

Ankara University Department of Geological Engineering

GEO222 STATICS and STRENGTH of MATERIALS

Lecture Notes

Assoc. Prof. Dr. Koray ULAMIŞ

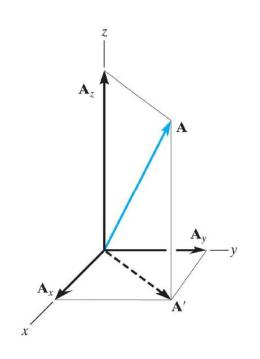
3D Cartesian Vectors

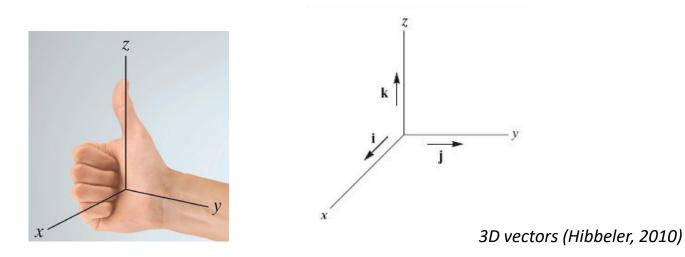
Any vector, say "A" might have components along x, y, z axes. Two successive parallelogram law is applied as "A=A' + A_z " and "A' = $A_x + A_y$ ". In order to combine and eliminate A' the overall sum of components will be:

$$A = A_x + A_y + A_z$$

Cartesian Unit Vectors

In 3D, the set of Cartesian unit vectors; "i-j-k" is used to designate the directions of the x,y and z axes. *The sense (or arrowhead) of these* vectors will be represented analytically by a plus or minus sign depending on whether they are directed along positive or negative x, y or z axes.





Cartesian Vector Representation

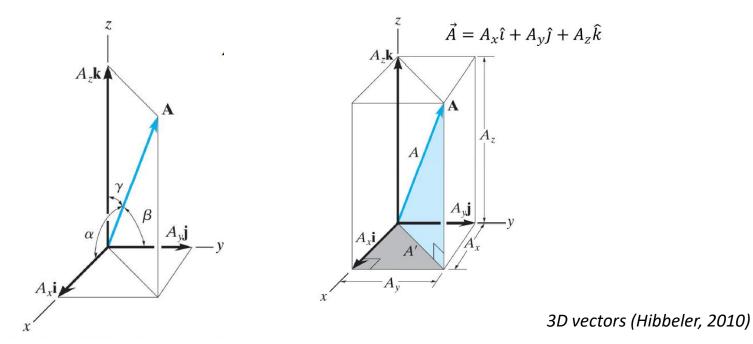
The vector A can be defined as ; $\mathbf{A} = (\mathbf{A}_x \mathbf{i} + \mathbf{A}_y \mathbf{j} + \mathbf{A}_z \mathbf{k})$.

The magnitude of
$$A' = \sqrt{A_x^2 + A_y^2}$$
 and $A = \sqrt{A + A_z^2}$.

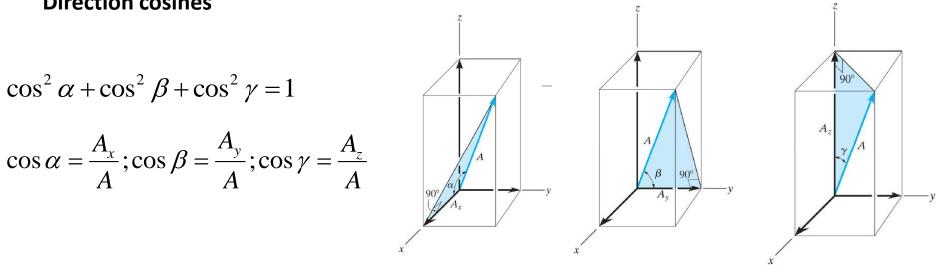
Combination of these equations yield;

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Direction of a cartesian vector is defined by the coordinate direction angles, measured between the tail of A and positive axes.



"Direction cosines"

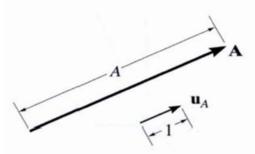


"Unit Vector along axes"

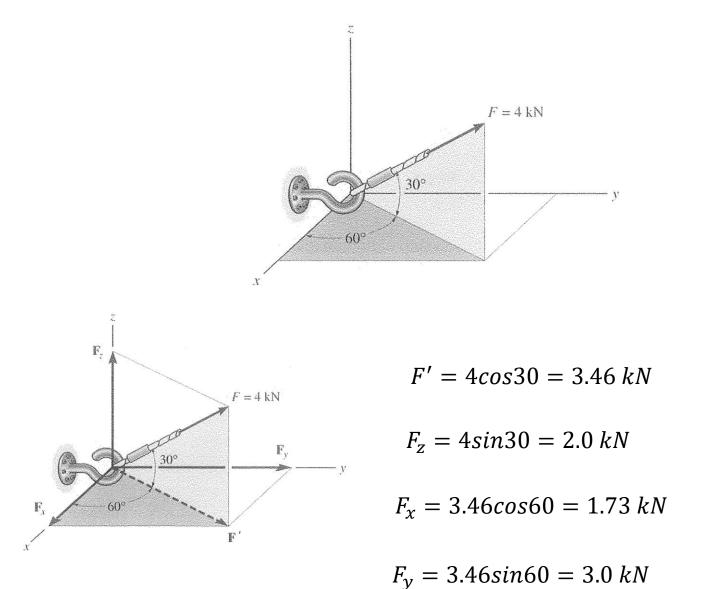
$$u_A = \frac{A_x}{A}i + \frac{A_y}{A}j + \frac{A_z}{A}k \qquad u_A = [(\cos\alpha)i + (\cos\beta)j + (\cos\gamma)k]$$

Characteristics of a unit vector:

- a) Its magnitude is 1.
- b) It is dimensionless.
- c) It points in the same direction as the original vector \vec{A} .
- d) Think of \hat{u}_A as direction of vector \vec{A} .

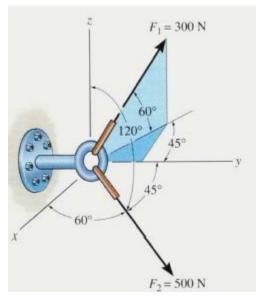


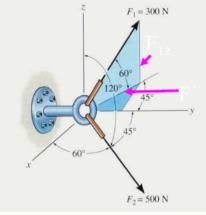
Example 6. Please express the force "F" as a cartesian vector.



(Hibbeler, 2010)

Example 7. The screw is subjected to two forces, please find the magnitude and coordinate direction angles of the resultant. Plan: Express the forces with Cartesian vectors, add and find the resultant, determine the direction angles.

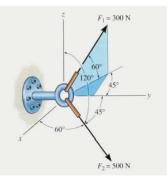




First resolve the force F_1 . $F_{1z} = 300 \sin 60^\circ = 259.8 \text{ N}$ $F' = 300 \cos 60^\circ = 150.0 \text{ N}$ F' can be further resolved as, $F_{1x} = -150 \sin 45^\circ = -106.1 \text{ N}$ $F_{1y} = 150 \cos 45^\circ = 106.1 \text{ N}$

Now we can write :

$$F_1 = \{-106.1 \ i + 106.1 \ j + 259.8 \ k \}$$
 N



The force F_2 can be represented in the Cartesian vector form as: $F_2 = 500 \{ \cos 60^\circ i + \cos 45^\circ j + \cos 120^\circ k \} \text{ N}$ $= \{ 250 i + 353.6 j - 250 k \} \text{ N}$ $F_R = F_1 + F_2$

 $= \{ 143.9 \, i + 459.6 \, j + 9.81 \, k \} \, \mathrm{N}$

$$F_{R} = (143.9^{2} + 459.6^{2} + 9.81^{2})^{\frac{1}{2}} = 481.7 = 482 \text{ N}$$

$$\alpha = \cos^{-1} (F_{Rx} / F_{R}) = \cos^{-1} (143.9/481.7) = 72.6^{\circ}$$

$$\beta = \cos^{-1} (F_{Ry} / F_{R}) = \cos^{-1} (459.6/481.7) = 17.4^{\circ}$$

$$\gamma = \cos^{-1} (F_{Rz} / F_{R}) = \cos^{-1} (9.81/481.7) = 88.8^{\circ}$$

(Hibbeler, 2010)