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SIMPLE AXIAL STRESS - 2D

N = F cosO
T=Fsin0
O-ne= F/A

The inclined plane has an area of A/cos0; the stress normal to the plane and shear stress along the
plane (in the direction of maximum inclination)are;
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The maximum normal stress (s) is F/A which acts on radial planes. The magnitude and direction of
maximum shear stress is extracted from the differentiation;

dz, = F C0os 260
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The maximum value of shear stress is obtained by putting dt,/d6=0;
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Note: Maximum shear stress (tq,,,,,) acts on a plane with 6=45" and
maximum normal stress (0,94, acts on a plane with 6=0 °.



Problem

A cylindrical rock sample is subjected to an axial compressive force of 5kN. The diameter of the
sample is 50 mm. Please determine;

a. Normal stress and shear stress on an inclined plane of 30°.

b. Maximum shear stress

c. Inclination of planes on which the shear stress is half of maximum shear stress.

Solution

a. Unit area; A=mr?=1.96x103 m?
Normal stress; 6,4 = (5 kN/1.96x103)cos?30 = 1913 kPa
Shear stress; t4= (5 kN/2x1.96x1073)sin60 = 1105 kPa

b. Maximum Shear stress;
Tomax= (F/2A) =(5 kN/2x1.96x103) = 1275 kPa

c. Maximum Shear stress;
1/274,,.,= TeMax sin26; 6=15" or 75°



SIMPLE BIAXIAL STRESS - 2D

Consider a rectangular plate (a) of unit thickness with normal principal stresses 6, and ,. The shear
stresses along the edges are assumed to be zero. A square element of the plate is shown in 2D (b). The
normal and shear stresses acting on a plane inclined at an angle direction of the plane on which o, acts
are found by considering forces acting on the triangular element (c).

Unit length along CD = |, normal stress for a plate of unit thickness
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Forces in normal stress direction
o,secd=N,+N,
o, =0,008°0+0,sin’ O
Forces in shear stress direction;
T,+T,=17,/secé
1 :
=7 (0,—0,)sin26

1

Tomax = E (O-l o 0-2)

Maximum shear stress on 45° plane:

z-t9max - % If (01 > 62)



Problem

g

7 “Weakness

Solution

i

Maximum shear stress is on 45° plane;

1

Tpmax = E(Gl —0,)sin26

o, =1.6MPa
and
o, =0.4MPa

- i

o, =0.8MPa
and

o, =40,

Shear stress is on 60° plane;

T, = %(01 —0,)sin26

T, = 0.866MPa
o, =1.48MPa
and

o, =0.37MPa



MOHR STRESS CIRCLE

The graphical stress relations was discovered by Culmann (1866) and developed by Mohr (1882)
based on the equations given below
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Which is the equation of a circle with radius and with a center on “t-c” plot
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The maximum normal stress is

o +0
Cprax = [f—zl}r \/[-%(.:)'Jr - o:;y)]2 + (rnjz

The minimum normal stress is
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Biaxial Compression-2D

Biaxial stresses are represented by a circle which plots in “+c” space, passing through ¢, and 5, on
“1=0" axis. Centre of circle is on “1=0" axis at point “1/2(c,+0,)”.Radius of circle has the magnitude

of “1/2(c,-5,)” which represents “t,...”

(a)

Biaxial Tension-2D

The stress circle extends into both positive and negative “c” space. Center of circle is on “1=0"
axis at point “1/2(c,+0,)”.Radius is “1/2(s1-s2)=t,,.,” which occurs at 45" to &, direction.
Normal stress is zero in directions “+0” to the direction of 6,;
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Biaxial Shear-2D

The stress circle has a radius of “1,,” which is opposite to “t,,”. Center of the circle is at “c=0; 1=0".
Principal normal stresses “c, and ¢,” are equal but opposite in sign which have magnitudes equal to
“1,,”. The directions of principal normal stresses are at 45" in directions of “t,,” and “t,”
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Figure 3.8 Maohr failure circles for five granites. (After Hoek, 1983.)



General Considerations on Principal Stress Relations
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Fig. 31 Stresses on a plane element.

The maximum normal stress is

The minimum normal stress is
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Fig. 32 MNormal and shearing stresses
on an inclined plane.
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Problem

A plane element is subjected to the stresses given below. Determine the principal stresses and
directions by Mohr’s circle.
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(b)
The principal stresses are represented by points G and H. Since the coordinate of “C” is 40;
CD= (40%+30%)%> =50
Minimum principal stress is 10 MPa
G,,in=0G=0G-CG=40-50=-10 Mpa

Maximum principal stress is
=0OH=0C+CH=40+50=90 Mpa 20 Mp,

Gmax

71.57°

The angle 20,;
tan 20,=30/40; 0,=18.43



STRESS in 3D

In the body of a stressed material, 3D stresses at any point can be represented as if acting on a small
cubical element. The nine stresses in three Cartesian space are in form of a matrix “STRESS TENSOR”
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Hudsori & Harrison (1997)



Example #1

Q. |Add the following 2-D stress " - }/,\ 1swpa
states, and find the principal // \EMPE
stresses and directions of the \// . ,-;\\,,;,/"
resultant stress state. o e wh ;}m

A. Hin

y
Shear stress. T_ _ _ _ _ |
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Principal stress, O,

a"+,r

O gl l/‘%' 4 = = Normal stress,0
AN Principhl stress, 0,
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positive shear stresses plot below the o-axis.

Hudsan & Harrison (1997)
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Example #1 (Solution)

: 307
Q. Add the following 2-D stress - ﬁ\{ ‘//\ _t5vpa
states; and-find-the principal / \mpa
stresses and directions of the \J/ S o f\\//'
resultant stress state. mM/p: SWpe o, ;}Mpﬂ
A |Step 1
Shear stress, -T .
=100 . 1DL
N {\/\ <0 a,,.':,,=1D.0.5.E( ™
;// \k}? ] / \ \ o, = 21.83, -1.63
/ ! .|
- / 0 I EE—— . . . ——
\;ﬁ;a kﬁﬁmpa 5o s s, 60 ] 250 300 Normal siress o
10 MPa |om, =847, -1.333.\ o/
2.0 1 \\ ._/>{D1'.-h = 200,50
100 -
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Figure .10 Cubical element with principal stresses only acting on its faces: (a) stresses;

(b) Mohr circles.
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Figure [.11 Cubical element with normal stresses on all faces and shear stresses on two
pairs of opposite faces: (a) stresses; (b) Mehr circles.



5.1 Plane Strain versus Plane Stress Relations

First of all, let us estimate the term “plane sfrain™ and its relations to plane
stress. Consider a small element of material having sides of lengths a, b, and ¢ in
the x, v, and z directions, respectively (Fig. 5.1a). If the only deformations are
those in the xy plane, then three strain components may exist: the normal strain &,

in the x direction (Fig. 5.1b), the normal strain £, in the y direction (Fig. 5.1¢).
and the shear strain y,, (Fig. 5.1d). An element of material subjected to these

strains is said to be in a sfate of plane sirain. It follows that an element in plane
strain has no normal strain &, in the z direction and no shear strains y,. and y,.

in the xz and yz planes. respectively.
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PLANE STRESS

=
X
z
7 c-=0: 7,-=0: TJ,Z=[]; T =0 T}z=ﬂ;
w

E 2 Oy. 0. and T, May have nonzero o&,. Ty and T, may have nonzero
values values

4 Yz =0 ?’yzzu:" g, =01 Jyp=0: ;Vyz:D::

é W Ex. £y &, and Yy may have Ex- £y and Jyy MAY have nonzero

“ nonzero values values

Fig. 5.2 Comparison of plane stress and plane strain



9.3 Principal Strains

Principal strains exist on perpendicular planes with the principal angles &,
calenlated from the followine ecmation (commnare with Fa. 3.101:

5.4 Maximum Shear Strains

The maximum shear strains in the xy plane are associated with axes at 45°

to the directions of the principal strains. The algebraically maximum shear strain
(in the xy plane) is given by the following equation (compare with Eq. 3.38):
"' max (8 -8y \\'-.2 [Ty Y
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The algebraically minimum shear strain has the same magnitude but is negative.

In the directions of maximum shear strain, the normal strains are
Ex +5}' &1 TE2
2 2
Eq. (5.14) 1s analogous to Eq. (3.40) for stresses.
The frue maximum sheaving strain of three-dimensional analysis proceeds
from Eq. (3.39):

(5.13)

Eaqver =

(5.14)

(7max ), = &1 — 3. (5.15)
Here g and &£y are the algebraically largest and smallest principal strains,
respectively.
The maximum out-of-plane shear strains. that is. the shear strains in the xz
and yz planes, can be obtained from equations analogous to Eq. (5.13).
An element in plane stress that is oriented to the principal directions of
stress (see Fig. 3.17b) has no shear stresses acting on its faces. Therefore. the
shear strain y,,,1 for this element is zero. It follows that the normal strains in this

element are the principal strains. Thus. ar a given point in a stressed body. the
principal strains and principal stresses occur in the same directions.



5.5 Mohr's Circle for Plane Strain

Mohr's circle for plane strain is constructed in the same manner as the circle
for plane stress. as illustrated in Fig. 5.6. Normal strain &, is plotted as the

abscissa (positive to the right) and one-half the shear strain | % is plotted as

the ordinate (positive downward). The center C of the circle has an abscissa equal
to &, (Eq. 5.14).
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Fig. 5.6 Mohr's circle for plane strain



