Graphs

Graph Theory

Konigsberg was a city in Germany in 18th century. There
was a river named Pregel that divided the city into four

distinct regions.
There was a natural question for the people of Konigberg :

Is it possible to take a walk around the city that crosses
each bridge exaactly once?’

Graph Theory

The problem was solved by Swiss mathematician Leonard
Euler. His works are considered as the beginning of Graph
Theory.

Euler represented four distinct lands with four points (or
nodes), and seven bridges with seven lines connecting those
points.

Can you find a path that includes every edge exactly once?’

Is the given graph traversable?’

Graph Theory

G=(V,E)
— T

set of nodes (or vertices) set of edges (or arc)

‘II’ 1!5’ . V={1,234,5)
P e
_ (1,2) €E

— /. N\

starting node ending node

- E=1{(1,2),(2,4),(4,3),(1,4),(3,5)
(2,1),(4,2),(3,4),(4,1),(5,3)}

« If (1,2) € E,1and 2 are adjacent vertices.

. adj(4)={1, 2, 3}

Graph Theory

G/z(V, E)
set of nodes (or vertices) set of edges (or arc)

(—2 ({2
‘ = ‘. >

—® (—=

undirected graph directed graph

deg(v)= # of edges at that vertex

deg(1)=2
deg(4)=3

Graph Theory

G=(V,E)
— T

set of nodes (or vertices)
N
(5)
e
—®

undirected graph
deg(v)= # of edges at that vertex

set of edges (or arc)

directed graph
deg™" (v) = # of incoming edges
degev' (v) = # of outgoing edges

deg"(b) =1
degeut(4) = 2

Graph Theory

G=(V,E)
— T

set of nodes (or vertices) set of edges (or arc)

e‘e © :‘: ©

©=20

undirected graph directed graph
deg(v)= # of edges at that vertex deg’" (v) = # of incoming edges
5 deg(v) = 2 IEl degev' (v) = # of outgoing edges

Y degn(v) = X degovt(v) = IEI
a vertex v is called odd vertex if deg(v) is odd
a vertex v is called even vertex if deg(v) is even

Graph Theory

Complete Graphs
O o——0 A g @
K, K, K-

K1 K>

Cycle Graphs

A O

Graph Theory

« asubgraph of a graph G = (V, E) is a graph H = (W, F) such that

wWcVand FcE.

& D1

G, CKs G3 K5
G, SG; G3 G,

« the subgraph induced by a subset W of the vertex set V is the
graph (W, F) where the edge set F contains an edge in E if and
only if both starting node and ending node of this edge are in W.

Ks = (V,E)

a a
C d C d

= ({a, b,c,d})

the subgraph induced by
W={a, b, c, d}

this subgraph produced by
removing the edge e

Graph Theory

e a e
a
b /x b
b \/ f f
9 C d q C

G, = (V1,Ep) G, = (Vy, E3) G1 UGy, = (VL UV, E; UE))

Representation

Adjacency List Adjacency List
1-24 1-3
2-14 2 -

3-4 3-4
4-123 4-12
Adjacency Matrix Adjacency Matrix

1 2 3 4 1 2 3 4

1101 01 110 01 O

2|11 0 01 210 0 0O

3/10 001 310 0 01

411 110 4111 00

Representation

Adjacency List Adjacency Matrix

retrieving all neighbors of a O(deg(u)) O(IVI)
given node u

given nodes u and v, checking O(deg(u)) o(1)
if uand v are adjacent

space O(IEI+IVID) O(IVI?)

If graph is sparse, use adjacency list;
if graph is dense, use adjacency matrix

Isomorphism

« Two simple graphs G, = (V1,E;) and G, = (V,, E,) are isomorphic if
there exists a bijection f from V; to V, such that a and b are
adjacent in G; if and only if f(a) and f(b) are adjacent in G, for all
a,b €V,

N/ -

G, = (V1,E1) G, = (Vy, E3)

« V-V, f(a)=1,f(b)=4,f(c)=3,f(d)=2

a and c are adjacent in Gy, f(a) = 1 and f(c) = 3 are adjacent in G,
a and d are adjacent in G, f(a) = 1 and f(d) = 2 are adjacent in G,
b and d are adjacent in G, f(b) = 4 and f(d) = 2 are adjacent in G,

Isomorphism

« Isomorphic graphs must have same number of edges

« The degrees of the vertices in isomorphic graphs must be same

e ; d e H d

e G and H both have 5 vertices and 6 edges

* G has 3 vertices of degree two and 2 vertices of degree three
H has 1 vertex of degree one, 2 vertices of degree two, 1 vertex of
degree three, and 1 vertex of degree 4

Isomorphism

« Isomorphic graphs must have same number of edges

The degrees of the vertices in isomorphic graphs must be same
lg— b X —9 t
P 1
g \'%
d —® C —0 z
6 ! H

« G and H both have 8 vertices and 10 edges

* G has 4 vertices of degree two and 4 vertices of degree three
H has 4 vertices of degree two and 4 vertices of degree three

* One of the odd vertices (s) in H has 2 adjacent odd vertices (w and x)
We don't have such case in G

Connectivity

5,3,4,1 isasimple path in 6

« apath inagraph is a sequence of nodes vy, v,, ..., v, such that
(vi, v;) is an edge in the graph.
a path is simple if all nodes are distinct

Connectivity

(—2
4,1,2,4 isasimple cycleinG ‘ e

« apath inagraph is a sequence of nodes vy, v,, ..., v, such that
(vi, v;) is an edge in the graph.
a path is simple if all nodes are distinct

* nodes u and v are called connected if there is a path between
them. A graph is connected if there is a path between every pair
of nodes

« acycleisapathvy,v,, .., v, such that v;= v, . A cycle is simple if
first k-1 nodes are distinct

Connectivity

4,1,2,4 isasimple cycle with length 3 ‘ e

a path in a graph is a sequence of nodes vy, v,, ..., v, such that
(vi, v;) is an edge in the graph.
a path is simple if all nodes are distinct

nodes u and v are called connected if there is a path between
them. A graph is connected if there is a path between every pair
of nodes

a cycle is a path vy, v,, ..., v such that v, = v, . A cycle is simple if
first k-1 nodes are distinct

length of a path is the number of edges in the path

Connectivity

« Given G = (V,E)and H < G, if there is no proper subgraph U of G (U c
G) such that H € U, H is called a maximal subgraph of G.

 a connected component is a maximal subgraph where there is a path
between any two nodes of it

* agraph can be made up of seperate connected components

<

Connectivity

* Consider a vertex v of a given graph G = (V,E), if removing v and all
its inncident edges from the graph produces a subgraph with more
connected components, v is called cut vertex (or cut vertices)

* Similarly, if removing an edge from a graph creates a subgraph with
more connected components, it's called cut edge

a a
b f
e 9 b C
e
c . o, d
G H f

cut vertices : {b, c, f} .

cut edges : {(b,), (¢, b)} cut vertices : {c}

cut edges : {}

Connectivity

* A subset W of the vertex set V of ¢ = (V,E) is called a vertex cut
or separating seft, if 6 - W is disconnected

« Similarly, a subset F of the edge set E of G = (V,E) is called a edge

cut, if 6 - F is disconnected

a $d

6

vertex cut: {b, c} or {f, e}
edge cut: {(b, f), (c, e)} or {(a, ¢), (a, b)}

ho cut vertex and no cut edge

vertex cut: {c}
edge cut: {(d, ¢), (c, e)}

ho cut edge

Connectivity

« A subset W of the vertex set Vof G = (V,E) is called a vertex cut

or seharatinng ot if 6 - WA/ ie dieronnerted

« Simi| k(G): minimum number of vertices in a vertex cut |edge
cut,| A(G): minimum number of edges in a edge cut
a
3 g b c
e
q - - o d d
k(G) = 2 _

vertex cut: {b, C}Gor' {f, e} AEG% =2 H f KE% ; ;

edge cut: {(b, f), (c, e)} or{(a c) (a b} vertex rut: {r)
T T d .
ho cut vertex and no cu K(G) < A(G)Smmvevdeg(v)

Isomorphism

« TIsomorphic graphs must have same number of edges

« The degrees of the vertices in isomorphic graphs must be same

« They must have same amount of simple circuits of length k
b 1 2
G ° 5y 4

* G and H both have 6 vertices and 8 edges

a

* G has 2 vertices of degree two and 4 vertices of degree three
H has 2 vertices of degree two and 4 vertices of degree three

* G has two simple circuits of length three; however, H has no simple
circuit of length three

Connectivity

a b
« How many paths of length two from a to ¢ ?
a,b,c or a,d,c
« For agiven graph G = (V,E), what are the number of
g different paths of length k from one vertex to
c another one ?

« Givenagraph G = (V,E) together with the adjacency matrix A, the number of
different paths of length m from v;to v; will be the (i, j)-th entry of A™

Basis Step (k = 1) For A = (a;;), a;; will be the number of different path of length 1 from
v;to vj (frue)

Inductive Step Assume it's true for k, i.e. the number of different paths of length k
from v;to v; will be the (i, j)-th entry of A*. vy,

For k +1, Akt = Ak A

Y T

bi1 - bip\ /11 Qun Vi Vj
Ak+1 — : :
bpi 0 bpp/ \@n1 0 Qnp

Vu

Cij = bil' alj + biZ' Cl2j+. . +bin- Clnj
cij - the number of different paths of
length (k+1) from v; to v;

Euler Paths and Circuits

= <)\ \\Z/
N

ﬁ

 Euler circuit is a simple circuit that contains every edge of G.
« Euler path is a simple path that contains every edge of 6

 Does this graph have an Euler path or Euler circuit?

Euler Paths and Circuits
i T

oWn

when you pass a vertex, you add two to the degree of it.
the degree of starting node and ending node just one or odd humber

the graph has a Euler path or Euler circuit if if it has no odd vertex
or exactly two odd vertices.

Euler Paths and Circuits
i T

oWn

when you pass a vertex, you add two to the degree of it.
the degree of starting node and ending node just one or odd humber

the graph has a Euler path or Euler circuit if if it has no odd vertex
or exactly two odd vertices.

Euler Paths and Circuits

- E

F-B-A-C-B-D-F-E-D-C-
; F-B-D-E-6-C-E-F-D-C-A-B-C

Hamilton Paths and Circuits

Hamilton circuit is a simple circuit that contains every vertex
of G exactly once except the starting vertex.

Hamilton path is a simple circuit that contains every vertex of
G exactly once

a b - Does G contain a Hamilton path or
- circuit ?
a-b-c-d
no Hamilton circuit
o
c d

G

There is no easy way to determine a given graph has a Hamilton
circuit or Hamilton path

a graph with a vertex of degree one cannot have a Hamilton circuit

SSSP

given a weighted graph 6=(V E) and a source vertex s in
V, find the shortest path from s to every other vertex
inV

SSSP

+ given a weighted graph 6=(V,E) and a source vertex s in
V, find the shortest path from s to every other vertex
inV

shortest-paths tree

SSSP

given a weighted graph 6=(V,E) and a source vertex s in
V, find the shortest path from s to every other vertex
inV

Three cases :

o the weight of each edge fixed as 1
--BFS--

o the weight of each edge non-negative
--Dijkstra—

o the weight of each can be negative
--Belmann/Ford--

Relaxation

* For each vertex vinV, initialize two parameters :

o parent pointer - indicates the predecessor of the
vertex in the shortest path from s to v

o distance - indicates the shortest-path estimate
from vertex to the source

Initialize (G, s)

for each vertex viV
v.dis = o
v.par = nil
sdis=0

Relaxation

« relaxing an edge (u,v) : testing whether the shortest
path to the vertex v can be improved by going through
the vertex u

Relax(u, v)
if v.dis > u.dis + w(u,v) <
v.dis = u.dis + w(u,v)
v.par = u Vv
12
3
u
8
v.dis > udis + w(u,v) ., v.dis = u.dis + w(u,v)
12>8 + 3 v.dis = 11

v.par = u

Relaxation

* Let d(s,v) be the weight of the shortest path from
source to the vertex v (after the termination of the
program)

For any edge (u,v) in E,
O(s,v) < O(s,u) + w(u,v)
 For all verticesvinV,

v.dis > 0(s,v)

« If there is no path from s to v, then

v.dis = 8(s,v) = o

Dijkstra's Algorithm

Dijkstra(G,s)

_—

for each u of V
u.key = o -
u.par = nil

s.key = 0 -

initialize an empty set S

create a minimum priority Q on V :I' O(IVI)

while Q 2 { }

u = ExtractMin(Q) —> O(VloglVl)
S=5Su{u}

for each v of Adj(u) .

if v.dis > u.dis +w(u,v)

v.dis = udis +w(uv) OC(ElloglVl)

v.par = u

Relax(uy) Update Q)

o(1)

Initialize(G,s)
o(IVI)

Dijkstra's Algorithm

Dijkstra(G,s)

for each u of V
u.key = o
u.par = nil
s.key =0
initialize an empty set S
create a minimum priority Q on V
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis>u.dis +w(u,v)
v.dis = u.dis + w(u,v)
v.par = u
update Q

Dijkstra's Algorithm

Dijkstra(G,s)

for each u of V
u.key = o
u.par = nil
s.key =0
initialize an empty set S
create a minimum priority Q on V
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis>u.dis +w(u,v)
v.dis = u.dis + w(u,v)
v.par = u
update Q HFGEDCBA
S={}

Dijkstra's Algorithm

Dijkstra(G,s)

for each u of V
u.key = o
u.par = nil
s.key =0
initialize an empty set S
create a minimum priority Q on V
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis>u.dis +w(u,v)
v.dis = u.dis + w(u,v)
v.par = u
update Q FGEDCBA
S ={H}

Dijkstra's Algorithm

Dijkstra(G,s)

for each u of V
u.key = o
u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis>u.dis +w(u,v)
v.dis = u.dis + w(u,v)
v.par = u
update Q FGEDCBA
S ={H}

Dijkstra's Algorithm

Dijkstra(G,s)

for each u of V
u.key = o
u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis>u.dis +w(u,v)
v.dis = u.dis + w(u,v)
v.par = u
update Q GEDCBA
S={HF}

Dijkstra's Algorithm

Dijkstra(G,s)

for each u of V
u.key = o
u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis>u.dis +w(u,v)
v.dis = u.dis + w(u,v)
v.par = u
update Q GEDCBA
S={HF}

Dijkstra's Algorithm

Dijkstra(G,s)

for each u of V
u.key = o
u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis>u.dis +w(u,v)
v.dis = u.dis + w(u,v)
v.par = u
update Q

Dijkstra's Algorithm

Dijkstra(G,s)

for each u of V
u.key = o
u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis>u.dis +w(u,v)
v.dis = u.dis + w(u,v)
v.par = u
update Q

Dijkstra's Algorithm

Dijkstra(G,s) o

for each u of V
u.key = o
u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V 12
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis > udis + w(u) o PI:
v.dis = u.dis + w(u,v) 6
v.par = u
update Q DCBA
S={H,F.GE}

Dijkstra's Algorithm

15

Dijkstra(G,s) .

for each u of V
u.key = o
u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V 12
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis > udis + w(u,v) o PI:
v.dis = u.dis + w(u,v) 6
v.par = u
update Q DCBA
S={HFGE}

Dijkstra's Algorithm

15

Dijkstra(G,s) .

for each u of V
u.key = o
u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V 12
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis > udis + w(u,v) o PI:
v.dis = u.dis + w(u,v) 6
v.par = u
update Q D BA
S={HFGEC}

Dijkstra's Algorithm

Dijkstra(6.s) - 15

for each u of V
u.key = o
u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V 12
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis > udis + w(u,v) o PI:
v.dis = u.dis + w(u,v) 6
v.par = u
update Q B A
S={HFGEC}

Dijkstra's Algorithm

Dijkstra(6.s) ’1 15

for each u of V
u.key = o
u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis>u.dis +w(u,v)
v.dis = u.dis + w(u,v)
v.par = u
update Q

Dijkstra's Algorithm

Dijkstra(6.s) ’1 15

for each u of V
u.key = o
u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis>u.dis +w(u,v)
v.dis = u.dis + w(u,v)
v.par = u
update Q A
S={H,F,GECD,B}

Dijkstra's Algorithm

Dijkstra(6.s) 20 15

for each u of V
u.key = o
u.par = nil
s.key = 0
initialize an empty set S
create a minimum priority Q on V 12
while Q 2 { }
u = ExtractMin(Q)
S=5Su{u}
for each v of Adj(u)
if v.dis > udis + w(u,v) o PI:
v.dis = u.dis + w(u,v) 6
v.par = u
update Q A
S={HF,GECD,B}

Dijkstra's Algorithm

Dijkstra(6.s) 20 15

for each u of V
u.key = oo 11
u.par = nil

s.key = 0

initialize an empty set S

create a minimum priority Q on V 12

while Q 2 { }

u = ExtractMin(Q) 6
S=5Su{u}

for each v of Adj(u)
if v.dis > u.dis + w(u,yv) Q« 6
6

v.dis = u.dis + w(u,v)
v.par = u
update Q
S = {HIFIGIEICIDIBIA}

Bipartite Graphs

* asimple graph G is called bipartite if its vertex set V can be
partitioned into two disjoint subsets V; and V, such that every
edge in the graph connects a vertex in V; and a vertex in 1/,

(there is no edge (a,b) such that a and b are elements of same
partition)

a

a C
b b
e e

G Ks
f
g d d ‘
MKZB M&B

Planar Graphs

* agraph G is called planar if it can be drawn in the plane without
any edge crossing.

this drawing is called planar representation of the graph

A 1

Euler Formula : Let G be connected simple graph with e
edges and v vertices. Let r be the number of region in a
planar representation of 6. Then,

K, r=e-v+?2

<3 ~

b C 6=12—-8+2

a
a e 714 E
e f\m C 112 3 6
K33 d b " 5 ’
d

* K33 cannot be drawn as planar graph 03 ‘

Graph Coloring

b

\> L _/Ardaha

i 2Us B S8
\ Rm 1 g
(N\
j Giusin !PL‘. hgbmn \./J ’/L‘Z_/\J .__‘l
R A O (Gumashane, '\ {
Tokat ’_/j_/ 7\ = 7 Kars
- L ‘ 'Bayburt“ <
- Gt N el
C = Erzurum b
- 4 S L tgdrr
Eskigehir 'k / ¥‘\ Yozgat /' % Tm_‘fv\._:,{/_) Agn =
2] \ . - 5, oy e ~
/_\ ~ Kiitahya _1\/\//\ { Kirsehir) \, / %\ 2 ((Tuncell i/q i \kJ_// (J o
s /\\\ —5 ‘/\"'\‘ \\h' " e AT ~

i~ (M Bingdl

L/_, ™ Myonlunhiur, g/_) ! ’,) ;Tl’\\,—/ '\, g\ Mus | Fo

a "\). . Manisa /)/ : /NC”M/! Kayseri /4% : Z{ Malatya C tlazig 3 —,; - < £)
5}?’5 izmir -"L\ Q\L‘,\fﬂ /\ \ <') Aksaray)" //W/ \‘-> T £ its -

\ Van
N \ 9 ') piyarbake | SN Y
— f. Konya x,—< Nigde) / ([7, T AL X

= Aydin _> Denizli I>'T/\ ‘W"‘“ / T 'J /—/;d,y.m.,, f’ s] r—_\\“‘"‘"‘L P 7/\/1,

g ﬂ" 2 e e A .;/ Bardur .\\A_/-\ e (K‘hrlmantnm\,—\ _/ ._,_/" ; — : Simak (- Hakkari
» b M []
DR "UC’) M / / N j Knramn 1) /Q 5/0"‘:;;?/ (\H Sanhurfa \ o b

i i o~ E_ Mudla l\j‘ b/ Antalya Gauamep %

B M i
(/ \ ersin

Hatay

Graph Coloring

* a coloring of a simple graph is the assigntment of a color to each
vertex so that no two adjacent vertices are assigned the same color

S50
SRS

Graph Coloring

* a coloring of a simple graph is the assigntment of a color to each
vertex so that no two adjacent vertices are assigned the same color

S5 0
SRS

Graph Coloring

* a coloring of a simple graph is the assigntment of a color to each
vertex so that no two adjacent vertices are assigned the same color

oo K

x(G) = 3 (chromatic humber) x(K,) = 4

ORS,

Cs x(Cs) =3 Ce x(Co) =2

