ANALYTICAL CHEMISTRY

Read the details of the information given below from Skoog and West's "Fundamentals of Analytical Chemistry" book, which is recommended as a reference.

This content has been prepared for educational purposes only and the responsibility for copying and sharing belongs to third parties.

Aqueous Solutions and Chemical Equilibria

The Chemical Composition of Aqueous Solutions

Chemical Equilibrium

Buffer Solutions

9A-1 Classifying solutions of electrolytes

Classification of Electrolytes	
Strong	Weak
1. Inorganic acids such as HNO ₃ , HClO ₄ ,	 Many inorganic acids, including H₂CO₃,
H ₂ SO ₄ *, HCl, HI, HBr, HClO ₃ , HBrO ₃	H ₃ BO ₃ , H ₃ PO ₄ , H ₂ S, H ₂ SO ₃
2. Alkali and alkaline-earth hydroxides	2. Most organic acids
3. Most salts	3. Ammonia and most organic bases
	4. Halides, cyanides, and thiocyanates of
	Hg, Zn, and Cd

Electrolytes: Form ions when dissolved in water (or certain other solvents) and produce solutions that conduct electricity.

9A-2 Acids and bases

According to the Brønsted-Lowry theory, an **acid** is a proton donor, and a **base** is a proton acceptor.

Conjugate acids and bases

$$acid_1 \rightleftharpoons base_1 + proton$$

A conjugate base is formed when an acid loses a proton.

$$base_2 + proton \rightleftharpoons acid_2$$

A conjugate acid is formed when a base accepts a proton.

$$acid_1 + base_2 \Longrightarrow base_1 + acid_2$$
 Neutralization

9A-3 Amphiprotic species

Species that have both acidic and basic properties are amphiprotic.

$$H_2PO_4^- + H_3O^+ \rightleftharpoons H_3PO_4 + H_2O_{\text{base}_1}$$

$$H_2PO_4^- + OH^- \rightleftharpoons HPO_4^{2-} + H_2O_{acid_1}$$

$$NH_2CH_2COOH \rightleftharpoons NH_3^+CH_2COO^-$$
glycine zwitterion

A **zwitterion** is an ion that has both a positive and a negative charge.

Amphiprotic solvents behave as acids in the presence of basic solutes and bases in the presence of acidic solutes. Water, methanol, ethanol, anhydrous acetic acid

9A-4 Autoprotolysis

Autoprotolysis (also called autoionization) is the spontaneous reaction of molecules of a substance to give a pair of ions.

9A-5 Strengths of acids and bases

The common strong bases

NaOH, KOH, Ba(OH)₂, and the quaternary ammonium hydroxide R_4 NOH, where R is an alkyl group such as CH_3 or C_2H_5 .

The common strong acids

HCl, HBr, HI, HClO₄, HNO₃, the first proton in H₂SO₄, and the organic sulfonic acid RSO₃H.