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NUCLEAR REACTIONS

If energetic particles from a reactor or accelerator (or even from a
radioactive source) are allowed to fall upon an element, there is the
possibility of a nuclear reaction taking place. The first such nuclear
reactions were done in Rutherford’s laboratory, using  particles
from a radioactive source.

Rutherford was able to observe a change or transmutation of nuclear
species in the reaction done in 1919:

The first particle accelerator capable of inducing nuclear reactions
was built by Cockcroft and Walton, who in 1930 observed the
reaction
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7 8N O p + → +

7 4

3 2p Li He + → +



NUCLEAR REACTIONS

The nucleus formed after bombardment is, in most cases, different
from the target nucleus. Such a change of the target nucleus is a
transmutation and the reaction itself is called a transmutation
reaction.

The importance of the study of nuclear reactions lies in the fact that
most of the information about the properties of the nucleus (such as
the size, the charge distribution, and the nature of the nuclear forces)
is obtained from these investigations. A typical nuclear reaction is
written as

(1)x X Y y+ → +



NUCLEAR REACTIONS

where x is the accelerated particle, X is the target (usually
stationary in the laboratory), and Y and y are the reaction products.
Usually, Y will be a heavy product that stops in the target and is not
directly observed, while y is a light particle that can be detected and
measured. Generally, x and y will be nucleons or light nuclei, but
occasionally y will be a  ray, in which case the reaction is called
radiative capture.

An alternative and compact way of indicating the nuclear reaction
represented by Eq. 1 is

We are interested in the study of nuclear reactions from two view
points:

( ), (2)X x y Y



NUCLEAR REACTIONS

A: The conditions under which different reactions take place. In
many case it is possible to predict the outcome of a nuclear reaction,
but we shall limit ourselves to looking into the conditions necessary
to start a nuclear reaction.

B: The determination of the probability of an incoming particle
being absorbed by the target nucleus. This probability is called the
cross section of a given nuclear reaction.



ENERGY CONSERVATIONS IN 
NUCLEAR REACTIONS

Let us assume that x and X are far apart and do not exert any force
on each other. This implies that the system does not have any
potential energy.

Let us say that long before the collision between the incoming
particle, x, and the target nucleus, X, their rest masses are mx and MX,
and their kinetic energies are Kx and KX, respectively.

Thus the total energy, Ei of the initial system

2 2 (3)i x x X XE K m c K M c= + + +



ENERGY CONSERVATIONS IN 
NUCLEAR REACTIONS

Similarly the final energy, Ef , of the system Y+y, long after the
collision, is

Because there are no external forces acting on the system, the final
energy must be equal to the initial energy

or

(5)f iE E=

2 2 (4)f Y Y y yE K M c K m c= + + +

2 2 2 2 (6)Y Y y y x x X XK M c K m c K m c K M c+ + + = + + +

( ) ( ) ( ) ( )2 2 (7)Y y X x X x Y yK K K K M m c M m c   + − + = + − +
   



ENERGY CONSERVATIONS IN 
NUCLEAR REACTIONS

The net change in the kinetic energy is called the disintegration
energy or Q-value of the nuclear reaction,

Q is also equal to the change in the rest-mass energies given by

The Q value may be positive, negative, or zero. If Q>0 (minitial >
mfinal) or Kfinal > Kinitial) the reaction is said to be exoergic or
exothermic; in this case nuclear mass or binding energy is released
as kinetic energy of the final products.

( ) ( ) (8)Y y X xQ K K K K= + − +

( ) ( )2 2 (9)X x Y yQ M m c M m c= + − +



ENERGY CONSERVATIONS IN 
NUCLEAR REACTIONS

When Q<0 (minitial < mfinal) or Kfinal < Kinitial) the reaction is said to
be endoergic or endothermic, and initial kinetic energy is converted
into nuclear mass or binding energy.

The changes in mass and energy must of course be related by the
familiar expression from special relativity, E = mc2 - any change
in the kinetic energy of the system of reacting particles must be
balanced by an equal change in its rest energy.

In most experiments the target nucleus is initially at rest. In such
cases

( )

( ) ( )2 2 (10)

Y y x

X x Y y

Q K K K

M m c M m c

= + −

= + − +



ENERGY CONSERVATIONS IN 
NUCLEAR REACTIONS

In general, it is not easy to measure accurately the kinetic energy,
KY , of the recoil nucleus. If we consider the conservation of
momentum, it is possible to obtain an expression for the Q-value
independent of KY .

Consider a particle x of mass mx moving with velocity vx that
strikes the target nucleus, X, of mass MX and whose velocity is zero,
i.e., at rest. After the nuclear reaction, the recoil nucleus Y makes an
angle  with the initial direction of x and has mass MY and velocity
VY , while the particle y makes an angle  and has mass my and
velocity vy .

(See Fig. 4.1 in page 82 in Fundamentals of Nuclear Physics, by
Atam P. Arya)



ENERGY CONSERVATIONS IN 
NUCLEAR REACTIONS

From the conservation of momentum, we get

or

Squaring and adding Eqs 11 and 12, we get
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2 2 2 2 2 2 2 cos (13)Y Y x x y y x y x yM V m v m v m m v v = + −



ENERGY CONSERVATIONS IN 
NUCLEAR REACTIONS

Making use of the relations,

in Eq. 13 and rearranging the terms, we get

The Q-value of the reaction with KX = 0 is given by Eq. 10

and substituting the value of KY from Eq. 14 into Eq. 10

2 2 21 1 1
,

2 2 2
x x x y y y Y Y YK m v K m v and K M V= = =

( )
1/22

cos (14)
yx

Y x y x y x y

Y Y Y

mm
K K K m m K K

M M M
= + −

( )Y y xQ K K K= + −

( )
1/22

1 1 cos (15)
y x

y x x y x y

Y Y Y

m m
Q K K m m K K
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   
= + − − −   

   



ENERGY CONSERVATIONS IN 
NUCLEAR REACTIONS

Eq. 15 is the general equation for the Q-value of a nuclear reaction. If
the outgoing particles are observed at right angles to the direction of
the incoming particles, i.e., =900 , cos 900 = 0 then Eq. 15 becomes

This is equivalent to the case in which the target nucleus and, hence,
the recoil nucleus are of infinite mass. Rewriting Eq.15, we can
express the kinetic energy of the outgoing particle in the following
form,

1 1 (16)
y x

y x

Y Y

m m
Q K K

M M

   
= + − −   

   

( ) ( ) ( )
1/2

2 cos 0Y y y x y x y x Y x YM m K m m K K K M m M Q  + − − − + = 



ENERGY CONSERVATIONS IN 
NUCLEAR REACTIONS

Which is a quadratic in

Solving it we get

or

where

and

( ) ( ) ( ) 
( )

( )

1/2
2cos cos
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ENERGY CONSERVATIONS IN 
NUCLEAR REACTIONS

If the bombarding energy is almost zero, i.e., Kx  0, which happens
in the case of reactions initiated by the capture of thermal neutrons,
Eq. 17 reduces to

If Q>0 and MY > mx , only one of the two solutions of Ky, obtained
from Eq. 17 and 18, will be positive, and is given by

In this case Ky does depend on the angle . Ky has a maximum
value for =0, minimum for =1800 , and for =900 , Ky =b

( )
0Y

y

Y y

M Q
K for Q

M m
= 

+

2

yK a a b= + +
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( )
x Y x Y

y

Y y

K M m M Q
K

M m

− +
=

+



THRESHOLD ENERGY FOR AN 
ENDOERGIC REACTION

We derived the expression for the Q-value of a nuclear reaction by
considering the reaction to be taking place in the LAB coordinate
system. The endoergic reaction is one for which the Q-value is
negative. In this case some of the initial kinetic energy (equal to the

Q-value of the reaction) is converted into the rest-mass energy of
the final products.

The minimum value of the energy required for an endoergic
reaction to take place is the threshold energy.

For almost zero bombarding energies, Kx  0 , we get

a  0 , and b  MY Q/(MY + my)



THRESHOLD ENERGY FOR AN 
ENDOERGIC REACTION

and because Q is negative, the quantity (a2+b) is negative. This
means that is an imaginary quantity, or Ky is negative, which
does not have any physical meaning. Thus the endoergic reactions
are not possible with this insufficient amount of kinetic energy.

As the energy Kx of the bombarding particle is increased, the
reaction will become possible with a certain minimum value of Kx

given by the condition a2+b = 0

yK

( )
2sin

Y y

x

x y
Y y x

Y

M m
K Q

m m
M m m

M





 
 +
 = −
   

+ − −    
   



THRESHOLD ENERGY FOR AN 
ENDOERGIC REACTION

If the outgoing particle of mass my is observed at =00 , this leads to

Using the relation

we get

( )
min

Y y

x

Y y x

M m
K Q

M m m

 +
= −  

+ −  

2X x Y y

Q
M m M m

c
+ = + +

( )
2

min

2

(18)
X x

x

X

Q
M m

cK Q
Q

M
c

 
+ − 

= −  
 −
 



THRESHOLD ENERGY FOR AN 
ENDOERGIC REACTION

Because the energy equivalent of the mass, MX, is usually very
large as compared to Q, we may write Eq. 18 as

Thus we conclude that if the energy of the incident particles is
equal to the threshold energy, the outgoing particles are emitted
only in the direction =0 with energy given by the following

( )
min

1X x x
x

X x

M m m
K Q Q

M M

  +
= − = − +  

   

( )
min

1 (19)x
x

x

m
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M

 
= = + 

 
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THRESHOLD ENERGY FOR AN 
ENDOERGIC REACTION

If the reaction reaches excited states of Y, the Q-value equation
should include the mass energy of the excited state.

Where Q0 is the Q-value corresponding to the ground state of Y,
and where we have used

as the mass energy of the excited state (Eex is the excitation energy
above the ground state)

( )*

2

0

ex X x yY

ex

Q M m M m c

Q E

= + − −

= −

*

2 2

Y exY
M c M c E= +



NUCLEAR REACTIONS IN A CENTER-
OF-MASS COORDINATE SYSTEM

In the previous section, the laboratory coordinate system (LAB
coordinate system) was used to explain the dynamics of nuclear
reactions. But it is usually more convenient from the theoretical
view point to use the center-of-mass coordinate system (CMCS).
CMCS can be utilized to calculate the minimum energy required by
the bombarding particle in order to start an endoergic nuclear
reaction.

See Figure 4.2 in Page 85 in Fundamentals of Nuclear Physics by
Atam P. Arya for illustration a collision in the LAB coordinate
system as well as in the CMCS.



NUCLEAR REACTIONS IN A CENTER-
OF-MASS COORDINATE SYSTEM

A. BEFORE COLLISION

If a particle of mass mx has velocity vx in the LAB coordinate
system, while the particle of mass MX is at rest, the velocity vc of the
center-of-mass of the system is given by

( ) .0x X c x x Xm M v m v M+ = +

(1)x x
c

x X

m v
v

m M
=

+



NUCLEAR REACTIONS IN A CENTER-
OF-MASS COORDINATE SYSTEM

Let us denote the velocities of mass mx and MX in the CMCS by vx
’

and VX
’respectively, where

and

' (2)x x X
x x c x x

x X x X

m v M
v v v v v

m M m M
= − = − =

+ +

' 0 (3)x x
X c

x X

m v
V v

m M
= − = −

+



NUCLEAR REACTIONS IN A CENTER-
OF-MASS COORDINATE SYSTEM

The kinetic energies, therefore, of the two particles before the
collision in the CMCS are given by

and

2 2

' ' 21 1
(4)

2 2

X X
x x x x x x

x X x X

M M
K m v m v K

m M m M

   
= = =   

+ +   

( )

2

' ' 2

2

1 1
(5)

2 2

x x x X
X X X X x

x X x X

m v m M
K M V M K

m M m M

 −
= = = 

+ + 



NUCLEAR REACTIONS IN A CENTER-
OF-MASS COORDINATE SYSTEM

The total energy Ki’ of the system before the collision in the CMCS
is given by

B. AFTER COLLISION

After the collision in CMCS, let vy
’ and VY

’ be the velocities of the
masses my and MY, respectively, and Kf’ be the total kinetic energy
of the system.

( )

2

' ' '

2
(6)x XX X

i x X x x x

x X x Xx X

m MM M
K K K K K K

m M m Mm M

   
= + = + =   

+ ++   



NUCLEAR REACTIONS IN A CENTER-
OF-MASS COORDINATE SYSTEM

From the conservation of momentum, we have

And the kinetic energies Ky
’ and KY

’of my and MY in CMCS are

' (7)y y Y Ym v M V=

' ' 21
(8)

2
y y yK m v=

2
'

' ' 2 '1 1
(9)

2 2

y y y

Y Y Y Y y

Y Y

m v m
K M V M K

M M

 
= = =  

 



NUCLEAR REACTIONS IN A CENTER-
OF-MASS COORDINATE SYSTEM

Thus the total kinetic energy Kf’ is given by

But we must have

Substituting for Ki’ from Eq. 6, we get

or

' ' ' ' 2 ' 21 1
(10)

2 2
f y Y y y Y YK K K m v M V= + = +

' ' (11)i fK K Q= −

' ' 1 1 (12)X X X
x f f x x

x X x X x X

M M M
K K Q K Q K Q K

m M m M m M

     
= −  = + = + − +     

+ + +     

' 1 (13)x
f x

x X

m
K Q K

m M

 
= + − 

+ 



NUCLEAR REACTIONS IN A CENTER-
OF-MASS COORDINATE SYSTEM

It is interesting to compare this expression for Kf’with Kf , given by

Using Eqs. 8 , 9 , 10 and 11, it can be shown that the kinetic energies
Ky’ and KY’ after the collision , in the CMCS are given by

and

(14)f xK Q K= +

' 1 (15)xY
y x

y Y y Y

mM
K Q K

m M m M

  
= + −   + +   

' 1 (16)
y x

Y x

y Y y Y

m m
K Q K

m M m M

  
= + −   + +   



THRESHOLD ENERGY FOR AN 
ENDOERGIC REACTION IN A CENTER-

OF-MASS COORDINATE SYSTEM

From the conservation of momentum and energy, we can calculate the
threshold energy for endoergic reactions. In the previous section, we
used the laboratory coordinate system and involved lengthy
calculations for this aim. Let us consider the reaction in the center-of-
mass coordinate system.

For a particle of mass mx approaching another particle of mass MX at
rest with a velocity v in the LAB coordinate system, the energy in the
CMCS from Eq. 6 is

( )
' 2 2

.

1 1
(17)

2 2

x X
i red

x X

m M
K m v v

m M

 
= =  

+ 



THRESHOLD ENERGY FOR AN 
ENDOERGIC REACTION IN A CENTER-OF-

MASS COORDINATE SYSTEM

Thus the energy requirement in the CMCS for an endoergic reaction
to take place will be

or from Eq. 17

where (mxv
2/2)=Kx is the kinetic energy of the particle x in the LAB

coordinate system; therefore

' (18)iK Q

2 21 1
. 1 (19)

2 2

x X x X x
x

x X X X

m M m M m
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    + 

+  
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min

1 1 (20)x x
x x

X X

m m
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