Real Life Adventures

Chapter 25: E. Potential

Electric Field Determined from V

Jobs in which nobody understands what you do.

- If the Electric Field E is known, the Potential V can be obtained by integrating. Inverting this process, if the Potential V is known, the Field E can be obtained by differentiating:

$$
E_{\ell}=-\frac{d V}{d \ell} .
$$

This is a vector differential equation. In Cartesian component form it is:

$$
E_{x}=-\frac{\partial V}{\partial x}, \quad E_{y}=-\frac{\partial V}{\partial y}, \quad E_{z}=-\frac{\partial V}{\partial z} .
$$

Electrostatic Potential Energy: The Electron Volt

- The Electric Potential Energy \mathbf{U} of a charge \mathbf{q} in an Electric Potential \mathbf{V} is $\mathbf{U}=\mathbf{q V}$.
- To find the Electric Potential Energy U of 2 charges \mathbf{Q}_{1} \& \mathbf{Q}_{2}, imagine bringing each in from infinitely far away.
- The first one takes no work, since there is no external electric field. To bring in the $2^{\text {nd }}$ one, work must be done, since it is moving in the Electric Field of the first one; this means that the Electric Potential Energy \mathbf{U} of the pair is:

$$
U=Q_{2} V=\frac{1}{4 \pi \epsilon_{0}} \frac{Q_{1} Q_{2}}{r_{12}} .
$$

- Often, especially for very small individual particles like the electron, it is convenient to use units other than Joules to measure electrical energies.
The Electron Volt is an often useful unit for this:
- 1 Electron Volt (eV) is defined as the energy gained by an electron moving through a potential difference of 1 Volt:

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

Example: "Disassembling" a H atom

 -Calculate the work needed to "disassemble" a hydrogen atom. Assume that the proton \& electron are initially separated by a distance equal to the "average" radius of the hydrogen atom in its ground state. This distance is$$
0.529 \times 10^{-10} \mathrm{~m}
$$

-This distance is called
"The Bohr Radius".

- Assume also that the proton \& the electron end up an infinite distance apart from each other.

Some Applications
 Cathode Ray Tube: TV \& Computer Monitors, Oscilloscope

A cathode ray tube contains a wire cathode that, when heated, emits electrons. A voltage source causes the electrons to travel to the anode.

- The electrons can be steered using electric or magnetic fields.

Old fashioned televisions and computer monitors (not LCD or plasma models) have a large cathode ray tube as their display. Variations in the field steer the electrons on their way to the screen.

An oscilloscope displays an electrical signal on a screen, using it to deflect the beam vertically while it sweeps horizontally.

Chapter Summary

- Electric potential is potential energy per unit charge:

$$
V_{\mathrm{ba}}=\Delta V=V_{\mathrm{b}}-V_{\mathrm{a}}=\frac{U_{\mathrm{b}}-U_{\mathrm{a}}}{q}=-\frac{W_{\mathrm{ba}}}{q} .
$$

- Potential difference between two points is:

$$
V_{\mathrm{ba}}=V_{\mathrm{b}}-V_{\mathrm{a}}=-\int_{\mathrm{a}}^{\mathrm{b}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\boldsymbol{l}} .
$$

- Potential due to a point charge is:

$$
V=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r} . \quad\left[\begin{array}{c}
\text { single point charge; } \\
V=0 \text { at } r=\infty
\end{array}\right]
$$

- An Equipotential is a line or surface along which potential is constant.
- An Electric Dipole potential is proportional to $1 / r^{2}$.
- To find the \mathbf{E} field from the potential \mathbf{V}, use:

$$
E_{x}=-\frac{\partial V}{\partial x}, \quad E_{y}=-\frac{\partial V}{\partial y}, \quad E_{z}=-\frac{\partial V}{\partial z} .
$$

Potential Due to An Arbitrary Charge Distribution

Why does Mathematicians on the far away edge??

Potential Due to An Arbitrary Charge Distribution

The potential due to an arbitrary charge distribution can be expressed as a sum or integral (if the distribution is continuous):

$$
V_{\mathrm{a}}=\sum_{i=1}^{n} V_{i}=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{n} \frac{Q_{i}}{r_{i \mathrm{a}}} .
$$

or

$$
V=\frac{1}{4 \pi \epsilon_{0}} \int \frac{d q}{r}
$$

More Details: Electric Potential for a Continuous Charge Distribution Method 1

- The charge distribution is known.
- Consider a small charge element dq.
Treat it as a point charge.
- The potential at some point due to this charge element is then:

$$
d V=k_{e} \frac{d q}{r}
$$

- To find the total potential, this must be integrated to include the contributions from \backslash all of the charge elements. This value for \mathbf{V} uses the reference of $\mathbf{V}=\mathbf{0}$ when \mathbf{P} is infinitely far away from the charge distribution.

$$
V=k_{e} \int \frac{d q}{r}
$$

V for a Continuous Charge Distribution

 Method 2- If the electric field \mathbf{E} is already known from other considerations, the potential \mathbf{V} can be calculated using the original definition:

$$
\Delta V=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}
$$

- If the charge distribution has sufficient symmetry, first find the field \mathbf{E} from Gauss' Law \& then find
the potential difference $\Delta \mathbf{V}$ between any 2 points using the above relation.
(Choose $\mathrm{V}=0$ at some convenient point)

Examples: E for a Ring \& for a Disk

 Use the known Electric Potential \mathbf{V} to calculate the Electric Field E at point \mathbf{P} on the axis of(a) A circular ring of charge.
(b) A uniformly charged disk.

V for a Uniformly Charged Ring

- \mathbf{P} is on the perpendicular central axis of the uniformly charged ring .
- Symmetry means that all charges on the ring are the same distance from Point \mathbf{P}.
- The ring has a radius a and total charge \mathbf{Q}.

- The potential \& field are:

$$
\begin{aligned}
& V=k_{e} \int \frac{d q}{r}=\frac{k_{e} Q}{\sqrt{a^{2}+x^{2}}} \\
& E_{x}=\frac{k_{e} x}{\left(a^{2}+x^{2}\right)^{3 / 2} Q}
\end{aligned}
$$

V for a Uniformly Charged Disk

- The ring radius is $\mathbf{R} \&$ surface charge density $\sigma . \mathrm{P}$ is on the central axis of the disk.
- By symmetry, all points in a given ring are the same distance from P. Potential \& field are:

$$
\begin{aligned}
& V=2 \partial k_{e} \dot{O}\left[\left(R^{2}+x^{2}\right)^{1 / 2}-x\right] \\
& E_{x}=2 \partial k_{e} \dot{O}\left[1-\frac{x}{\left(R^{2}+x^{2}\right)^{1 / 2}}\right]
\end{aligned}
$$

V for a Finite Line of Charge

- A rod, length ℓ has total charge Q \& linear charge density λ.
- No symmetry to use, but the geometry is simple.

$$
V=\frac{k_{e} Q}{I} \ln \left(\frac{1+\sqrt{a^{2}+I^{2}}}{a}\right)
$$

Electric Dipole Potential

The potential due to an electric dipole is the sum of the potentials due to each charge, \& can be calculated exactly. For distances large compared to the charge separation:

$$
V=\frac{1}{4 \pi \epsilon_{0}} \frac{Q \ell \cos \theta}{r^{2}}=\frac{1}{4 \pi \epsilon_{0}} \frac{p \cos \theta}{r^{2}}
$$

