CEN-CHE 422 ENZYME ENGINEERING

Determination of K_{m} and $\mathbf{r}_{\text {max }}$

$$
r=\frac{r_{\max } C_{S}}{K m+C_{S}}
$$

The graph of MM equation (r vs C_{s}) is not entirely satisfactory for the determination of $\mathrm{r}_{\text {max }}$ and K_{m}.

Michaelis-Menten equation is linearized by being inverted to $y=n+m x$ form

$$
\begin{aligned}
& \frac{1}{r}=\frac{K m}{r_{\max }} \frac{1}{C_{S}}+\frac{1}{r_{\max }} \\
& \frac{r}{C_{S}}=\frac{r_{\max }}{K_{m}}-\frac{1}{K_{m}} r
\end{aligned}
$$

\checkmark Lineweaver-Burk Equation*
\checkmark Eadie-Hoffstee Equation \checkmark Hanes-Woolf Equation
(Langmuir Equation)

$$
\left(\frac{C_{S}}{r}=\frac{K m}{r_{\max }}+\frac{C_{s}}{r_{\max }}\right)
$$

Lineweaver-Burk Graph

$r=\frac{r_{\max } C_{S}}{K m+C_{S}}$
If MM equation is inverted: :
$\frac{1}{r}=\frac{K m}{r_{\text {max }}} \frac{1}{C_{S}}+\frac{1}{r_{\text {max }}}$

Lineweaver-Burk Equation (LB)

$$
\text { slope }=\frac{K_{m}}{r_{\max }} \quad \text { intercept }=\frac{1}{r \max }
$$

Eadie-Hoffstee Graph

$$
\begin{gathered}
r=\frac{r_{\max } C_{S}}{K m+C_{S}} \\
r\left(K_{m}+C_{S}\right)=r_{\max } C_{S} \\
r K_{m}=\left(r_{\max }-r\right) C_{S}
\end{gathered}
$$

$$
\frac{r}{\underline{C_{S}}}=\frac{r_{\max }}{K_{m}}-\frac{1}{K_{m}} r \quad \text { intercept }=\frac{r_{\max }}{K_{m}}
$$

Eadie-Hoffstee Equation \quad slope $=\frac{1}{K_{m}}$

Hanes-Woolf Graph

$$
\begin{aligned}
& C_{S} x\left(\frac{1}{r}=\frac{K m}{r_{\max }} \frac{1}{C_{S}}+\frac{1}{r_{\max }}\right) x C_{S} \mathrm{C}_{\mathrm{S}} / \mathrm{r} \\
& \left(\frac{C_{S}}{r}=\frac{K m}{r_{\max }}+\frac{C_{S}}{r_{\max }}\right)
\end{aligned}
$$

Hanes-Woolf Equation

C_{s}

$$
\text { slope }=\frac{1}{r_{\max }}
$$

$$
\text { intercept }=\frac{K_{m}}{r \max }
$$

ENZYME INHIBITION

Inhibitor(I): Inhibitors are substances which tend to decrease the rate of enzyme-catalysed reaction (by formig a complex, EI, ES, ESI, etc..)

1. Irreversible Inhibition
2. Reversible Inhibisyon

Competitive Inhibition
Uncompetitive Inhibition
Noncompetitive Inhibition
Mixed Inhibition
Substrate Inhibition
Partial Inhibition
Allosteric Inhibition

Irreversible Inhibition

$>$ There is no structural similarity between the substrate and the enzyme
> The active group of the enzyme undergoes chemical change. Therefore, the enzyme-inhibitor complex cannot re-dissociate to form an active enzyme.
> These inhibitors are known as enzyme poisons.
> lodoacetate and some heavy metal ions metal cations
> This type of inhibition is permanent

Competitive Inhibition

Competitive inhibitors closely resemble in some respects the substrate whose reactions they inhibit.

Because of the similarity they may be compete for the same binding-site on the enzyme.

$$
\begin{aligned}
& E+S \Leftrightarrow E S \\
& E+I \Leftrightarrow E I \quad K i=\frac{k_{-i}}{k_{i}} \\
& \mathrm{ES}=>E+P
\end{aligned}
$$

quasi-steady-state assumption

Inhibitor binds to active site on enzyme $\quad \frac{d C_{E S}}{d t}=0$

$$
\frac{d C_{E I}}{d t}=0
$$

reaction rate: $\quad r=k_{2} \underline{C S}$?

$$
\begin{aligned}
& \frac{d C_{E S}}{d t}=k_{1} C_{E} C_{S}-k_{-1} C_{E S}-k_{2} C_{E S}=0 \\
& C_{E S}=\frac{k_{1}}{k_{-1}+k_{2}} C_{E} C_{S} \Longleftrightarrow C_{E S}=\frac{C_{E} C_{S}}{K m} \\
& \frac{d C_{E I}}{d t}=k_{i} C_{E} C_{I}-k_{-i} C_{E I}=0 \\
& C_{E I}=\frac{k_{i}}{k_{-i}} C_{E} C_{I} \longmapsto C_{E I}=\frac{C_{E} C_{I}}{K i}
\end{aligned}
$$

Enzyme balance: $C_{E o}=C_{E}+C_{E S}+C_{E I}$

$$
\begin{aligned}
C_{E o} & =C_{E}+\frac{C_{E} C_{I}}{K i}+\frac{C_{E} C_{S}}{K m} \\
C_{E} & =\frac{C_{E o}}{1+\frac{C_{S}}{K m}+\frac{C_{I}}{K i}}
\end{aligned} \quad C_{E S}=\frac{C_{E} C_{S}}{K m}
$$

If we substitute C_{E} into $C_{E S}$

$$
C_{E S}=\frac{C_{S}}{K m} x \frac{C_{E o}}{1+\frac{C_{S}}{K m}+\frac{C_{I}}{K i}} \quad C_{E S}=\frac{C_{S} C_{E o}}{K m+C_{S}+\frac{K m}{K i} C_{I}}
$$

reaction rate:

$$
r=k_{2} C_{E S}=\frac{k_{2} C_{E o} C_{S}}{C_{S}+K m\left(1+\frac{C_{I}}{K i}\right)} \quad \square \quad r=\frac{r_{\max } C_{S}}{C_{S}+\operatorname{Km}\left(1+\frac{C_{I}}{K i}\right)}
$$

If MM equation is linearized (LB):

$$
\frac{1}{r}=\frac{K m}{r_{\max }}\left(1+\frac{C_{I}}{K i}\right) \frac{1}{C_{S}}+\frac{1}{r_{\max }}
$$

$$
\text { slope }=\frac{K_{m}}{r_{\max }}\left(1+\frac{C_{I}}{K_{i}}\right)
$$

$$
\text { Intercept }=\frac{1}{r_{\max }}
$$

If the lines drawn at different
inhibitor concentrations intersect at the same point on the ordinate, the type of inhibition is competitive inhibition

Noncompetitive Inhibition

$$
\begin{aligned}
& E+S \Leftrightarrow E S \quad K s=\frac{C_{E} C_{S}}{C_{E S}} \\
& E+I \Leftrightarrow E I \quad K i=\frac{C_{E} C_{I}}{C_{E I}} \\
& E S+I \Leftrightarrow E S I \quad K i=\frac{C_{E S} C_{I}}{C_{E S I}} \\
& E I+S \Leftrightarrow E S I \quad K s=\frac{C_{E I} C_{S}}{C_{E S I}} \\
& \mathrm{ES}=>E+P \quad \text { reaction rate: } \quad r=k_{2} C_{E S}
\end{aligned}
$$

Michaelis-Menten assumption:

Enzyme balance:

$$
C_{E O}=C_{E}+C_{E S}+C_{E I}+C_{E S I}
$$

Using dissociation constants:

$$
C_{E S}=\frac{C_{E} C_{S}}{K s} \quad \checkmark \quad C_{E I}=\frac{C_{E} C_{I}}{K i} \quad \checkmark \quad C_{E S I}=\frac{C_{E S} C_{I}}{K i}=\frac{C_{E} C_{S} C_{E}}{K i K s}
$$

Inserting in $\mathrm{C}_{\mathrm{E} \circ}$

$$
\begin{aligned}
& C_{E o}=C_{E}+\frac{C_{E} C_{S}}{K s}+\frac{C_{E} C_{I}}{K i}+\frac{C_{E} C_{S} C_{I}}{K i K s} \\
& C_{E o}=C_{E}\left(1+\frac{C_{S}}{K s}+\frac{C_{I}}{K i}+\frac{C_{S} C_{I}}{K i K s}\right)
\end{aligned}
$$

$$
C_{E}=\frac{C_{E o}}{\left(1+\frac{C_{S}}{K s}+\frac{C_{I}}{K i}+\frac{C_{I} C_{S}}{K i K s}\right.}
$$

Inserting in C_{ES}

$$
C_{E S}=\frac{C_{E} C_{S}}{K S}
$$

$$
\begin{aligned}
C_{E S} & =\frac{C_{S}}{K_{S}} x \frac{C_{E o}}{\left(1+\frac{C_{S}}{K s}+\frac{C_{I}}{K i}+\frac{C_{I} C_{S}}{K i K s}\right)} \\
C_{E S} & =\frac{C_{E o} C_{S}}{\left(K_{S}+C_{S}+\frac{C_{I} K_{S}}{K i}+\frac{C_{I} C_{S}}{K i}\right)}
\end{aligned}
$$

reaction rate: $r=k_{2} C_{E S}=\frac{k_{2} C_{E o} C_{S}}{K_{S}\left(1+\frac{C_{I}}{K_{i}}\right)+C_{S}\left(1+\frac{C_{I}}{K_{i}}\right)}$

If MM equation is linearized:

$$
\frac{1}{r}=\frac{K_{m}}{r_{\max }}\left(1+\frac{C_{I}}{K_{i}}\right) \frac{1}{C_{S}}+\frac{1}{r_{\max }}\left(1+\frac{C_{I}}{K_{i}}\right)
$$

$$
\begin{gathered}
K_{S}=\frac{k_{-1}}{k_{1}} \\
K_{m}=\frac{k_{-1}+k_{2}}{k_{1}} \\
\mathrm{k}_{2} \ll \mathrm{k}_{-1} \\
\downarrow \\
\mathrm{~K}_{\mathrm{m}}=\mathrm{K}_{\mathrm{S}}
\end{gathered}
$$

intercept $=\frac{1}{r_{\max }}\left(1+\frac{C_{i}}{K_{i}}\right.$

The lines intersect at the same point on $1 / C_{S}$ axis $\left(1 / K_{m}\right)$

If the lines drawn at different inhibitor concentrations intersect at the same point on the x axis, the type of inhibition is noncompetitive inhibition

In noncompetitive inhibition:
$\sqrt{ } K_{m}$ does not change

Uncompetitive Inhibition

$$
\begin{aligned}
& E+S \Leftrightarrow E S \\
& E S+I \Leftrightarrow E S I \\
& \mathrm{ES}=\gg+P
\end{aligned}
$$

quasi-steady-state assumption

$$
\begin{aligned}
& \frac{d C_{E S}}{d t}=0 \\
& \frac{d C_{E S I}}{d t}=0
\end{aligned}
$$

reaction rate: $\quad r=k_{2} C_{E S}$
$\frac{d C_{E S}}{d t}=k_{1} C_{E} C_{S}-k_{-1} C_{E S}-k_{i} C_{E S} C_{I}+k_{-i} C_{E S I}-k_{2} C_{E S}=0$
$C_{E S}=\frac{k_{1} C_{E} C_{S}+k_{-i} C_{E S I}}{\left(k_{-1}+k_{i} C_{I}+k_{2}\right)}$
$\frac{d C_{E S I}}{d t}=k_{i} C_{E S} C_{I}-k_{-i} C_{E S I}=0$
$C_{E S I}=\frac{C_{E S} C_{I}}{\left(k_{-i} / k_{i}\right)}$
Inserting in C_{ES}

$$
\frac{k_{1} C_{E} C_{S}+k_{-i} \frac{C_{E S} C_{I}}{\left(k_{-i} / k_{i}\right)}}{\left(k_{-1}+k_{i} C_{I}+k_{2}\right)}
$$

$$
\left[\left(k_{-1}+k_{2}+k_{i} C_{I}\right)-k_{i} C_{I}\right] C_{E S}=k_{1} C_{E} C_{S} \Rightarrow C_{E S}=\frac{k_{1} C_{E} C_{S}}{\left(k_{-1}+k_{2}\right)}
$$

Inserting in $\mathrm{C}_{\text {ES I }}$

$$
C_{E S I}=\frac{C_{I}}{K_{i}} x \frac{k_{1} C_{E} C_{S}}{\left(k_{-1}+k_{2}\right)}
$$

Enzyme mass balance: $\mathrm{C}_{\mathrm{Eo}}=\mathrm{C}_{\mathrm{E}}+\mathrm{C}_{\mathrm{ES}}+\mathrm{C}_{\mathrm{ESI}}$

$$
\begin{aligned}
C_{E o} & =C_{E}+\frac{k_{1} C_{S}}{\left(k_{-1}+k_{2}\right)} C_{E}+\frac{k_{1} C_{I} C_{S}}{K_{i}\left(k_{-1}+k_{2}\right)} C_{E} \\
C_{E} & =\frac{C_{E o}}{1+\frac{k_{1} C_{S}}{\left(k_{-1}+k_{2}\right)}+\frac{k_{1} C_{I} C_{S}}{K_{i}\left(k_{-1}+k_{2}\right)}}
\end{aligned}
$$

Inserting in C_{ES}

$$
C_{E S}=\frac{k_{1}}{\left(k_{-1}+k_{2}\right)} x \frac{C_{E O}}{1+\frac{k_{1} C_{S}}{\left(k_{-1}+k_{2}\right)}+\frac{k_{1} C_{I} C_{S}}{K_{i}\left(k_{-1}+k_{2}\right)}}
$$

$$
\begin{aligned}
C_{E S} & =\frac{C_{E o} C_{S}}{\frac{k_{-1}+k_{2}}{k_{1}}+C_{S}+\frac{C_{I} C_{S}}{K_{i}}} \\
C_{E S} & =\frac{C_{E o} C_{S}}{K_{m}+C_{S}+\frac{C_{I} C_{S}}{K_{i}}}
\end{aligned}
$$

reaction rate: $\quad r=k_{2} C_{E S}$

$$
r=\frac{k_{\checkmark} C_{E o} C_{S}}{K_{m}+C_{S}\left(1+\frac{C_{I}}{K_{i}}\right)} r_{r=\frac{C_{I} C_{S}}{K_{i}} C_{\text {max }} /\left[C_{S}\left(+\frac{C_{I}}{K_{I}}\right)\right]\left(C_{S}\right)}^{K_{m} \mu\left[C_{S}\left(+\frac{C_{I}}{K_{i}}\right)\right]+C_{S}}
$$

If MM equation is linearized:
$\frac{1}{r}=\frac{K_{m}}{r_{\max }} \frac{1}{C_{S}}+\frac{1}{r_{\max }}\left(1+\frac{C_{I}}{K_{i}}\right)$
slope $=\frac{K_{m}}{r_{\max }}$

$$
\text { Intercept }=\frac{1}{r_{\max }}
$$

The lines are parallel to each other

If the lines drawn at different inhibitor concentrations are parallel to each other, the type of inhibition is uncompetitive inhibition

