity w.r.t. stationary coordinate

diffusion velocity indicates the motion of A relative to the <u>local motion of the fluid stream</u>

Molecular Diffusion in Gases-

Diffusion of A and B Plus Convection

Molar diffusion flux:

$$J_{Az}^{\star} \frac{kg \ mol \ A}{s \cdot m^2} = c_A v_{Ad} \frac{kg \ mol \ A}{m^3} \frac{m}{s}$$

$$v_A = v_{Ad} + v^*$$

Multiplying by C_A

$$c_A v_A = c_A v_{Ad} + c_A v^*$$

?????

stationary observer: A is moving faster than the bulk of the phase

Molecular Diffusion in Gases-Diffusion of A and B Plus Convection

(Total flux) = (Diffusion flux) + (Convective flux)

Total flux of A relative Diffusion flux relative Convective flux of A relative to the stationary point
$$c_A v_A (= N_A)$$
 $c_A v_{Ad} (= J^*_{Az})$ $c_A v_A (= N_A)$

Total convective flux of the whole stream relative to the stationary point :

$$c \ v^* = N = N_A + N_B; \ v^* = \frac{N_A + N_B}{c}$$

Total flux of A

Diffusion flux

$$= c_A \left(\frac{N_A + N_B}{c} \right)$$

$$Convective flux of A$$

Molecular Diffusion in Gases-Diffusion of A and B Plus Convection

$$N_A = -cD_{AB} \frac{d(x_A)}{dz} + \frac{c_A}{c} (N_A + N_B)$$

$$N_B = -cD_{BA} \frac{d(x_B)}{dz} + \frac{c_B}{c} (N_A + N_B)$$

For equimolar counter-diffusion $N_A = -N_B \rightarrow N_A + N_B = 0$

$$N_A = J_A^* = -N_B = -J_B^*$$

References

- 1. Geankoplis, C.J., Transport Processes and Separation Process Principles, Prentice-Hall, Pearson Education, 2003
- 2. Incropera F. P., Dewitt D. P., Bergman T.L., Lavine A.S., Fundamentals of Heat and Mass Transfer, John Wiley & Sons Inc.
- 3. Middleman S., An Introduction to Mass and Heat Transfer: Principles of Analysis and Design, John Wiley, High Education, 1997.
- 4. Cussler E.L., Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, 3rd Edition, 2009.
- 5. Bird R.B., Stewart W.E., Lightfoot E.N., Transport Phenomena, John Wiley & Sons, 1960.