ANALYTICAL CHEMISTRY

Read the details of the information given below from Skoog and West's "Fundamentals of Analytical Chemistry" book, which is recommended as a reference.

This content has been prepared for educational purposes only and the responsibility for copying and sharing belongs to third parties.

Principles of Neutralization Titrations

Solutions and Indicators for Acid/Base Titrations
Titration of Strong Acids and Bases
Titration Curves for Weak Acids
Titration Curves for Weak Bases
The Composition of Solutions During Acid/Base Titrations

14A Solutions and indicators for acid/base titrations

Neutralization titrations depend on a chemical reaction of the analyte with a standard reagent.

- The titration of a strong acid with a strong base
- The titration of a weak acid with a strong base
- The titration of a weak base with a strong acid

14A-1 Standard solutions

The standard reagents used in acid/base titrations are always strong acids or strong bases.

- react more completely with an analyte.
- produce sharper end points.

Weak acids and bases are never used as standard reagents because they react incompletely with analytes.

14A-2 Acid/base indicators

$$
\begin{aligned}
& \underset{\text { acid color }}{\mathrm{HIn}}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{\text { base color }}{\mathrm{In}^{-}}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{I} \text { base color } \\
& \\
& \mathrm{pH}\left(\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{\text { acid color color })=-\log \left(10 K_{\mathrm{a}}\right)=\mathrm{p} K_{\mathrm{a}}+1}{\mathrm{InH}^{+}+\mathrm{OH}^{-}}\right. \\
& \mathrm{pH}(\text { basic color })=-\log \left(0.1 K_{\mathrm{a}}\right)=\mathrm{p} K_{\mathrm{a}}-1 \\
& \text { indicator } \mathrm{pH} \text { range }=\mathrm{p} K_{\mathrm{a}} \pm 1
\end{aligned}
$$

Titration errors with acid/base indicators

Two types of titration error:

- a determinate error that occurs when the pH at which the indicator changes color differs from the pH at the equivalence point.
To minimize: choose the indicator carefully or make a blank correction.
- an indeterminate error that originates from the limited ability of the human eye to distinguish reproducibly the intermediate color of the indicator.

Variables that influence the behavior of indicators

- Temperature
- Ionic strength of the medium
- The presence of organic solvents
- Colloidal particles

14B Titration of strong acids and bases

$\mathrm{H}_{3} \mathrm{O}^{+}$in an aqueous solution of a strong acid have two sources:

- the reaction of the acid with water
- the dissociation of water itself

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=c_{\mathrm{HCl}}+\left[\mathrm{OH}^{-}\right] \approx c_{\mathrm{HCl}}} \\
{\left[\mathrm{OH}^{-}\right]=c_{\mathrm{NaOH}}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx c_{\mathrm{NaOH}}}
\end{gathered}
$$

14B-1 Titrating a strong acid with a strong base

Three types of calculations must be done in order to construct the hypothetical curve for titrating a solution of a strong acid with a strong base:

- Preequivalence
- Equivalence
- Postequivalence

At the equivalence point, the solution is neutral, and $\mathrm{pH}=\mathrm{pOH}$. pH and $\mathrm{pOH}=7.00$, at $25^{\circ} \mathrm{C}$.

