Alternating Current

Current from a battery flows steadily in one direction. This is called

Direct Current, or DC.

(a) DC

By contrast, current from a power plant varies sinusoidally with time. This is called
Alternating Current,

(b) AC or AC.

If the current is $\mathbf{A C}$, both the current and the voltage vary sinusoidally with

 time:$$
\begin{aligned}
V & =V_{0} \sin 2 \pi f t=V_{0} \sin \omega t \\
I & =\frac{V}{R}=\frac{V_{0}}{R} \sin \omega t=I_{0} \sin \omega t .
\end{aligned}
$$

Just as for DC circuits, in AC circuits, the Power P in the circuit is obtained by multiplying the current \& the voltage:

$$
\mathbf{P}=\mathbf{I}(t) \mathbf{V}(t)=\left[I_{0} \sin (\omega t)\right]\left[V_{0} \sin (\omega t)\right]=I_{0} V_{0} \sin ^{2}(\omega t)
$$

If the total resistance in the circuit is \mathbf{R} :

$$
P=I^{2} R=I_{0}^{2} R \sin ^{2} \omega t
$$

Since the power is a function of time, we often are interested in the Average Power [averaged over one period $T=(2 \pi / \omega)]$. This is calculated by integrating $\mathbf{P}(\mathbf{t})$ over one period:

$$
\begin{gathered}
\bar{P}=\mathrm{T}^{-1} \int \mathrm{I}_{0} \mathbf{V}_{0} \sin ^{2}(\omega \mathrm{t}) \mathrm{dt} \\
(0<\mathbf{t}<\mathbf{T})
\end{gathered}
$$

After using $\mathbf{V}=\mathbf{I R}$, this gives: $\quad \bar{P}=\frac{1}{2} I_{0}^{2} R$

$$
\text { or } \bar{P}=\frac{1}{2} \frac{V_{0}^{2}}{R}
$$

Because they are sine functions, the current \& the voltage both average to zero over one period. So, it is common to square them, take the average, then take the square root. This gives their root-mean-square (rms) values:

$$
\begin{aligned}
& I_{\mathrm{rms}}=\sqrt{\overline{I^{2}}}=\frac{I_{0}}{\sqrt{2}}=0.707 I_{0} \\
& V_{\mathrm{ms}}=\sqrt{\overline{V^{2}}}=\frac{V_{0}}{\sqrt{2}}=0.707 V_{0}
\end{aligned}
$$

Example: Hair dryer.

(a) Calculate the resistance and the peak current in a $\mathbf{1 0 0 0}-\mathrm{W}$ hair dryer connected to a $\mathbf{1 2 0 - V}$ line.
(b) What would happen if it is connected to a $\mathbf{2 4 0 - V}$ line in Britain?

Electrons in a conductor have large, random (thermal) speeds just due to their temperature: $\mathbf{v}_{\text {themal }}=\left(3 \mathrm{k}_{\mathrm{B}} \mathrm{T} / \mathrm{m}\right)^{1 / 2}$. When a potential difference \mathbf{V} is applied, the electrons also acquire an average drift velocity \mathbf{v}_{d}, anti-parallel to the electric field \mathbf{E}. In general

$$
\mathbf{v}_{\mathbf{d}}, \ll \mathbf{v}_{\text {themal }}
$$

Microscopic View of Electric Current: Current Density \& Drift Velocity

It is convenient to define the current density \mathbf{j} (current per unit area). \mathbf{j} is a convenient concept for relating the microscopic motions of electrons to the macroscopic current:

$$
j=\frac{I}{A} \quad \text { or } \quad I=j A
$$

If the current is not uniform:

$$
I=\int \overrightarrow{\mathbf{j}} \cdot d \overrightarrow{\mathbf{A}}
$$

The drift velocity \mathbf{v}_{d} is related to the current in the wire, and also to the number of electrons per unit volume:

$$
\begin{gathered}
\Delta Q=(\text { no. of charges, } N) \times(\text { charge per particle }) \\
=(n V)(-e)=-\left(n A v_{\mathrm{d}} \Delta t\right)(e) \\
\text { and } \\
\quad I=\frac{\Delta Q}{\Delta t}=-n e A v_{\mathrm{d}} .
\end{gathered}
$$

Example

Electron speeds in a wire.

A copper wire 3.2 mm in diameter carries a 5.0-A current.

Calculate:

(a) The current density j in the wire.
(b) The drift velocity \mathbf{v}_{d} of the free electrons.
(c) Estimate the rms thermal speed $\mathbf{v}_{\text {themal }}$ of electrons assuming they behave like an ideal gas at $\mathrm{T}=\mathbf{2 0}{ }^{\circ} \mathrm{C}$.
Assume that one electron per Cu atom is free to move (the others remain bound to the atom).

The electric field inside a current-carrying wire can be found from the relationship between the current, voltage, and resistance. Assume a length ℓ of wire $\&$ using:

$$
\mathbf{R}=(\rho \ell) / \mathbf{A}, \mathbf{I}=\mathbf{j} \mathbf{A}, \& \mathbf{V}=\mathbf{E} \ell .
$$

Substituting in Ohm's law $\mathbf{V}=\mathbf{I R}$ gives:

$$
j=\frac{1}{\rho} E=\sigma E
$$

$\rho \rightarrow$ the resistivity of the material in the wire

$$
\sigma=(1 / \rho) \rightarrow \text { the conductivity }
$$

Electric field inside a wire.

Calculate the electric field \mathbf{E} inside the wire in the previous example. (The current density was found to be $\mathrm{j}=\mathbf{6 . 2} \times \mathbf{1 0}^{\mathbf{5}} \mathrm{A} / \mathbf{m}^{\mathbf{2}}$.)

Superconductivity*

In general, resistivity decreases as temperature decreases. Some materials, however, have resistivity that falls abruptly to zero at a very low temperature, called the critical temperature, T_{C}.

Electrical Conduction in the Nervous System*

The human nervous system depends on the flow of electric charge.

The basic elements of the nervous system are cells called neurons.

Neurons have a main cell body, small attachments called dendrites, and a long tail called the axon.

Signals are received by the dendrites, propagated along the axon, and transmitted through a connection called a synapse.

Those facts investigating in a new era of science called "Medical Physics"

This process depends on there being a dipole layer of charge on the cell membrane, and different concentrations of ions inside and outside the cell.

This applies to most cells in the body. Neurons can respond to a stimulus and conduct an electrical signal. This signal is in the form of an action potential.

The action potential propagates along the axon membrane.

Point of stimulation

Action potential moving to the right

Summary of Chapter

- A battery is a source of constant potential difference.
- Electric current is the rate of flow of electric charge.
- Conventional current is in the direction that positive charge would flow.
- Resistance is the ratio of voltage to current:

$$
\begin{aligned}
& I=\frac{V}{R} . \\
& V=I R .
\end{aligned}
$$

- Ohmic materials have constant resistance, independent of voltage.
- Resistance is determined by shape and material:

$$
R=\rho \frac{\ell}{A} .
$$

- ρ is the resistivity.
- Power in an electric circuit:

$$
P=I V .
$$

- Direct current is constant.
- Alternating current varies sinusoidally:

$$
I=\frac{V}{R}=\frac{V_{0}}{R} \sin \omega t=I_{0} \sin \omega t
$$

- The average (rms) current and voltage:

$$
\begin{aligned}
& I_{\mathrm{ms}}=\sqrt{\overline{I^{2}}}=\frac{I_{0}}{\sqrt{2}}=0.707 I_{0} \\
& V_{\mathrm{ms}}=\sqrt{\overline{V^{2}}}=\frac{V_{0}}{\sqrt{2}}=0.707 V_{0}
\end{aligned}
$$

- Relation between drift speed and current:

$$
I=\frac{\Delta Q}{\Delta t}=-n e A v_{\mathrm{d}} .
$$

