Ankara University Department of Geological Engineering

GEO222 STATICS and STRENGTH of MATERIALS

Lecture Notes

Assoc. Prof. Dr. Koray ULAMIŞ

3D Cartesian Vectors

Any vector, say " A " might have components along x, y, z axes. Two successive parallelogram law is applied as " $A=A^{\prime}+A_{z}$ " and " A ' $=A_{x}+A_{y}$ ". In order to combine and eliminate A^{\prime} the overall sum of components will be:

$$
A=A_{x}+A_{y}+A_{z}
$$

Cartesian Unit Vectors

In 3D, the set of Cartesian unit vectors; " $\mathrm{i}-\mathrm{j}-\mathrm{k}$ " is used to designate the directions of the x, y and z axes. The sense (or arrowhead) of
 these vectors will be represented analytically by a plus or minus sign depending on whether they are directed along positive or negative x, y or z axes.

Cartesian Vector Representation

The vector A can be defined as ; $\mathbf{A}=\left(\mathbf{A}_{\mathbf{x}} \mathbf{i}+\mathbf{A}_{\mathbf{y}} \mathbf{j}+\mathbf{A}_{\mathbf{z}} \mathbf{k}\right)$.
The magnitude of $A^{\prime}=\sqrt{A_{x}^{2}+A_{y}^{2}}$ and $A=\sqrt{\mathrm{A}+A_{z}^{2}}$.
Combination of these equations yield;

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

Direction of a cartesian vector is defined by the coordinate direction angles, measured between the tail of A and positive axes.

"Direction cosines"

$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\cos \alpha=\frac{A_{x}}{A} ; \cos \beta=\frac{A_{y}}{A} ; \cos \gamma=\frac{A_{z}}{A}$

"Unit Vector along axes"
$u_{A}=\frac{A_{x}}{A} i+\frac{A_{y}}{A} j+\frac{A_{z}}{A} k \quad u_{A}=[(\cos \alpha) i+(\cos \beta) j+(\cos \gamma) k]$

Characteristics of a unit vector:
a) Its magnitude is 1 .
b) It is dimensionless.
c) It points in the same direction as the original vector \vec{A}.

d) Think of \hat{u}_{A} as direction of vector $\overrightarrow{\boldsymbol{A}}$.

Example 6. Please express the force " F " as a cartesian vector.

Example 7. The screw is subjected to two forces, please find the magnitude and coordinate direction

 angles of the resultant. Plan: Express the forces with Cartesian vectors, add and find the resultant, determine the direction angles.

First resolve the force F_{1}.

$$
\begin{aligned}
& \mathrm{F}_{1 \mathrm{z}}=300 \sin 60^{\circ}=259.8 \mathrm{~N} \\
& \mathrm{~F}^{\prime}=300 \cos 60^{\circ}=150.0 \mathrm{~N}
\end{aligned}
$$

F^{\prime} can be further resolved as,

$$
\begin{aligned}
& \mathrm{F}_{1 \mathrm{x}}=-150 \sin 45^{\circ}=-106.1 \mathrm{~N} \\
& \mathrm{~F}_{1 \mathrm{y}}=150 \cos 45^{\circ}=106.1 \mathrm{~N}
\end{aligned}
$$

Now we can write :

$$
F_{1}=\{-106.1 i+106.1 j+259.8 k\} \mathrm{N}
$$

The force F_{2} can be represented in the Cartesian vector form as:

$$
\begin{aligned}
\boldsymbol{F}_{2}= & 500\left\{\cos 60^{\circ} \boldsymbol{i}+\cos 45^{\circ} \boldsymbol{j}+\right. \\
& \left.\cos 120^{\circ} \boldsymbol{k}\right\} \mathrm{N} \\
= & \{250 \boldsymbol{i}+353.6 \boldsymbol{j}-250 \boldsymbol{k}\} \mathrm{N} \\
\boldsymbol{F}_{R}= & \boldsymbol{F}_{1}+\boldsymbol{F}_{2} \\
= & \{143.9 \boldsymbol{i}+459.6 \boldsymbol{j}+9.81 \boldsymbol{k}\} \mathrm{N}
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{R}}=\left(143.9^{2}+459.6^{2}+9.81^{2}\right)^{1 / 2}=481.7=482 \mathrm{~N}
$$

$$
\alpha=\cos ^{-1}\left(\mathrm{~F}_{\mathrm{Rx}} / \mathrm{F}_{\mathrm{R}}\right)=\cos ^{-1}(143.9 / 481.7)=72.6^{\circ}
$$

$$
\beta=\cos ^{-1}\left(\mathrm{~F}_{\mathrm{Ry}} / \mathrm{F}_{\mathrm{R}}\right)=\cos ^{-1}(459.6 / 481.7)=17.4^{\circ}
$$

$$
\gamma=\cos ^{-1}\left(\mathrm{~F}_{\mathrm{Rz}} / \mathrm{F}_{\mathrm{R}}\right)=\cos ^{-1}(9.81 / 481.7)=88.8^{\circ}
$$

