

Ankara University Department of Geological Engineering



# **GEO222 STATICS and STRENGTH of MATERIALS**

Lecture Notes

Assoc. Prof. Dr. Koray ULAMIŞ

# **CHAPTER 4. MOMENT OF A COUPLE**

Two couples will have equal moments if

- the two couples lie in parallel planes, and
- the two couples have the same sense or the tendency to cause rotation in the same direction.

The reason we use Force Couples to analyze Moments is that; Location of the axis the Moment is calculated about does not matter. The Moment of a Couple is constant over the entire body it is acting on Equivalent couples; two couples that produce the same magnitude and direction.

- **The point of action of a Couple does not matter**
- □ The plane that the Couple is acting in does not matter
- □ All that matters is the orientation of the plane the Couple is acting in
- Therefore, a Force Couple is said to be a Free Vector and can be applied at any point on the body it is acting





Moment of couples (Hibbeler, 2010)



### **Example 11.** Determine the resultant couple moment of three couples acting on the plate.



The negative sign indicates that  $M_R$  has a clockwise rotational sense.

### **Example 12.** Determine the magnitude and direction of the couple moment acting on the gear.



#### (Hibbeler, 2010)

## **VARIGNON's THEOREM**

Algebraic sum of several concurrent forces about any point is equal to the moments of the moments of their resultant about the point. By applying "*Varignon's Theorem*" to the Forces in the Couple, it can be proven that couples can be added and resolved as Vectors.



**To prove Varignon's Theorem,** consider the force R acting in the plane of the body as shown in the aboveleft side figure (a). The forces 'P' and 'Q' represent any two non-rectangular components of 'R'. The moment of 'R' about point 'O' is

 $M_o = r \times R$ 

```
Because R = P + Q, we can write r \times R = r \times (P + Q)
```

Using the distributive law for cross products, we have  $M_o = r \times R = r \times P + r \times Q$ 

which says that the moment of 'R' about 'O' equals the sum of the moments about 'O' of its components 'P' and 'Q'. This proves the theorem.



# **Resultant of a Force and Couple System**

Extend this idea to a general 3-D case. Now, the force can be moved



Force now causes the force at any point 0 and then a couple.



Couples resultant (Hibbeler, 2010)

### **Further Reduction on Force/Couples**

If resultant force  $\overline{F}_R$  and moment  $\overline{M}_{R_o}$  is known then it is possible to



Reduction of forces (Beer, et al. 2011; Hibbeler, 2010)

### **Coplanar Force Systems**



Here we have parallel forces and moments that are perpendicular.

Resultant moment (see b):  $\sum \overline{M}_{R_o} = \sum \overline{M}_C + \sum (\overline{r} \times \overline{F})$ A single force  $\overline{F}_R = \sum \overline{F}$ 

Reduction of forces (Beer, et al. 2011; Hibbeler, 2010)