

Genetic mechanisms of development and disorders of locomotor system (skeleton)

Prof. Dr. Hatice Ilgın Ruhi Medical Genetics

General Perspective

>clinically distinct
 >genetically heterogeneous
 >individually rare
 >Neonatal lethality → mild growth retardation

Disorders of Skeletal Patterning

The axial skeleton; the vertebrae and ribs
 the appendicular skeleton (the limb skeleton)
 the craniofacial skeleton

Skeletal Disorders

isolated anomalies; ectrodactyly, brachydactyly, polydactyly, syndactyly, absence of radius etc.

Skeletal Disorders

▶ the component of the syndrome (multiple anomalies)
 ▶ e.g.: Absence of radius or radial ray anomalies
 Fanconi anemia → The Fanconi anemia pathway

➢e.g.: Ectrodactyly

EEC syndrome (the dominant ectrodactyly, ectodermal dysplasia, and clefting syndrome)

Brachydactyly

Brachydactyly type B

hypoplasia/aplasia of the distal phalanges and/or nails
the thumb is usually unaffected
heterozygot truncating mutations for ROR2
Gain-of-function mutations

>homozygous loss-of-function → Robinow syndrome

Syndactyly

The fusion of certain fingers and/or toes
isolated entity

Component of more than 300 syndromic anomalies

- >inter- and intra-familial clinical variability
- >unilateral or bilateral
- >symmetrical or asymmetrical

non-syndromic syndactylies

Polydactyly Disorders

Polydactyly

- Type I: Thumb duplication
- Type II: Triphalangeal thumb
- Type III: Extra Preaxial finger
- Type IV: Wide thumb

Polydactyly Disorders

>GLI3 (the downstream effector of Shh

and It has a zinc finger motif)

>postaxial polydactyly type I

>preaxial polydactyly type IV

Greig cephalopolysyndactyly

> Hypertelorism

➢ frontal bossing

> Syndactyly

pre- or postaxial polysyndactyly

>Pallister-Hall syndrome

malformations of the CNS

➤ craniofacial abnormalities

syndactyly and polydactyly

FGF Receptors Fibroblast Growth Factor Receptor

>Cell division, migration, differentiation

- Three main components: an extracellular region, a transmembrane segment and intracellular tyrosine kinase domains
- > Mutations; two groups of developmental disorders
 - > the craniosynostosis syndromes
 - > Skeletal dysplasias

Developmental disorders caused by mutations in FGFRs Reference: Emery's Elements of Medical Genetics, 15th ed. 2017

Gene	Chromosome	Syndrome
Craniosynostosis syndromes		
FGFR1	8p11	Pfeiffer
FGFR2 FGFR3	10q25 4p16	Apert Crouson Jackson-Weiss Pfeiffer Crouson (+ akantozis nigrikans)
	4910	
Skeletal dysplasias		
FGFR3	4p16	Achondroplasia Hypochondroplasia Thanatophoric dysplasia

Skeletal Dysplasias

Achondroplasia Group

- Thanatophoric dysplasia (perinatal lethal form)
 Achondroplasia
- >Hypochondroplasia

Fibroblast Growth Factor Receptor 3 (FGFR3)

Achondroplasia

- Mutation; in transmembrane domain of FGFR3
- ➤Gain-of function
- >Ligand-independent activation
- ➢Gly380Arg (1138G>A, 1138G >C) 98-99%

Achondroplasia

- >Incidence;1/15.000-1/40.000
- >Autosomal dominant
- >Full penetrance
- > De novo mutations (paternal age \uparrow) 80-90%
- ➢Both partners are affected → a 25% risk for lethal homozygous achondroplasia

Skeletal Dysplasias

Type II Collagenopathies

- >heterozygot mutations for COL2A1
- ➤a heterogenous group of disorders
 - >e.g.:Achondrogenesis II and hypochondrogenesis
 - ➤ large skulls
 - > very small and short ribs
 - > lack of mineralization of most vertebral bodies

Osteogenesis Imperfecta

There are a large group of skeletal disorders that present with decreased bone density

- > E.g.: OI (brittle bone disease)
- > Type I (
- > Type II (perinatal lethal form)
- > Type III
- > Type IV

type I collagen production \downarrow (Type I)

Changes of type I collagen structure (Type II, III and IV)

Osteogenesis Imperfecta

- > Mutations (90%) \rightarrow COL1A1 and COL1A2 genes
- > Allelic heterogeneity (20001 different mutations)
- >Incidence;1/15.000
- > Two proal(I) and one proal(I) chains
- > The triple helical (collagen) structure

Further reading

Thompson&Thompson, Genetics in Medicine, eighth ed. 2016.
 Emery's Elements of Medical Genetics, 15th ed. 2017.