

FDE443 SENSORY ANALYSIS

Lesson-11

Prof. Dr. Kezban Candoğan

E-mail: candogan@eng.ankara.edu.tr

Difference Tests- Duo-Trio Test

\checkmark The Duo-trio test is statistically inefficient compared with the Triangle test \checkmark the chance of obtaining a correct result by guessing is 1 in 2 in Duo-Trio test.
\checkmark On the other hand, the test is simple and easily understood.
\checkmark It has the advantage that a reference sample is presented which avoids confusion with respect to what constitutes a difference.

Difference Tests- Duo-Trio Test

\checkmark This method is particularly useful in situations:

1. To determine whether product differences result from a change in ingredients, processing, packaging, or storage
2. To determine whether an overall difference exists, where no specific attributes can be identified

Difference Tests- Duo-Trio Test

\checkmark Present to each subject an identified reference sample, followed by two coded samples, one of which matches the reference sample.
\checkmark Ask subjects to indicate which coded sample matches the reference. Count the number of correct replies and refer to statistics Table for interpretation.

TEST SUBJECTS

\checkmark Select, train, and instruct the subjects
\checkmark As a general rule, the minimum is 16 subjects. Discrimination is much improved if 32,40 , or a larger number can be employed.

	a						
	0.40	0.30	0.20	0.10	0.05	0.01	0.001

Critical Number of Correct Responses in a Duo-Trio Test

Entries are the minimum number of correct responses required for significance at the stated α-level (i.e., column) for the corresponding number of respondents, n (i.e., row).

Reject the assumption of "no difference" if the number of correct responses is greater than or equal to the tabled value.

2	2	2	-	-	-	-	-
3	3	3	3	-	-	-	-
4	3	4	4	4	-	-	-
5	4	4	4	5	5	-	-
6	4	5	5	6	6	-	-
7	5	5	6	6	7	7	-
8	5	6	6	7	7	8	-
9	6	6	7	7	8	9	-
10	6	7	7	8	9	10	10
11	7	7	8	9	9	10	11
12	7	8	8	9	10	11	12
13	8	8	9	10	10	12	13
14	8	9	10	10	11	12	13
15	9	10	10	11	12	13	14
16	10	10	11	12	12	14	15
17	10	11	11	12	13	14	16
18	11	11	12	13	13	15	16
19	11	12	12	13	14	15	17
20	12	12	13	14	15	16	18
21	12	13	13	14	15	17	18
22	13	13	14	15	16	17	19
23	13	14	15	16	16	18	20
24	14	14	15	16	17	19	20
25	14	15	16	17	18	19	21
26	15	15	16	17	18	20	22
27	15	16	17	18	19	20	22
28	16	16	17	18	19	21	23
29	16	17	18	19	20	22	24
30	17	17	18	20	20	22	24

Difference Tests- Two-out-of-Five Test

SCOPE AND APPLICATION

\checkmark Statistically very efficient
\checkmark the chances of correctly guessing two out of five samples are 1 in 10 , as compared with 1 in 3 for the Triangle test.
\checkmark Use this method when the test objective is to determine whether a sensory difference exists between two samples, and particularly when only a small number of subjects is available (e.g., ten).

Difference Tests- Two-out-of-Five Test

PRINCIPLE OF THE TEST

\checkmark Present to each subject five coded samples.
\checkmark Instruct subjects that two samples belong to one type and three to another.
\checkmark Ask the subjects to taste (feel, view, examine) each product from left to right and select the two samples that are different from the other three.
\checkmark Count the number of correct replies and refer to statistics Table for interpretation.

TEST SUBJECTS

\checkmark Select, train, and instruct the subjects. Generally 10 to 20 subjects are used.
\checkmark As few as five to six may be used when differences are large and easy to spot. Use only trained subjects.

Difference Tests- Two-out-of-Five Test

TEST PROCEDURE

\checkmark If the number of subjects is other than 20, select the combinations at random from the following, taking equal numbers of combinations with 3 A's and 3 B's:

> AAABB ABABA BBBAA BABAB
> AABAB BAABA BBABA ABBAB
> ABAAB ABBAA BABBA BAABB
> BAAAB BABAA ABBBA ABABB
> AABBA BBAAA BBAAB AABBB

Difference Tests- "A" - "not A" Test

SCOPE AND APPLICATION

\checkmark Use this method
\checkmark when the test objective is to determine whether a sensory difference exists between two products
\checkmark particularly when these are unsuitable for dual or triple presentation, i.e., when the Duo-trio and Triangle tests cannot be used
\checkmark Examples of such situations;
\checkmark comparisons of products with a strong and/or lingering flavor, samples which need to be applied to the skin in half-face tests, products which differ slightly in appearance, and samples which are very complex stimuli and are mentally confusing to the panelists.

Difference Tests- "A" - "not A" Test

SCOPE AND APPLICATION

\checkmark Use the "A" - "Not A" test when one of the two products has importance as a standard or reference product, is familiar to the subjects, or is essential to the project as the current sample against which all others are measured.
\checkmark As with other overall difference tests, the "A" - "Not A" test is effective in situations:

1. To determine whether product differences result from a change in ingredients, processing, packaging, or storage
2. To determine whether an overall difference exists, where no specific attribute(s) can be identified as having been affected

Difference Tests- "A" - "not A" Test

PRINCIPLE OF THE TEST

\checkmark Familiarize the panelists with samples "A" and "not A."
\checkmark Present each panelist with samples, some of which are product " A " while others are product "not A " for each sample the subject judges whether it is " A " or "not A."
\checkmark Determine the subjects' ability to discriminate by comparing the correct identifications with the incorrect ones using the χ^{2} test.

Difference Tests- "A" - "not A" Test

TEST SUBJECTS

\checkmark Train 10 to 50 subjects to recognize the " A " and the "not A " samples.
\checkmark Use 20 to 50 presentations of each sample in the study.
$>$ Each subject may receive only one sample ("A" or "not A"), two samples (one "A" and one "not A"), or

- Each subject may test up to ten samples in a series.

Difference Tests- "A" - "not A" Test

TEST PROCEDURE

\checkmark Present samples with scoresheet one at a time.
\checkmark Code all samples with random numbers and present them in random order so that the subjects do not detect a pattern of " A " vs. "not A " samples in any series.

Difference Tests- Directional Difference Test: Comparing Two Samples

\checkmark Use this method when the test objective is to determine in which way a particular sensory characteristic differs between two samples
\checkmark The Paired Comparison test or the 2-AFC (2-Alternative Forced Choice) test
\checkmark One of the simplest and most used sensory tests
\checkmark the chance of guessing is 50%

Difference Tests- Directional Difference Test: Comparing Two Samples

\checkmark Present to each subject two coded samples.
\checkmark Prepare equal numbers of the combinations A / B and B / A
\checkmark Ask the subject to taste the products from left to right and fill in the scoresheet.
\checkmark Because of the simplicity of the test, it can be conducted with subjects who have received a minimum of training.

Paired Comparison Test

