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• For a cartesian product set 𝐴 × 𝐵 = (𝑥, 𝑦)ȁ𝑥 ∈ 𝐴 ˄ 𝑦 ∈ 𝐵 , a 
binary relation from A to B is a subset of 𝐴 × 𝐵, i.e. 𝑅 ⊆ 𝐴 × 𝐵

• if (a, b) ∈ 𝑅, then a is said to be related to b by R, i.e a𝑅𝑏

• Let A be the set of students and B be the set of courses

A = {Ahmet, Efe, Buse, Pelin, . . .}
B = {Math, Physics, Discrete, Algorithms, . . .}

Let R be the relation such that if student a is taking course b, 
(a, b) ∈ 𝑅.

(Ahmet, Physics) ∈ 𝑅, (Efe, Discrete) ∉ 𝑅

Relations



A

Relations

B

• a

• b

• 1

• 2

R

• c

R

a b c

1

2

R 1 2

a 1 0

b 0 1

c 0 1

R = {(a, 1), (b, 2), (c, 2)}

• the number of relations that can be 
defined from A to B : 

2 𝐴 𝐵



• A relation can be defined on a single set A as a subset of AxA

A = {1, 2, 3}

R = {(1, 1), (1, 2), (2, 2), (3, 2)}

Relations

• 1 • 2

• 3



𝑅 ⊆ 𝐴 × 𝐵

Functions as Relations

domain range

R(A) : the image of R, 𝑅 𝐴 = {𝑦 ∈ 𝐵ȁ 𝑥, 𝑦 ∈ 𝑅, ∃𝑥 ∈ 𝐴}

Function is a relation that satisfies two conditions : 

• for every element x of the domain, there is an element y in the range
such that (x,y) is an element of the relation

Let 𝑅 ⊆ 𝐴 × 𝐵 be the relation, ∀𝑥 𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑠. 𝑡. 𝑥, 𝑦 ∈ 𝑅

• for every element x of the domain, there is only one element y of the
range such that (x,y) is an element of the relation

Let 𝑅 ⊆ 𝐴 × 𝐵 be the relation, ∀𝑥[( 𝑥, 𝑦1 ∈ 𝑅 ˄ 𝑥, 𝑦2 ∈ 𝑅) → (𝑦1 = 𝑦2)]



Reflexivity

• A relation on a set A is called reflexive if (𝑎, 𝑎) ∈ 𝑅 for every
element 𝑎 ∈ 𝐴

Properties

𝑅2 1 2 3

1 1 0 0

2 0 1 0

3 0 1 1

𝑅1 = {(1, 1), (1, 2), (2, 2), (3, 2), (3, 3)}

• 1

• 2

• 3

𝑅3



Symmetry

• A relation on a set A is called symmetric if (𝑎, 𝑏) ∈ 𝑅, then
(𝑏, 𝑎) ∈ 𝑅

• If the relation is not symmetric, it is called asymmetric. 
• If for all (𝑎, 𝑏) ∈ 𝑅, (𝑏, 𝑎) ∉ 𝑅 or 𝑎 = 𝑏, then it is called

antisymmetric

Properties

𝑅2 1 2 3

1 1 0 0

2 0 1 1

3 1 0 1

𝑅1 = {(1, 1), (1, 2), (2, 1), (3, 2), (3, 3)}

• 1

• 2

• 3

𝑅3

symmetric

asymmetric

antisymmetric



Transitivity

• A relation on a set A is called symmetric if 𝑎, 𝑏 ∈ 𝑅 ˄ 𝑏, 𝑐 ∈ 𝑅, 
then (𝑎, 𝑐) ∈ 𝑅

Properties

𝑅2 1 2 3

1 1 0 0

2 0 1 1

3 1 0 1

𝑅1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 1)}

• 1

• 2

• 3

𝑅3



Properties

Let R be a relation on Z such that 𝑎, 𝑏 ∈ 𝑅 if 𝑎. 𝑏 ≥ 0

• Since 𝑎 . 𝑎 ≥ 0 for all 𝑎 ∈ 𝑍, 𝑎, 𝑎 ∈ 𝑅 for all 𝑎 ∈ 𝑍. Thus, 𝑅 is 
reflexive.

• [ 𝑎, 𝑏 ∈ 𝑅] → (𝑎. 𝑏 ≥ 0) → (𝑏. 𝑎 ≥ 0)

→ 𝑅 is symmetric

• [ 𝑎, 𝑏 ∈ 𝑅 ˄ 𝑏, 𝑐 ∈ 𝑅] → [(𝑎. 𝑏 ≥ 0) ˄ (𝑏. 𝑐 ≥ 0)]

→ (𝑎. 𝑏. 𝑏. 𝑐 ≥ 0) 

→ (𝑎. 𝑐 ≥ 0)

→ 𝑎, 𝑐 ∈ 𝑅

→ 𝑅 is transitive



Properties

Consider the division operator, ′ȁ′, as a relation on integers : 

𝑎, 𝑏 ∈ ′ȁ′ → 𝑎 ȁ 𝑏

• Since 𝑎 ȁ 𝑎, 𝑎, 𝑎 ∈ ′ȁ′ for all 𝑎 ∈ 𝑍. Thus, ′ȁ′ is reflexive.

• [ 𝑎, 𝑏 ∈ ′ȁ′] → (𝑎 ȁ 𝑏) → (either 𝑎 = 𝑏 or b ȁ 𝑎) 

→ ′ȁ′ is antisymmetric

• [ 𝑎, 𝑏 ∈ ′ȁ′ ˄ 𝑏, 𝑐 ∈ ′ȁ′] → [(𝑎 ȁ 𝑏) ˄ (𝑏 ȁ 𝑐)]

→ [𝑏 = 𝑥. 𝑎 ˄ c = 𝑦. 𝑏,  ∃𝑥, 𝑦 ∈ 𝑍] 

→ (c = 𝑥. 𝑦. 𝑎)

→ 𝑎 ȁ 𝑐 → 𝑎, 𝑐 ∈ ′ȁ′

→ ′ȁ′ is transitive



Properties

How many reflexive relations can be defined on a set A of n 
elements?

• A = {1, 2, . . ., n}

• there are lAxAl = 𝑛2 pairs

• a reflexive relation must contain the pairs (1, 1), . . ., (n, n)

• take these pairs out, (𝑛2−𝑛) remaining pairs

• 2(𝑛2−𝑛) different relations can be formed with the (𝑛2−𝑛)
remaining pairs

• add each of them the pairs (1, 1), . . ., (n, n) to make them
reflexive



Properties

How many symmetric relations can be defined on a set A of n 
elements?

• A = {1, 2, . . ., n}

• there are lAxAl = 𝑛2 pairs

𝐴1 = 𝑎𝑖 , 𝑎𝑖 ȁ1 ≤ 𝑖 ≤ 𝑛
𝐴1 = 𝑛

𝐴2 = 𝑎𝑖 , 𝑎𝑗 ȁ1 ≤ 𝑖, 𝑗 ≤ 𝑛 𝑎𝑛𝑑 𝑖 ≠ 𝑗

𝐴2 = 𝑛2 − 𝑛

𝐴3 = { 𝑎𝑖 , 𝑎𝑗 ȁ1 ≤ 𝑖, 𝑗 ≤ 𝑛,

𝑖 ≠ 𝑗, 𝑎𝑛𝑑 𝑎𝑗 , 𝑎𝑖 ∈ 𝐴3}

𝐴3 = (𝑛2−𝑛)/2
{ . . . , . . . }

2𝑛. 2
𝑛2−𝑛

2 = 2(𝑛2+𝑛)/2



Union : Given 𝑅, 𝑆 ⊆ 𝐴 × 𝐵, 

T = 𝑅 ∪ 𝑆 = (𝑥, 𝑦)ȁ 𝑥, 𝑦 ∈ 𝑅 ˅ 𝑥, 𝑦 ∈ 𝑆

Intersection : Given 𝑅, 𝑆 ⊆ 𝐴 × 𝐵, 

T = 𝑅 ∩ 𝑆 = (𝑥, 𝑦)ȁ 𝑥, 𝑦 ∈ 𝑅 ˄ 𝑥, 𝑦 ∈ 𝑆

Complement : Given 𝑅 ⊆ 𝐴 × 𝐵, 

T = ത𝑅 = (𝑥, 𝑦)ȁ 𝑥, 𝑦 ∉ 𝑅

Inverse : Given 𝑅 ⊆ 𝐴 × 𝐵, 

T = 𝑅−1 = (𝑦, 𝑥) ∈ 𝐵 × 𝐴ȁ 𝑥, 𝑦 ∈ 𝑅

Composition : Given 𝑅 ⊆ 𝐴 × 𝐵 and S ⊆ 𝐵 × 𝐶

T = 𝑆 ∘ 𝑅 = (𝑥, 𝑧)ȁ 𝑥, 𝑦 ∈ 𝑅 ˄ 𝑦, 𝑧 ∈ 𝑆

Operations



Operations

R 1 2

a 1 0

b 0 1

c 1 0

S u v

1 0 0

2 1 1

S∘R u v

a 0 0

b 1 1

c 0 0

S−1 1 2

u 0 1

v 0 1



• A = { 1, 2, 3 },    R = { (1, 1), (2, 1), (3, 2) } 

Operations

• 𝑅2 = 𝑅 ∘ 𝑅 = 1, 1 , 2, 1 , 3, 2
𝑅3 = 𝑅2 ∘ 𝑅 = 1, 1 , 2, 1 , 3, 2

• The relation R on a set A is transitive if and only if 𝑅𝑛 ⊆ 𝑅 for
some 𝑛 ∈ 𝑍+

R 1 2 3

1 1 0 0

2 1 0 0

3 0 1 0

R 1 2 3

1 1 0 0

2 1 0 0

3 0 1 0

R∘R 1 2 3

1 1 0 0

2 1 0 0

3 0 1 0



Equivalence Relations

Definition : A relation R on a set A is called an equivalence relation
if it’s reflexive, symmetric, and transitive. If 𝑎, 𝑏 ∈ 𝑅, then a and
b are called equivalent, i.e. a∼b. 

• Let R be a relation defined on real numbers such that 𝑎, 𝑏 ∈ 𝑅
if and only if a – b is an integer. R is an equivalence relation ?

– ∀𝑎 ∈ ℝ, since 𝑎 − 𝑎 = 0 ∈ ℤ, 𝑎, 𝑎 ∈ 𝑅 (reflexive)

– (𝑎, 𝑏) ∈ 𝑅 → 𝑎 − 𝑏 ∈ ℤ
→ 𝑏 − 𝑎 ∈ ℤ → (𝑏, 𝑎) ∈ 𝑅 (symmetric)

– 𝑎, 𝑏 ∈ 𝑅 ˄ 𝑏, 𝑐 ∈ 𝑅 → 𝑎 − 𝑏 ∈ ℤ ˄ 𝑏 − 𝑐 ∈ ℤ
→ 𝑎 − 𝑐 ∈ ℤ → (𝑎, 𝑐) ∈ 𝑅 (transitive)



Equivalence Relations

Definition : A relation R on a set A is called an equivalence relation
if it’s reflexive, symmetric, and transitive. If 𝑎, 𝑏 ∈ 𝑅, then a and
b are called equivalent, i.e. a∼b. 

• Let R be a relation defined on integers such that 𝑎, 𝑏 ∈ 𝑅 if
and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚). R is an equivalence relation ?

– ∀𝑎 ∈ ℤ, since 𝑎 ≡ 𝑎(𝑚𝑜𝑑 𝑚), 𝑎, 𝑎 ∈ 𝑅 (reflexive)

– (𝑎, 𝑏) ∈ 𝑅 → 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚)
→ 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑚) → (𝑏, 𝑎) ∈ 𝑅 (symmetric)

– 𝑎, 𝑏 ∈ 𝑅 ˄ 𝑏, 𝑐 ∈ 𝑅 → 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚 ˄ 𝑏 ≡ 𝑐(𝑚𝑜𝑑 𝑚).
→ 𝑎 ≡ 𝑐(𝑚𝑜𝑑 𝑚) → (𝑎, 𝑐) ∈ 𝑅

(transitive)



Equivalence Relations

Definition : A relation R on a set A is called an equivalence relation
if it’s reflexive, symmetric, and transitive. If 𝑎, 𝑏 ∈ 𝑅, then a and
b are called equivalent, i.e. a∼b. 

• Let R be a relation defined on real numbers such that 𝑎, 𝑏 ∈ 𝑅
if and only if 𝑎 − 𝑏 < 1. R is an equivalence relation ?

– ∀𝑎 ∈ ℤ, since 𝑎 − 𝑎 = 0 < 1, 𝑎, 𝑎 ∈ 𝑅 (reflexive)

– (𝑎, 𝑏) ∈ 𝑅 → 𝑎 − 𝑏 < 1
→ 𝑏 − 𝑎 < 1 → (𝑏, 𝑎) ∈ 𝑅 (symmetric)

– 𝑎, 𝑏 ∈ 𝑅 ˄ 𝑏, 𝑐 ∈ 𝑅 → 𝑎 − 𝑏 < 1 ˄ 𝑏 − 𝑐 < 1

for 𝑎 = 1, 𝑏 =
1

10
, and 𝑐 = −

2

10

𝑎 − 𝑏 < 1 and 𝑏 − 𝑐 < 1, but 𝑎 − 𝑐 > 1 (not transitive)



Equivalence Relations

Definition : Let R be an equivalence relation on a set A. The set of 
all elements related to an element a is called the equivalence class
of a, denoted by 𝑎 𝑅

𝑎 𝑅 = 𝑠 ∈ 𝐴ȁ 𝑎, 𝑠 ∈ 𝑅

• What are the equivalence classes of 2 and 1 for the congruence
relation of module 5 ?

– 2, 𝑠 ∈ 𝑅 → 2 ≡ 𝑠(𝑚𝑜𝑑 5) → 5 ȁ (2 − 𝑎)

– 2 𝑅 = . . . , −3, 2, 7, 12, . . .

– 1 𝑅 = . . . , −4, 1, 6, 11, . . .



Equivalence Relations

• Let 𝑅𝑛 be a relation on the set of strings built with 0,1 . 

For any two strings s and t,

𝑠, 𝑡 ∈ 𝑅𝑛 if s = t,

or 𝑙 𝑠 , 𝑙 𝑡 ≥ 𝑛 and 𝑠 1. . 𝑛 = 𝑡[1. . 𝑛]

length of s first n bits of s

• 01,01 ∈ 𝑅3, 11,10 ∉ 𝑅3

101,101 ∈ 𝑅3, 101,110 ∉ 𝑅3

0111,0110 ∈ 𝑅3, 1101,1011 ∉ 𝑅3

01001,010111000 ∈ 𝑅3, 1100,10011111 ∉ 𝑅3



Equivalence Relations

• Let 𝑅𝑛 be a relation on the set of strings built with 0,1 . 

For any two strings s and t,

𝑠, 𝑡 ∈ 𝑅𝑛 if s = t,

or 𝑙 𝑠 , 𝑙 𝑡 ≥ 𝑛 and 𝑠 1. . 𝑛 = 𝑡[1. . 𝑛]

• for all 𝑎 ∈ 𝑆, since 𝑎 = 𝑎, 𝑎, 𝑎 ∈ 𝑅3 (reflexive)

• if 𝑎, 𝑏 ∈ 𝑅3, either 𝑎 = 𝑏 or a 1. . 3 = 𝑏[1. . 3]
thus 𝑏, 𝑎 ∈ 𝑅3 (symmetric)

• if 𝑎, 𝑏 ∈ 𝑅3 ˄ 𝑏, 𝑐 ∈ 𝑅3, 
either 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐
or 𝑎 = 𝑏 and 𝑏 1. . 3 = 𝑐[1. . 3], then 𝑎 1. . 3 = 𝑐[1. . 3]
or 𝑎 1. . 3 = 𝑏[1. . 3] and 𝑏 = 𝑐, then 𝑎 1. . 3 = 𝑐[1. . 3]
or 𝑎 1. . 3 = 𝑏[1. . 3] and 𝑏 1. . 3 = 𝑐[1. . 3], then 𝑎 1. . 3 = 𝑐[1. . 3]

(transitive)



Equivalence Relations

• Let 𝑅𝑛 be a relation on the set of strings built with 0,1 . 

For any two strings s and t,

𝑠, 𝑡 ∈ 𝑅𝑛 if s = t,

or 𝑙 𝑠 , 𝑙 𝑡 ≥ 𝑛 and 𝑠 1. . 𝑛 = 𝑡[1. . 𝑛]

• 0 𝑅3
= 0 , 1 𝑅3

= 1 , 00 𝑅3
= 00 , 01 𝑅3

= 01 ,
10 𝑅3

= 10 , 11 𝑅3
= 11 , 𝜀 𝑅3

= 𝜀

• 000 𝑅3
= 000,0000,0001,00000,00001, . . .

001 𝑅3
= 001,0010,0011,00100,00101, . . .

⋮
111 𝑅3

= 111,1110,1111,11100,11101, . . .

• 𝜀 𝑅3
∪ 0 𝑅3

∪ ⋯ ∪ 111 𝑅3
= 𝑆, the set of all strings



Equivalence Relations
• A given set S can be decomposed into disjoint subsets 𝐴𝑖. For a 

family of sets 𝐴 = 𝐴𝑖ȁ𝑖 ∈ 𝐼 such that 𝐴𝑖 ∩ 𝐴𝑗 ≠ ∅, a given set S 
can be written as 

𝑆 = 𝐴1 ∪ . . . ∪ 𝐴𝑛

S = {1, 2, 3, 4, 5, 6}  can be written as 𝑆 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 where

𝐴1 = 1, 2, 3 , 𝐴1 = 4, 5 , 𝐴1 = 6

• Let R be an equivalence relation on a set S. Then the equivalence
classes of R form a partititon of S. 
If there is a partition of S, then there is an equivalence relation that
has 𝐴𝑖 as its equivalence classes.

R = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 1), (3, 1), 
(4, 4), (4, 5), (5, 4), (5, 5),
(6, 6)}



Partial Order

Definition : A relation R on a set A is called a partial order if it’s
reflexive, antisymmetric, and transitive. A set S together with a 
partial order R is called partially ordered set or poset, (S, R)

• Consider ‘greater than or equal’ relation (≥) defined on integers. 
(≥) is a partial order ?   

– ∀𝑎 ∈ ℤ, since 𝑎 ≥ 𝑎, 𝑎, 𝑎 ∈ (≥) (reflexive)

– (𝑎, 𝑏) ∈ 𝑅 → (𝑎 ≥ 𝑏) → (𝑏 ≱ 𝑎 if 𝑎 ≠ 𝑏) (antisymmetric)

– 𝑎, 𝑏 ∈ 𝑅 ˄ 𝑏, 𝑐 ∈ 𝑅 → (𝑎 ≥ 𝑏 ˄ 𝑏 ≥ 𝑐)
→ (𝑎 ≥ 𝑐) → (𝑎, 𝑐) ∈ 𝑅 (transitive)



Partial Order

Definition : A relation R on a set A is called a partial order if it’s
reflexive, antisymmetric, and transitive. A set S together with a 
partial order R is called partially ordered set or poset, (S, R)

• Consider a relation R on integers such that (𝑎, 𝑏) ∈ 𝑅 if a – b is a 
non-negative integer. R is a partial order ?

– ∀𝑎 ∈ ℤ, since 𝑎 − 𝑎 = 0, (𝑎, 𝑎) ∈ 𝑅 (reflexive)

– (𝑎, 𝑏) ∈ 𝑅 → (𝑎 − 𝑏 is a non-negative integer)
→ (b − 𝑎 is a negative integer if 𝑎 ≠ 𝑏) (antisymmetric)

– 𝑎, 𝑏 ∈ 𝑅 ˄ 𝑏, 𝑐 ∈ 𝑅 → (𝑎 − 𝑏 and 𝑏 − 𝑐 are non-negative integer)
→ (𝑎 − 𝑐 is a non-negative integer)
→ (𝑎, 𝑐) ∈ 𝑅 (transitive)



Partial Order

Definition : The elements a and b of a poset (S, R) are called comparable
if either aRb or bRa. 

• Consider the poset (ℤ+, ′ȁ′). 

– Since  3ȁ9,  3 and 9 are comparable.

– Since 7ȁ5 or 5ȁ7, 5 and 7 are not comparable

Definition : If every pair of elements in S are comparable, then R is 
called total order. (S, R) is called totally ordered set. 

• the poset (ℤ+, ′ȁ′) is not totally ordered set. 

• the poset (ℤ+, ≤) is a totally ordered set.



Partial Order

Definition : Consider a poset (S, R). An element a is called maximal if
there is no 𝑏 ∈ 𝑆 such that aRb. An element a is called minimal if there is 
no 𝑏 ∈ 𝑆 such that bRa.  

• Consider the poset (S, ′ȁ′) where S = {2, 4, 5, 10, 12, 15, 20, 30} 

– maximal elements of (S, ′ȁ′)   {12, 20, 30}

– minimal elements of (S, ′ȁ′)   {2, 5}

Definition : An element a is called the greatest element if bRa for all
𝑏 ∈ 𝑆. An element a is called the least element if aRb for all 𝑏 ∈ 𝑆.

• Consider the power set of a given set S. 

– ∅ is the least element of (P(S),⊆) since ∅ ⊆ 𝑇 for any 𝑇 ∈ 𝑃(𝑆)

– S is the greatest element of (P(S),⊆) since 𝑇 ⊆ 𝑆 for any 𝑇 ∈ 𝑃(𝑆)



Partial Order
• Let A = {0, 1, 2}, B = AxA, R be a relation defined on B such that

𝑎, 𝑏 , 𝑐, 𝑑 ∈ 𝑅 if 𝑎 < 𝑐 or  
𝑎 = 𝑐 and 𝑏 ≤ 𝑑

– 0,1 , 1,0 ∈ 𝑅 since  𝑎 < 𝑐

– 0,1 , 0,2 ∈ 𝑅 since 𝑎 = 𝑐 and 𝑏 ≤ 𝑑

• R is partial order relation ?

– for all 𝑎, 𝑏 ∈ 𝐵, since  𝑎 = 𝑎 and 𝑏 ≤ 𝑏, 𝑎, 𝑏 , 𝑎, 𝑏 ∈ 𝑅

– for all 𝑎, 𝑏 , 𝑐, 𝑑 ∈ 𝑅 such that 𝑎, 𝑏 ≠ 𝑐, 𝑑

either 𝑎 < 𝑐, then 𝑐, 𝑑 , 𝑎, 𝑏 ∉ 𝑅

or 𝑎 = 𝑐 and 𝑏 < 𝑑, then 𝑐, 𝑑 , 𝑎, 𝑏 ∉ 𝑅

– for all 𝑎, 𝑏 , 𝑐, 𝑑 ∈ 𝑅 and 𝑐, 𝑑 , 𝑒, 𝑓 ∈ 𝑅,    

either 𝑎 < 𝑐 and c < 𝑒, then 𝑎 < 𝑒, 𝑎, 𝑏 , 𝑒, 𝑓 ∈ 𝑅

or 𝑎 < 𝑐, and 𝑐 = 𝑒 and  𝑑 ≤ 𝑓, then 𝑎 < 𝑒, 𝑎, 𝑏 , 𝑒, 𝑓 ∈ 𝑅

or 𝑎 = 𝑐, and 𝑐 < 𝑒, then 𝑎 < 𝑒, 𝑎, 𝑏 , 𝑒, 𝑓 ∈ 𝑅

or 𝑎 = 𝑐 and 𝑏 ≤ 𝑑, and 𝑐 = 𝑒 and  𝑑 ≤ 𝑓, then 𝑎 = 𝑒 and 𝑏 ≤ 𝑓,

𝑎, 𝑏 , 𝑒, 𝑓 ∈ 𝑅



Partial Order
• Let A = {0, 1, 2}, B = AxA, R be a relation defined on B such that

𝑎, 𝑏 , 𝑐, 𝑑 ∈ 𝑅 if 𝑎 < 𝑐 or  
𝑎 = 𝑐 and 𝑏 ≤ 𝑑

– 0,1 , 1,0 ∈ 𝑅 since  𝑎 < 𝑐

– 0,1 , 0,2 ∈ 𝑅 since 𝑎 = 𝑐 and 𝑏 ≤ 𝑑

• R is partial order relation ?

– Is there a least element ?

(0, 0)

– Is there a greatest element ?

(2, 2)

– Is it total order ?

for all 𝑎, 𝑏 ∈ 𝐵, 𝑎, 𝑏 ∈ 𝑅 or 𝑏, 𝑎 ∈ 𝑅

– How many elements are in R ?

0,0 𝑅 0,1 𝑅 0,2 𝑅 1,0 𝑅 1,1 𝑅 1,2 𝑅 2,0 𝑅 2,1 𝑅 2,2



Hasse Diagram
• a type of directed graph used to represent finite posets.

• consider the poset 1, 2, 3 , ≤ : 𝑥, 𝑦 ∈ ≤ if 𝑥 ≤ 𝑦

• consider the elements of 
the set as vertices

• if 𝑥, 𝑦 ∈ (≤), draw a line
from x to y 

1

2

3

1

2

3

1

2

3



Hasse Diagram
• a type of directed graph used to represent finite posets.

• consider the poset 1, 2, 3, 4, 6 , 𝑅 : 𝑥, 𝑦 ∈ 𝑅 if 𝑥 divides 𝑦

1

2 3

4 6

1

2 3

4 6

1

2 3

4 6

maximal elements

no greatest element

minimal elements

the least element



Hasse Diagram
• a type of directed graph used to represent finite posets.

• consider the poset 1, 2, 3 , 𝑅 : 𝑋, 𝑌 ∈ 𝑅 if 𝑋 ⊆ 𝑌

∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}
the greatest element

the least element



Partial Order

Definition : Consider a poset (S, R). If there is an element 𝑢 ∈ 𝑆 such
that 𝑎𝑅𝑢 for all 𝑎 ∈ 𝐴 , then u is called an upper bound of A. If there is 
an element 𝑣 ∈ 𝑆 such that 𝑣𝑅𝑎 for all 𝑎 ∈ 𝐴 , then v is called an lower
bound of A. 

• Consider the poset (ℤ+, ′ȁ′) 

– for the set A = {3, 9, 12};

if 𝑢ȁ3, 𝑢ȁ9, 𝑢ȁ12, then u is a lower bound : 1 and 3

if 3ȁ𝑣, 9ȁ𝑣, 12ȁ𝑣, then v is an upper bound : 36, 72, … 

– for the set B = {1, 2, 4, 5, 10};

if 𝑢ȁ1, 𝑢ȁ2, 𝑢ȁ4, 𝑢ȁ5, 𝑢ȁ10, then u is a lower bound : 1

if 1ȁ𝑣, 2ȁ𝑣, 4ȁ𝑣, 5ȁ𝑣, 10ȁ𝑣, then v is an upper bound : 20, 40, … 



Partial Order

Definition : Consider a poset (S, R). If there is an element 𝑢 ∈ 𝑆 such
that 𝑎𝑅𝑢 for all 𝑎 ∈ 𝐴 , then u is called an upper bound of A. If there is 
an element 𝑣 ∈ 𝑆 such that 𝑣𝑅𝑎 for all 𝑎 ∈ 𝐴 , then v is called an lower
bound of A. 

• Consider the poset (𝑃(𝑆), ⊆) where S = {1, 2, 3, 4}

– for the set A = {{1}, {2}, {1,2}};

if U⊆{1}, U⊆{2},U⊆{1,2}, then U is a lower bound : ∅

if {1}⊆V, {2}⊆V, {1,2}⊆V, then V is an upper bound :

{1,2}, {1,2,3}, {1,2,4}, {1,2,3,4}



Topological Sorting

Definition : Topological sorting of n elements from a poset (S, R) is 
𝑠1𝑠2… 𝑠𝑛 such that there is no 𝑠𝑖 , 𝑠𝑗 ∈ 𝑅 where 𝑗 < 𝑖

• Consider the poset (S, ′ȁ′) where S = {2, 15, 8, 3, 6, 20}

– 2, 3, 6, 8, 15, 20

– 3, 2, 8, 6, 15, 20

– 3, 2, 6, 8, 20, 15

– 3, 6, 2, 8, 20, 15 is not, i.e. (2, 6) ∈ ′ȁ′ since 2ȁ6, but 6 comes
before 2 in the sorting. 



Topological Sorting

Definition : Topological sorting of n elements from a poset (S, R) is 
𝑠1𝑠2… 𝑠𝑛 such that there is no 𝑠𝑖 , 𝑠𝑗 ∈ 𝑅 where 𝑗 < 𝑖

• Every finite nonempty poset (S, R) has at least one minimal element.

– Pick an element 𝑎0 ∈ 𝑆. If 𝑎0 is not minimal, then there should be 
an element 𝑎1 ∈ 𝑆 such that 𝑎1𝑅𝑎0. 

– If 𝑎1 is not minimal, then there should be an element 𝑎2 ∈ 𝑆 such
that 𝑎2𝑅𝑎1.

⋮

– Since there are only finite number of elements, there should be an 
element 𝑎𝑛 that is minimal.  



Topological Sorting

input : a finite poset (S, R)
output : topological sorting of elements in S

initialize an empty queue Q
while 𝑆 ≠ ∅

a = a minimal element of S
S = S – {a}
add a to Q

return Q 
L

B D
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X

AKH

Definition : Topological sorting of n elements from a poset (S, R) is 
𝑠1𝑠2… 𝑠𝑛 such that there is no 𝑠𝑖 , 𝑠𝑗 ∈ 𝑅 where 𝑗 < 𝑖



Topological Sorting

input : a finite poset (S, R)
output : topological sorting of elements in S

initialize an empty queue Q
while 𝑆 ≠ ∅

a = a minimal element of S
S = S – {a}
add a to Q

return Q 
L

B D

E C

X

AKH

Q : 

Definition : Topological sorting of n elements from a poset (S, R) is 
𝑠1𝑠2… 𝑠𝑛 such that there is no 𝑠𝑖 , 𝑠𝑗 ∈ 𝑅 where 𝑗 < 𝑖



Topological Sorting

input : a finite poset (S, R)
output : topological sorting of elements in S

initialize an empty queue Q
while 𝑆 ≠ ∅

a = a minimal element of S
S = S – {a}
add a to Q

return Q 
L

B D

E C

X

AK

Q : H

Definition : Topological sorting of n elements from a poset (S, R) is 
𝑠1𝑠2… 𝑠𝑛 such that there is no 𝑠𝑖 , 𝑠𝑗 ∈ 𝑅 where 𝑗 < 𝑖



Topological Sorting

input : a finite poset (S, R)
output : topological sorting of elements in S

initialize an empty queue Q
while 𝑆 ≠ ∅

a = a minimal element of S
S = S – {a}
add a to Q

return Q 
L

B D

E C

X

A

Q : H K

Definition : Topological sorting of n elements from a poset (S, R) is 
𝑠1𝑠2… 𝑠𝑛 such that there is no 𝑠𝑖 , 𝑠𝑗 ∈ 𝑅 where 𝑗 < 𝑖



Topological Sorting

input : a finite poset (S, R)
output : topological sorting of elements in S

initialize an empty queue Q
while 𝑆 ≠ ∅

a = a minimal element of S
S = S – {a}
add a to Q

return Q 
L

B D

E C

X

Q : H K A

Definition : Topological sorting of n elements from a poset (S, R) is 
𝑠1𝑠2… 𝑠𝑛 such that there is no 𝑠𝑖 , 𝑠𝑗 ∈ 𝑅 where 𝑗 < 𝑖



Topological Sorting

input : a finite poset (S, R)
output : topological sorting of elements in S

initialize an empty queue Q
while 𝑆 ≠ ∅

a = a minimal element of S
S = S – {a}
add a to Q

return Q 

Q : H K A L X B E D C 

Definition : Topological sorting of n elements from a poset (S, R) is 
𝑠1𝑠2… 𝑠𝑛 such that there is no 𝑠𝑖 , 𝑠𝑗 ∈ 𝑅 where 𝑗 < 𝑖


