Fuzzy 1

Murat Osmanoglu

Kinds of Fuzzy Functions

fuzzy functions can be categorized as three groups:

- crisp function with fuzzy constraint
- crisp function that propagates the fuzziness of independent variable to dependent variable
- fuzzifying function

• let $A \subseteq X$ and $B \subseteq Y$ be fuzzy sets.

the function with fuzzy constraint $\mu_A(x) \le \mu_B(f(x))$ on A and B

$$f: X \rightarrow Y$$

crisp function crisp sets

let A⊆X and B⊆Y be fuzzy sets.

the function with fuzzy constraint $\mu_A(x) \le \mu_B(f(x))$ on A and B

• consider the function $f: Z^+ \rightarrow Z^+$ with the rule f(x) = 2x, and two fuzzy sets $A,B\subseteq Z^+$ defined as

$$A = \{(1,0.3), (2,1.0)\}$$
 and $B = \{(2,0.6), (4,1.0)\}$

• let $A \subseteq X$ and $B \subseteq Y$ be fuzzy sets.

the function with fuzzy constraint $\mu_A(x) \le \mu_B(f(x))$ on A and B

• consider the function $f: Z^+ \rightarrow Z^+$ with the rule f(x) = 2x, and two fuzzy sets $A,B\subseteq Z^+$ defined as

$$A = \{(1,0.3), (2,1.0)\}$$
 and $B = \{(2,0.6), (4,1.0)\}$

f can be considered as the crisp function with the fuzzy constraint $\mu_A(x) \le \mu_B(f(x))$

$$f: X \rightarrow Y$$

crisp function crisp sets

• let $A \subseteq X$ and $B \subseteq Y$ be fuzzy sets.

the function with fuzzy constraint $\mu_A(x) \le \mu_B(f(x))$ on A and B

let X be the set of salesmen and Y be the set of yearly income

$$f: X \rightarrow Y$$

crisp function crisp sets

• let $A \subseteq X$ and $B \subseteq Y$ be fuzzy sets.

the function with fuzzy constraint $\mu_A(x) \le \mu_B(f(x))$ on A and B

let X be the set of salesmen and Y be the set of yearly income

let $A \subseteq X$ and $B \subseteq Y$ be fuzzy sets defined as 'competent salesmen' and 'high income'

$$f: X \rightarrow Y$$

crisp function crisp sets

• let $A \subseteq X$ and $B \subseteq Y$ be fuzzy sets.

the function with fuzzy constraint $\mu_A(x) \le \mu_B(f(x))$ on A and B

let X be the set of salesmen and Y be the set of yearly income

let $A \subseteq X$ and $B \subseteq Y$ be fuzzy sets defined as 'competent salesmen' and 'high income'

the function $f: A \rightarrow B$ satisfies the fuzzy constraint $\mu_A(x) \le \mu_B(f(x))$

$$f: X \rightarrow Y$$

crisp function crisp sets

• let $A \subseteq X$ and $B \subseteq Y$ be fuzzy sets.

the function with fuzzy constraint $\mu_A(x) \le \mu_B(f(x))$ on A and B

let X be the set of salesmen and Y be the set of yearly income

let $A \subseteq X$ and $B \subseteq Y$ be fuzzy sets defined as 'competent salesmen' and 'high income'

the function $f: A \rightarrow B$ satisfies the fuzzy constraint $\mu_A(x) \le \mu_B(f(x))$

the constraint here 'a competent salesman gets higher income'

• let $A \subseteq X$ be fuzzy set

- let $A \subseteq X$ be fuzzy set
- fuzzy extension function propagates the fuzziness of independent variables to dependent variables

$$f: X \rightarrow Y$$

crisp function crisp sets

- let $A \subseteq X$ be fuzzy set
- fuzzy extension function propagates the fuzziness of independent variables to dependent variables

$$\mu_{f(A)}(y) = \max_{x \text{ s.t. } f(x)=y} \mu_{A}(x)$$

$$f: X \rightarrow Y$$

crisp function crisp sets

$$f: X \rightarrow Y$$

crisp function crisp sets

• Let $A = \{(-2, 0.2), (-1, 0.7), (0, 1.0), (1, 0.6), (2, 0.3)\}$ be a fuzzy set and $f : Z \rightarrow Z$ be fuzzy extension function.

B' \subseteq Z induced by f (f(x) = x^2) will be

B'
$$\subseteq$$
Z induced by f (f(x) = x^2) will be

$$B' = \{(0,), (1,), (4,)\}$$

$$f: X \rightarrow Y$$

crisp function crisp sets

B'
$$\subseteq$$
Z induced by f (f(x) = x^2) will be

$$B' = \{(0, 1.0), (1,), (4,)\}$$

$$f(0) = 0, \mu_A(0) = 1.0$$

$$f: X \rightarrow Y$$

crisp function crisp sets

B'
$$\subseteq$$
Z induced by f (f(x) = x²) will be

$$B' = \{(0, 1.0), (1,), (4,)\}$$

$$f(0) = 0, \mu_A(0) = 1.0$$

$$\begin{cases} \mu_A(1) = 0.6, & f(1) = 1 \\ \mu_A(-1) = 0.7, & f(-1) = 1 \end{cases}$$

$$f: X \rightarrow Y$$

crisp function crisp sets

• Let $A = \{(-2, 0.2), (-1, 0.7), (0, 1.0), (1, 0.6), (2, 0.3)\}$ be a fuzzy set and $f : Z \rightarrow Z$ be fuzzy extension function.

B' \subseteq Z induced by f (f(x) = x²) will be

$$B' = \{(0, 1.0), (1, 0.7), (4,)\}$$

$$f(0) = 0, \mu_A(0) = 1.0$$

max
$$= \begin{cases} \mu_A(1) = 0.6, f(1) = 1 \\ \mu_A(-1) = 0.7, f(-1) = 1 \end{cases}$$

$$f: X \rightarrow Y$$

crisp function crisp sets

• Let $A = \{(-2, 0.2), (-1, 0.7), (0, 1.0), (1, 0.6), (2, 0.3)\}$ be a fuzzy set and $f : Z \rightarrow Z$ be fuzzy extension function.

B' \subseteq Z induced by f (f(x) = x²) will be

$$B' = \{(0, 1.0), (1, 0.7), (4, 0.3)\}$$

$$f(0) = 0, \mu_A(0) = 1.0$$

max
$$= \begin{cases} \mu_A(1) = 0.6, f(1) = 1 \\ \mu_A(-1) = 0.7, f(-1) = 1 \end{cases}$$

Single Fuzzifying Function

Single Fuzzifying Function

Let A and B two crisp sets $A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5, 6, 7\}$

Single Fuzzifying Function

Let A and B two crisp sets $A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5, 6, 7\}$

$$f(1) = B_1$$
, $f(2) = B_2$, $f(3) = B_3$ where B_1 , B_2 , B_3 in $P(B)$

$$f: X \rightarrow P(Y)$$

crisp set fuzzy power set

Single Fuzzifying Function

Let A and B two crisp sets $A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5, 6, 7\}$

$$f(1) = B_1$$
, $f(2) = B_2$, $f(3) = B_3$ where B_1 , B_2 , B_3 in $P(B)$

 $B_1 = \{(1,0.5),(2,1.0),(3,0.5)\}$

 $B_2 = \{(3,0.5),(4,1.0),(5,0.5)\}$

 $B_3 = \{(5,0.5),(6,1.0),(7,0.5)\}$

$$f: X \rightarrow P(Y)$$

crisp set fuzzy power set

Single Fuzzifying Function

Let A and B two crisp sets $A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5, 6, 7\}$

$$f(1) = B_1$$
, $f(2) = B_2$, $f(3) = B_3$ where B_1 , B_2 , B_3 in $P(B)$

$$B_1 = \{(1,0.5),(2,1.0),(3,0.5)\}$$
 $f:1 \rightarrow \{1, 2, 3\}$ $\alpha = 0.5$ $B_2 = \{(3,0.5),(4,1.0),(5,0.5)\}$

$$B_3 = \{(5,0.5),(6,1.0),(7,0.5)\}$$

$$f: X \rightarrow P(Y)$$

crisp set fuzzy power set

Single Fuzzifying Function

 $B_3 = \{(5,0.5),(6,1.0),(7,0.5)\}$

Let A and B two crisp sets $A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5, 6, 7\}$

$$f(1) = B_1$$
, $f(2) = B_2$, $f(3) = B_3$ where B_1 , B_2 , B_3 in $P(B)$

$$B_1 = \{(1,0.5),(2,1.0),(3,0.5)\}$$
 $f:1 \rightarrow \{1,2,3\}$ $\alpha = 0.5$

$$B_2 = \{(3,0.5),(4,1.0),(5,0.5)\}$$

 $B_2 = \{(5,0.5),(4,1.0),(5,0.5)\}$
 $f:1 \rightarrow \{2\}$
 $a = 1.0$

Fuzzy bunch of functions

$$F = \{(f_1, \mu_F(f_1)), (f_2, \mu_F(f_2)), \dots, (f_n, \mu_F(f_n))\}$$

Fuzzy bunch of functions

fuzzy set of crisp functions:

$$F = \{(f_1, \mu_F(f_1)), (f_2, \mu_F(f_2)), \dots, (f_n, \mu_F(f_n))\}$$

• $X = \{-1, 0, 1\}$ $F = \{(f_1, 0.3), (f_2, 0.7), (f_3, 0.5)\}$

Fuzzy bunch of functions

$$F = \{(f_1, \mu_F(f_1)), (f_2, \mu_F(f_2)), \dots, (f_n, \mu_F(f_n))\}$$

•
$$X = \{-1, 0, 1\}$$
 $F = \{(f_1, 0.3), (f_2, 0.7), (f_3, 0.5)\}$
 $f_1(x) = 2x, f_2(x) = x^2, f_3(x) = x + 1$

Fuzzy bunch of functions

$$F = \{(f_1, \mu_F(f_1)), (f_2, \mu_F(f_2)), \dots, (f_n, \mu_F(f_n))\}$$

•
$$X = \{-1, 0, 1\}$$
 $F = \{(f_1, 0.3), (f_2, 0.7), (f_3, 0.5)\}$
 $f_1(x) = 2x, f_2(x) = x^2, f_3(x) = x + 1$

```
f_1=\{(-2,0.3),(0,0.3),(2,0.3)\}

f_2=\{(1,0.7),(0,0.7),(1,0.7)\}

f_3=\{(0,0.5),(1,0.5),(2,0.5)\}
```

Fuzzy bunch of functions

$$F = \{(f_1, \mu_F(f_1)), (f_2, \mu_F(f_2)), \dots, (f_n, \mu_F(f_n))\}$$

•
$$X = \{-1, 0, 1\}$$
 $F = \{(f_1, 0.3), (f_2, 0.7), (f_3, 0.5)\}$
 $f_1(x) = 2x, f_2(x) = x^2, f_3(x) = x + 1$

$$f_1=\{(-2,0.3),(0,0.3),(2,0.3)\}\$$
 $F(-1)=\{(-2,0.3),(1,0.7),(0,0.5)\}\$ $f_2=\{(1,0.7),(0,0.7),(1,0.7)\}\$ $F(0)=\{(0,0.3),(0,0.7),(1,0.5)\}\$ $f_3=\{(0,0.5),(1,0.5),(2,0.5)\}\$

Fuzzy bunch of functions

$$F = \{(f_1, \mu_F(f_1)), (f_2, \mu_F(f_2)), \dots, (f_n, \mu_F(f_n))\}$$

•
$$X = \{-1, 0, 1\}$$
 $F = \{(f_1, 0.3), (f_2, 0.7), (f_3, 0.5)\}$
 $f_1(x) = 2x, f_2(x) = x^2, f_3(x) = x + 1$

$$f_1=\{(-2,0.3),(0,0.3),(2,0.3)\}\$$
 $F(-1)=\{(-2,0.3),(1,0.7),(0,0.5)\}\$ $f_2=\{(1,0.7),(0,0.7),(1,0.7)\}\$ $F(0)=\{(0,0.7),(1,0.5)\}\$ $f_3=\{(0,0.5),(1,0.5),(2,0.5)\}\$