

ENZYMES AND ENZYME CATALYTIC REACTIONS

Enzyme Bio(catalyst)

(Catalysts accelerate chemical reaction rates (Not being altered or consumed during reactions/remain unchanged/reusable)

Enzymes increase the rate of chemical reactions taking place within living cells without suffering any overall change

- Enzymes are proteins that have catalytic property
- Enzymes have important roles in the synthesis and degradation reactions that occur in living cells
- Enzymes are very effective catalysts and have advantages over chemical catalysts
- Over 2,000 known enzymes
- Further developments continue for industrial processes, consumer goods, biosensors, medical treatments, etc.

A BRIEF HISTORY OF ENZYMES

1833: The active agent breaking down the sugar was partially isolated and given the name diastase (now known as amylase).

ferment

A little later, a substance which digested dietary protein was extracted from gastric juice and called *pepsin*

<u>Liebig</u> recognized that these ferments could be <u>non-living materials</u> obtained from living cells

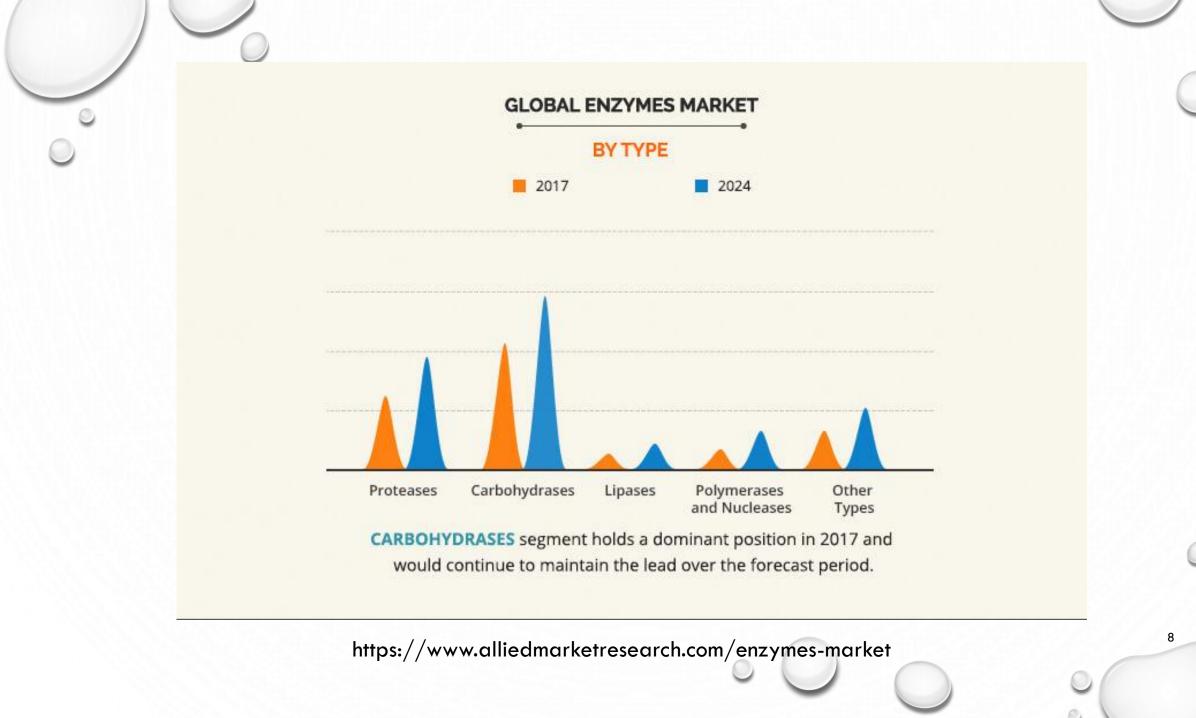
But, <u>Pasteur</u> and others still maintained that ferments must contain living materials

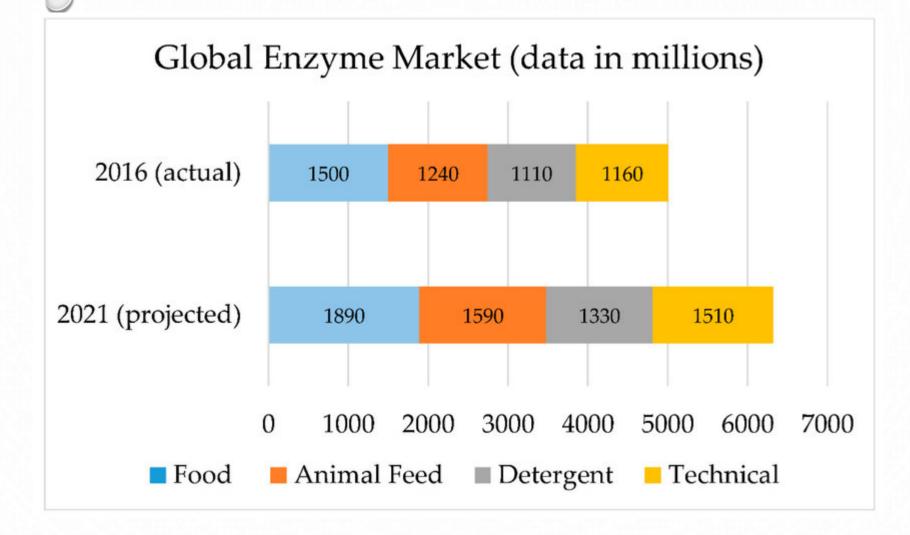
1878: The term ferment was replaced by the name *enzyme*, which comes from Greek *enzume* (meaning in yeast)

1897: It was showed that sugar fermentation could take place when a yeast cell extract was added even though no living cells were present

1926: Sumner crystallized urease from Jack-bean extracts

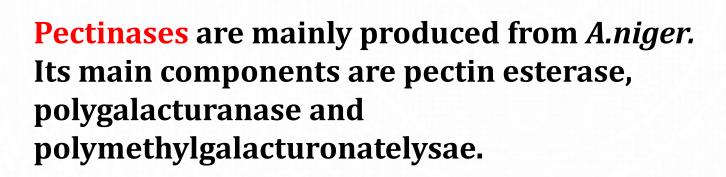
In the next few years *many other enzymes* were purified and crystallized


Today, enzymes are among the major subjects of academic and industrial research.


Uses of Enzymes in Industry

Enzyme	Source	Application
Amylase	Bacillus subtilis, Aspergillus niger	Starch hydrolysis, glucose production,
		brewing, baking
Glucoamylase	A.niger, Rhizopus niveus,	Saccarification of starch, glucose
	Endomycopsis	production
Tyripsin	Animal pancreas	Meat tenderizer, bee haze removal
Papain	Papaya	Digestive aid, meat tenderizer, medical
		applications
Pepsin	Animal stomach	Digestive and meat tenderizer
Rennet	Calf stomach	Cheese manufcturing
Glucose isomerase	Flovabacterium arborescens, Bacillus	Isomeriation of glucose to fructose (high
	coagulans, Lactobacillus brevis	fructose syrup) 6
Protease	Bacteria	Detergent, leather, cosmetics, chesse, beer

Penicilinase	B.subtilis	Cleavege of penicilline
Glucose oxydase	A.niger	Gluconic acid production from glucose
Lipase	Rhizopus, pankreaz	Lipid hydrolysis, flavoring, digestive aid,
		detergent, cosmetics
Invertase	S.cerevisase	Sucrose hydrolysis
Oectinase	A.oryzae	Clarification of fruit juices, hydrolysis of
		pectin, brewing
Cellulase	Trichoderma viride	Cellulose hydrolysis, detergent, feed


https://www.researchgate.net/figure/Global-enzyme-market-in-2016-top-and-projected-global-enzyme-market-in-2021-bottom_fig1_325586140

Proteases are important industrial enzymes that hydrolyze proteins into smaller peptide units

Industrial proteases are obtained from bacteria (*Bacillus*), molds (*Aspergillus, Rh*izopu and *Mucor*), animal pancreas and plants

Proteases are used in cheese making (rennet), bread making, meat tenderizing (papain, trypsin) and food processing; in yeast industry (trypsin, pepsin); in detergent industry (subtilisin carlsberg) for removing protein stains

It is used in leather tanning and in medical treatment of wounds.

Pectinases are used in juice processing and wine making to increase juice yield, reduce viscosity, and clean.

Lipases hydrolyze lipids (fatty acid esters) to fat and glycerol and are obtained from animal pancreas, some molds and yeasts

Lipases are used in the hydrolysis of oils for the soap industry and in the hydrolysis of lipid-oil components in wastewater

Interesterification of fats and oils can also be catalyzed by lipase (biodiesel manufacturing)

Lipases are also used in the cheese and butter industry to give odors as a result of hydrolysis of fats.

Detergents are an important area of the use of lipases.

Amylases are used in the hydrolysis of starch and are produced from many microorganisms such as *A.niger* and *B.subtilis*. The three main types of amylases are α -amylase, β -amylase and glucoamylase.

 α -Amylase dissolves amylose by randomly cleaving the α -1,4 bonds on the amylose chain. For this reason, α -amylase is known as the enzyme that liquefies starch.

 β -Amylase cleaves β -1,4 glucosidic bonds at the non-reduced ends of amylose to form maltose residues.

The α -1,6 glucosidic bonds in the amylopectin fraction of starch are cleaved by glucoamylase