REACTION CROSS
SECTIONS

Prof. Dr. Turan OLGAR

Ankara University, Faculty of Engineering
Department of Physics Engineering



CROSS SECTION

In the previous sections, we have been considering the
energetics of nuclear reactions without considering what
fraction of the beam of the incident particles will participate in
a reaction.

The decay of a radioactive atom was defined in terms of the
probability A. Similarly, we need to find some way of
expressing the probability of something happening to the
particles of an incident beam when they strike the target
nuclel.

The term of the cross section, o, has been introduced for the
purpose of calculating the attenuation of the incident beam.



CROSS SECTION

Consider a beam of particles of intensity | incident on a thin
sheet of material of thickness dt and face area A. Assume that
o Is the effective area surrounding an atom, such that if the
Incident particle falls within this area, the nuclear reaction will

take place (See Fig. 4.8 in the Fundamentals of Nuclear
Physics by Atam P. Arya)

Let there be n target nuclei per unit volume of the sheet. The
fractional effective area, f, Is given by

¢ Total effective area  Anodt

= nodt
Total face area A




CROSS SECTION

The fractional effective area represents the fractional change in
the intensity | of the beam as it passes through the foil. Thus
the change in the intensity dl is given by,

dl =—f |

Actually o is proportional to the probability for a nuclear
reaction to take place.

—dl—l = nodt (1)

Assuming I=l, at t=0 and integrating Eq. 1 we get

| =1, (2)



CROSS SECTION

Because the number of particles N in the beam is proportional to
the intensity of the beam, Eg. 2 in terms of the number of
particles, can be written as

N =N,e"" (3)

Where N, Is the number of the particles incident on the foil, and
N Is the number of particles left after traversing a thickness t of
the foil. The unit of the cross section is the barn, where

1b=10"*cm?

If we are dealing with absorption only, then the term absorption
coefficient n, is given by

n=noc



CROSS SECTION

Eq. 3 can be written as,
N =N_e™ (4)

In the case of nt<<1 (if the foil is sufficiently geometrically thin
or if the cross section is sufficiently small)

e =1-nt
N =N, (1-7t)

Thus the number of particles absorbed while traversing a
thickness t, Is given by
dN =N, — N, (1-nt) = Nyt = Nynot (5)



MEAN FREE PATH

To derive an expression for the average distance traveled by the
particles, 1.e., the mean free path, before they are absorbed or
scattered, similar concept that used in calculating the average life
can be used.

Multiply the distance x by the number of particles dN absorbed
In distance dx at X, integrate it over all x, and divide by the total
number of particles. The mean free path is,

No

fodl\l/Nfd|\|:jde/NO (6)
0 0 0

X
From Eq. 3, and using X instead of t, we get

dN =-noN,e " dx



MEAN FREE PATH

Substituting the value dN in Eq. 6 we get,

X = !xno-NOe‘”de IN, = _([ xnoe "7 dx (7)

%=1 ©)

n

The absorption mean free path, therefore, is the reciprocal of the
absorption coefficient



REACTION RATE

In most cases one would like to know, if a beam of particles is
Incident on a certain material, what is the reaction rate, that is,
the number of nuclear reactions that take place in unit time.

Let v be the velocity of the particles in a beam having a number
density g particles per cm3. This beam is incident on a foil of
thickness t, face area A, and having n atoms per unit volume.

The reaction rate is given by,

Reaction rate(R.R.)=qv(not) (}/ec)



REACTION RATE

The flux, ¢, Is defined as the number of particles crossing a unit

area in a unit time. In this case ¢=qv. Also tA=V , the volume of
the material of the foil. Therefore,

R.R.=¢noV =¢goN (9)

Eq. 9 represents the number of events or reactions per second.



DIFFERENTIAL CROSS-SECTION

When the incoming particles interact with the target nuclel, it
IS not always necessary that only one kind of nuclear reaction
take place. One might be interested in knowing the number of
particles scattered per second into a solid angle dQ2 making an
angle 0 with the direction of incidence. To make such
calculations angular dependent differential cross-section is
Introduced. The differential cross-section is denoted as c(6,¢)
and defined as the cross-section per unit solid angle.

o(0,¢)= j—g(cross —section/ steradian) (10)
and the total cross-section o+ become,

j—dQ (12)



DIFFERENTIAL CROSS-SECTION

The value of the solid angle dQ2 can be calculated with the
help of Fig. 4.9 In the Fundamentals of Nuclear Physics by
Atam P. Arya.

o area _dA_(rdo)(rsinddg) _ o pioqs (12)

(distan ce)2 re re

The total solid angle is

27w
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The fractional solid angle is
aQ A1 A
Q r*4r  Axr?




DIFFERENTIAL CROSS-SECTION

The total cross-section o can be found by combining Eq. 11
and Eq. 12.

= | j j —sm9d9d¢ (13)

If the differential cross-section has no dependency to ¢, then
the total cross-section is given by

o =27 g—gsin 6do (14)

where do/d2 =0o(6), the differential cross section.
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