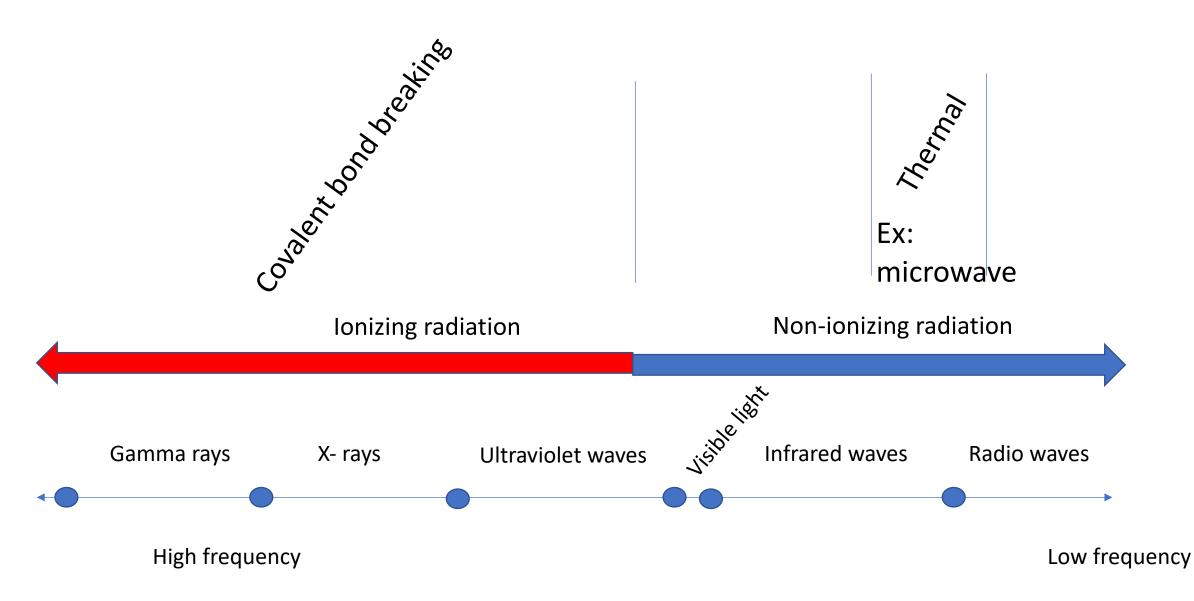

Introduction to radiation biophysics, types of radiation and dose concept

Assoc. Prof H. Burak Kandilci Dept of Biophysics

Ionizing effect of radiation

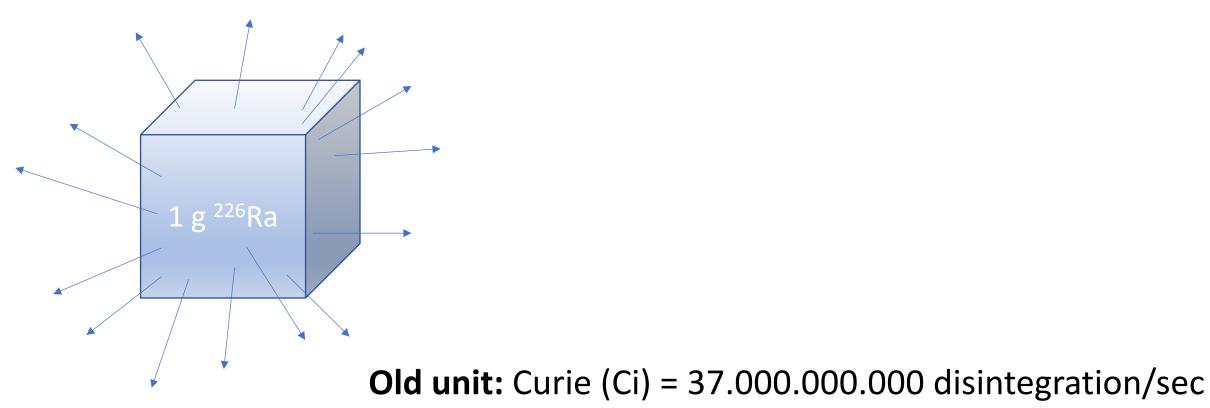
- Radiation is a general term defining energy propagation from a source
- This source can be man made (x-rays) or can be an unstable (radioactive) nucleus.
- Radiation could exist either in particle (alpha, beta) or in electromagnetic (EM) wave (gamma) forms.
- Ionizing meaning; Radiation has enough energy to remove electrons from the orbit of atoms
- Radioactive nucleus origin all particles, are ionizing

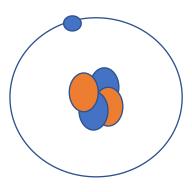


Energy of radiation

For EM waves: Energy=Planck constant (h: 6,62.10⁻³⁴ Joule.sec) X frequency

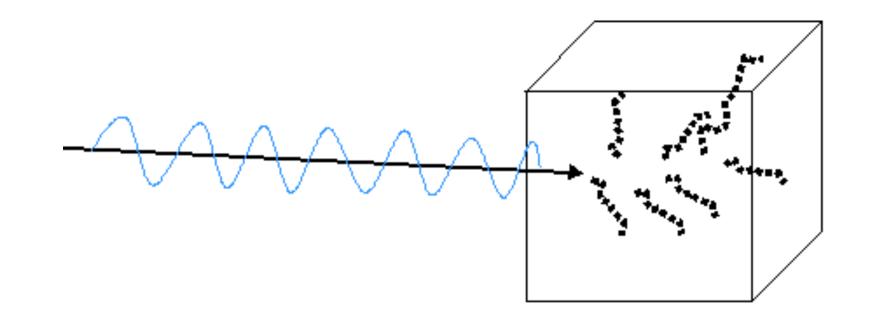
For particle radiation: Kinetic energy=1/2mv²


Electromagnetic spectrum



Radiation dose and measurement (dosimetry)

- Radiation dose is a concept that is developed in order to establish a link between the amount of radiation measured and the chemical/biological effects of it.
- Dosimetry is required for the quantitative expression of biological effects of radiation.
- There are SI and old units used in radiation measurement


Activity units

SI unit: Becquerel (Bq) = 1 disintegration/sec

Exposure units

- The amount of ionization as charge in a unit dry air at standart pressure and temperature is defined as exposure.
- This measurement of exposure applies only to ionizing electromagnetic radiation, such as gamma and x rays, not to particulate radiation (e.g., alpha or beta particles).

• SI unit: Coulomb/kg (C/kg). Radiation mediated total ion charge generation is measured in coulombs per 1 kg of air.

- Old unit(cgs, cm-gram-sec): Roentgen (R) Radiation mediated total ion charge generation is measured in electrostatic charge (esu) per 1 cm³ of air.
- 1 esu charge in 1 cm³ air = 1 R
- 1 esu = 3.335 x 10⁻¹⁰Coulomb (C)
- Air density at standard conditions: 0.001293 g/cm³
- 1 kg air= 7.734 x 10⁵ cm³
- 1 R = 3.335 x 10⁻¹⁰ C/cm³ = **2.58 x 10⁻⁴C/kg**

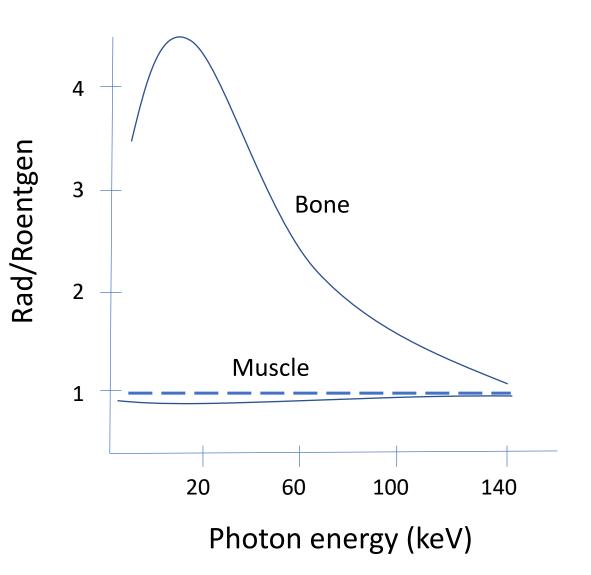
Radiation absorbed dose

• Radiation absorbed dose (rad):

Any kind of radiation energy absorbed by any kind of material in its unit mass.

- SI unit: gray (Gy), (Joule/kg)
- Old unit (cgs): rad, (100 erg/g)
- 1 Gy = 1 J/kg
- $1 J = 10^7 erg$
- $1 \text{ Gy} = 10^7 \text{ erg}/10^3 \text{g} = 10^4 \text{ erg/g} = 100 \text{ rad}$

What is the absorbed dose in air when the exposure is 1 R?


• Amount of radiation that must be absorbed by air molecules to produce 1 Coulomb of charge in 1 kg of air is 33.7 joules.

• 2.58×10^{-4} C/kg (1R) x 33.7 J/C = 8.8×10^{-3} J/kg = 8.8×10^{-3} Gy (0.88 rad)

• Therefore, 1R would produce a dose of 0.88 rad in air.

How to measure absorbed dose in tissue?

- To measure dose directly from tissue is not easy, instead measuring ionisation in air is preferred
- Absorption properties of air and soft tissue are similar. Therefore 1R exposure deposits roughly 1 rad (0.95 rad) in soft tissue.
- Absorption in bone is more than in soft tissue or air.
- Therefore, while 1 R x-ray exposure produces ~ 1 rad dose in soft tissue, in bones however, same exposure dose will produce ~3 rads of absorption dose

Quality factor

• Same absorbed doses of radiation will not be equally harmful to tissues

• Considering this fact, a quality factor is assigned to each radiation type

 Quality factor concept gives us the advantage of comparing different kind of radiation mediated biological effects

Radyasyon	Kalite faktörü (Q)
Alpha radiation	20
Beta radiation	1
Gamma radiation	1

Quality factors (Q) of different radiation types.

Equivalent dose

- SI unit: sievert (Sv)
- Old unit (cgs): rem
- Equivalent dose (Sv) = Absorbed dose (Gy) x quality factor
- Equivalent dose (rem) = Absorbed dose (rad) x quality factor