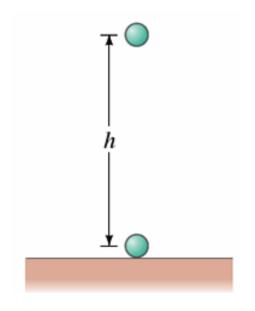
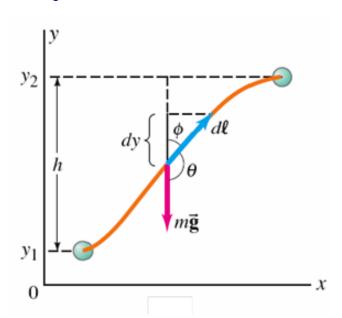

Outline of Chapter

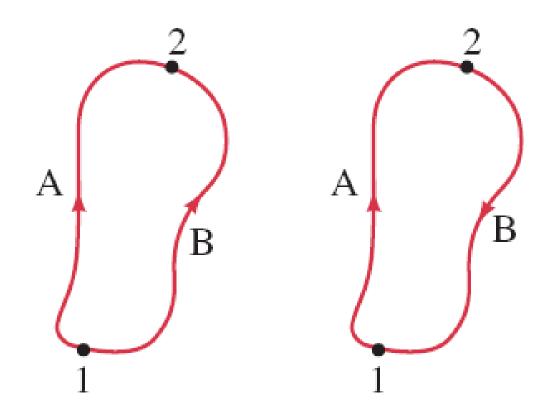
- Electric Potential Energy & Potential Difference
- Relation between <u>Electric</u>
 <u>Potential</u> & <u>Electric Field</u>
- Electric Potential Due to Point Charges
- Potential Due to Any Charge
 Distribution
- Equipotential Surfaces
- Electric Dipole Potential
- E Determined from V
- Electrostatic Potential Energy; the Electron Volt
- Cathode Ray Tube: TV & Computer Monitors, Oscilloscope

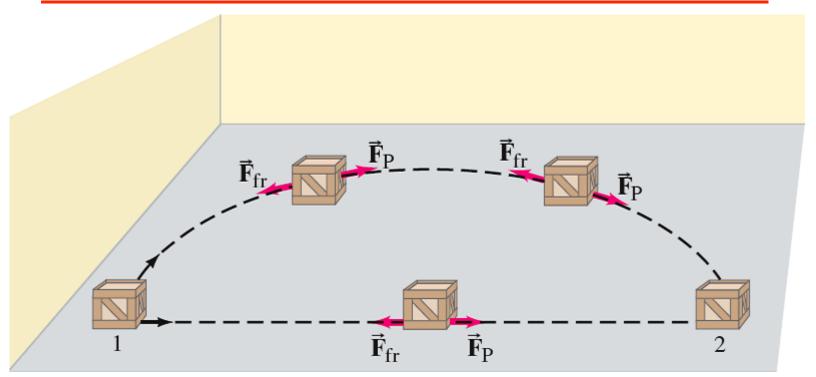



Brief Review of Some Physics I Concepts

Definition

A force is **conservative** if & only if the work done by that force on an object moving from one point to another depends **ONLY** on the initial & final positions of the object, & is independent of the particular path taken.


Example: Gravity


Conservative Force: Another definition:

A force is conservative if the net work done by the force on an object moving around any closed path is zero.

If <u>friction</u> is present, the work done depends not only on the starting & ending points, but also on the path taken.

Friction is a Nonconservative Force!

Friction is a Nonconservative Force.
The work done by friction depends on the path!

Potential Energy

• A mass can have a **Potential Energy** due to its environment.

Potential Energy (U) ?

The energy associated with <u>the position or</u> <u>configuration</u> of a mass.

Examples of systems with **Potential Energy:**

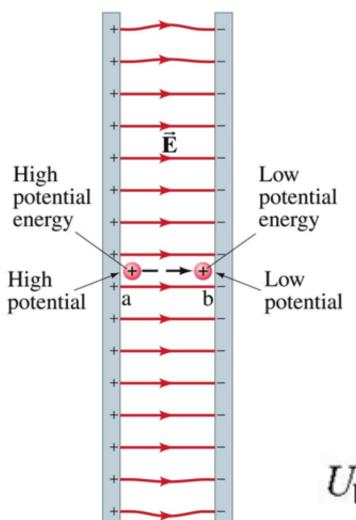
- A wound-up spring
- A stretched elastic band
- An object at some height above the ground

TABLE 8–1 Conservative and Nonconservative Forces		
Conservative Forces	Nonconservative Forces	
Gravitational	Friction	
Elastic	Air resistance	
Electric	Tension in cord	
	Motor or rocket propulsion	
	Push or pull by a person	

Potential Energy:

Can only be defined for

Conservative


Forces!

Another **Physics I Result**

The <u>change</u> in the Potential Energy is <u>defined</u> to be the negative of the work done by the conservative force.

End of **Brief Review!!**

Electrostatic Potential Energy, Potential Difference

The Electrostatic Force is Conservative

? So an Electrostatic Potential Energy can be defined.

As in Physics I, in this case, the change in the electric potential energy is negative of work done by electric force:

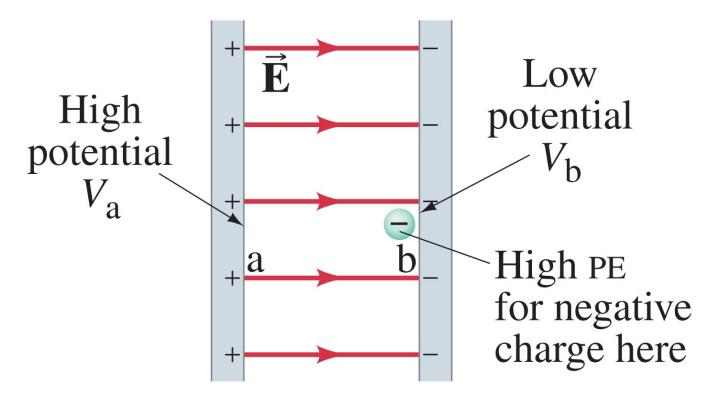
$$U_{\rm b}-U_{\rm a}=-W=-qEd$$
.

The Electric Potential V is defined

as potential energy per unit charge:

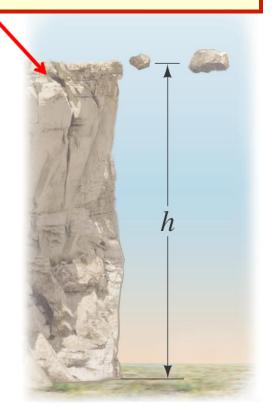
$$V_{\mathbf{a}} = \frac{U_{\mathbf{a}}}{q}$$

The SI Unit of Electric Potential is The Volt (V). 1 V = 1 J/C.

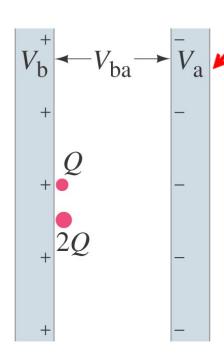

Only changes in potential can be measured,

so we can arbitrarily choose the point where V = 0.

$$V_{\rm ba} = \Delta V = V_{\rm b} - V_{\rm a} = \frac{U_{\rm b} - U_{\rm a}}{q} = -\frac{W_{\rm ba}}{q}$$


Conceptual Example: A negative charge.

Suppose a negative charge, such as **an electron**, is placed near the negative plate at point **b**, as shown here. If the electron is free to move, will its electric potential energy increase or decrease? How will the electric potential change?


Analogy between **Gravitational Potential Energy** & **Electrical Potential Energy**

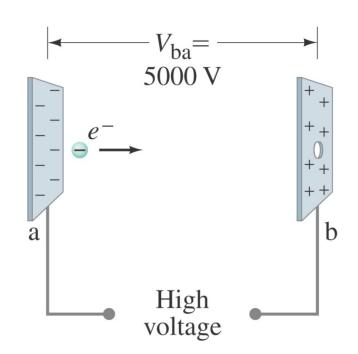
2 masses **m** & **2m**, at the same height have gravitational potential energies $U_1 = mgh$, $U_2 = 2mgh$. So clearly, $U_2 = 2U_1 > U_1$

2 charges Q & 2Q, are at the same electric potential V_{ba} but they have different electric potential energies

$$\mathbf{U_1} = \mathbf{QV_{ba}}, \ \mathbf{U_2} = \mathbf{2QV_{ba}}.$$

So clearly, $\mathbf{U_2} = \mathbf{2U_1} > \mathbf{U_1}$

Electrical Sources such as batteries and generators supply a constant potential difference. Here are some typical potential differences, both natural and manufactured:


TABLE 23-1 Some Typical Potential Differences (Voltages)

Source	Voltage (approx.)
Thundercloud to ground	$10^8 \mathrm{V}$
High-voltage power line	$10^5 - 10^6 \mathrm{V}$
Power supply for TV tube	$10^4 \mathrm{V}$
Automobile ignition	$10^4 \mathrm{V}$
Household outlet	$10^2 \mathrm{V}$
Automobile battery	12 V
Flashlight battery	1.5 V
Resting potential across nerve membrane	$10^{-1} \mathrm{V}$
Potential changes on skin (EKG and EEG)	$10^{-4} \mathrm{V}$

Example Electron in a CRT

An electron in a cathode ray tube (CRT) is accelerated from rest through a potential difference

$$V_{\rm b} - V_{\rm a} = V_{\rm ba} = +5,000 \text{ V}$$

Calculate:

- (a) The change in electric potential energy of the electron.
- (b) The speed of the electron $(m = 9.1 \times 10^{-31} \text{ kg})$ as a result of this acceleration.