

Meat Technology

Prof. Dr. Ayla Soyer Meat SCIENCE

Content:

- *Muscle structure
- *Muscle contraction and relaxation
- *Energ sources for muscle contraction
- *Muscle composition

Function of muscle

- Movement
- Maintenance of posture
- Respiration
- Heat generation
- Communication
- Constriction of organs and blood vessels
- Pumping blood

Properties of muscle tissue

All muscle cells share several properties: contractility, excitability, extensibility, and elasticity:

- Contractility is the ability of muscle cells to forcefully shorten.
- Excitability is the ability to respond to a stimulus, which may be delivered from a motor neuron or a hormone.
- Extensibility is the ability of a muscle to be stretched.
- **Elasticity** is the ability to recoil or bounce back to the muscle's original length after being stretched.

Classification of muscles

Voluntary

Involuntary

Types of muscles

Muscle tissue — constitutes the bulk of the carcass of meat animals.

- Skeletal muscle of principal interest to the meat industry.
- Cardiac muscle muscle of the heart.
- Smooth muscle located in arteries and the lymph system as well as the digestive and reproduction systems.

Smooth muscles

- Involuntary muscles, found in the walls of internal organs and the blood vessels.
- Are not under voluntary control.
- Are spindle shaped and are not striated.
- Interlace to form sheets of smooth muscle tissue.
- Contains one nucleus near cell's center.
- Are found in many internal organs:
 - -Stomach
 - -Intestines
 - Blood vessel walls

Cardiac muscles

- Muscles that form a network to make up the heart. Not under control of the brain, but under their own control.
- Only found in the heart.
- Are not under voluntary control.
- Contract without direct stimulation by the nervous system.
- Are faintly striated, branching, mononucleated cells.

Skeletal muscles

- made of elongated cells called
- MUSCLE FIBERS
- Have a striped appearance.
- Are voluntary muscles
- This is a majority of the muscle tissue in the body.
- Are grouped into dense bundles called FASCICLES
- Are large and have more than one nucleus
- Most are voluntary

Skeletal muscle organization

Structure of skeletal muscle: Connective tissue covering

- Epimysium
- Perimysium
- Endomysium

Skeletal muscle structure

- Composed of muscle cells (fibers), connective tissue, blood vessels, nerves.
- Fibers are long, cylindrical, and multunucleated.
- Tend to be smaller diameter in small muscles and larger in large muscles, 1 mm – 4 cm in length.

Skeletal muscle structure

- Developed from myoblasts; numbers remain constant
- Striated appearance
- Nuclei are peripherally located

Muscle fiber anatomy

- Sarcolemma- cell mebrane
 - Surrounds the sarcoplasm (cytoplasm of fiber)
 - Contains many of the same organelles seen in other cells.
 - An abundance of the oxygen-binding protein myoglobin
 - Punctuated by openings called the transverse tubules (T-tubules)
- Myofibrils-cylindrical structures within muscle fiber
 - Are bundles of protein filaments (=myofilaments)
 - Two types of myofilaments
 - Actin filaments (thin filaments)
 - Myosin filaments (thick filaments)

Organization of a muscle fiber

Organization of a muscle fiber

The light and dark bands give skeletal and cardiac muscle their striated appearance.

Fig. 6.3 Organization of proteins in a sarcome

➤ Titin filaments keep the myosin and actin filaments in place.

Muscle proteins

- Contractile proteins
 - Actin- thin myofilament
 - Myosin- thick myofilament
- Regulatory proteins
 - Tropomyosin
 - Troponin
- Attachment proteins
 - Titin, nebulin, alpha actinin, dystropin

Structure of Actin and Myosin

Thin myofilament

Composed of three major proteins:

- 1. F (fibrous) actin
- 2. Tropomyosin
- 3. Troponin
- **Tropomyosin**: an elongated protein winds along the Groove of the F actin double helix.
- **Troponin** is composed of three subunits:
 - Tn-A: binds to actin
 - Tn-T: binds to tropomyosin
 - Tn-C: binds to calcium ions

Thin filaments

Myosin (thick) myofilament

- Many elongated myosin molecules shaped like golf clubs.
- Single filament contains roughly 300 myosin molecules.
- Molecule consists of two heavy myosin molecules wound together to form a rod portion lying parallel to the myosin myofilament and two heads that extend laterally.
- Myosin heads
 - Can bind to active sites on the actin molecules to form cross-bridges. (actin binding site)
 - Attached to the rod portion by a hinge region that can bend and straighten during contraction.
 - Have ATPase activity

Myosin filaments are composed of multiple myosin molecules.

Each Myosin molecule has:

- (1) Head
- (2) Tail
- (3) Hinge (joint)

Actin filaments Cross-bridges Hinges Body B Myosin filament Hall: Guyton and Hall Textbook of Medical Physiology, 12th Edition Copyright © 2011 by Saunders, an imprint of Eisevier, Inc. All rights reserved.

Each myosin head contains:

- (1) Actin binding site
- (2) Myosin ATPase site

Muscle contraction and relaxation

- Sliding filament theory in 1954, Andrew F. Huxley and Rolf Niedergerke proposed the sliding-filament theory to explain muscle contraction.
- According to this theory, overlapping actin and myosin filaments of fixed length slide past one another in an energy requiring process, resulting in muscle contraction.
- The contraction of muscle fibre is a remarkable process that helps in creating a force to move or to resist a load.
- The force which is created by the contracting muscle is called muscle tension.
- Contraction is the creation of tension in the muscle which is an active process
- Relaxation is the release of tension created by contraction.

Muscle contraction

Schematic Presentation of Muscle Contraction

Molecular Mechanism of Muscle Contraction

Muscle
Contraction
Occurs by a
Sliding Filament
Mechanism

Relaxed and contracted states of a myofibril.

Excitation-Contraction Coupling

Merchanism where an action potential causes muscle fiber contraction involves:

- Sarcolemma
- Transverse or T tubules
- Terminal cisternae
- Sarcoplasmic reticulum
- Ca⁺²
- Troponin

Transmission of impulses from nerve endings to skeletal muscle

fibers occurs via:

THE NEUROMUSCULAR JUNCTION (NMJ)

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Secretion of Acetylcholine by the Nerve Terminals

- 125 vesicles of Ach are released.
- Voltage-gated calcium channels.
- Acetylcholine receptors (Ach-gated ion channels).
- Voltage-gated Na+ channels.

Spread of the AP via Transverse Tubules

Excitation-Contraction Coupling

- T-Tubule-Sarcoplasmic Reticulum System.
- -**T-tubules** are small and run transverse to the myofibrils.

- The **sarcoplasmic reticulum** is composed of 2 parts:
- (1) large chambers called terminal cisternae
- (2) long longitudinal tubules

The T tubule action potentials cause Ca++ release inside the muscle fiber in the immediate vicinity of the myofibrils, and this Ca++ then cause contraction. This overall process is called excitation-contraction coupling.

Release of Calcium Ions by the Sarcoplasmic Reticulum

- > As the AP reaches the T-tubule, the voltage change is sensed by dihydropyridine receptors (DHP) linked to calcium release channels (Ryanodine receptors) which triggers the release of Ca⁺⁺ initiating contraction.
- ➤ Calcium pump removes calcium ions after contraction occurs.
- Calcium binds to calsequestrin.

Copyright © 2011 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

Fig. 7.7 Excitation-contraction coupling in the muscle showing (1) an AP that causes the release of Ca ions from the sarcoplasmic reticulum and then (2) re-uptake of the calcium ions by the calcium pump.

Destruction of the Released Acetylcholine

➤ Most of the Ach is destroyed by the enzyme acetylcholinesterase into acetate ion and choline.

[choline is reabsorbed actively into the neural terminal to be reused to form new acetylcholine]

> A small amount diffuses out of the synaptic space.

Energy for muscle contraction

- ATP is required for muscle contraction
 - Myosin ATPase breaks down ATP as fiber contracts
- Sources of ATP
 - Phosphocreatine (PC)
 - Glycolysis
 - Oxidative phosphorilation

Nomal aerobic conditions

Normal anaerobic conditions

NORMAL ANAEROBIC CONDITIONS

