
Introduction to Algorithms

Murat Osmanoglu

• ‘a sequence of unambiguous instructions for solving a given
problem’ (Levitin) – obtaining a required output for any
legitimate input in a finite amount of time

Introduction

• ‘a sequence of unambiguous instructions for solving a given
problem’ (Levitin) – obtaining a required output for any
legitimate input in a finite amount of time

Introduction

computer

problem

algorithm

input output

• ‘a sequence of unambiguous instructions for solving a given
problem’ (Levitin) – obtaining a required output for any
legitimate input in a finite amount of time

Introduction

computer

problem

algorithm

input output

• each step should be expressed in a clear way

• ‘a sequence of unambiguous instructions for solving a given
problem’ (Levitin) – obtaining a required output for any
legitimate input in a finite amount of time

Introduction

computer

problem

algorithm

input output

• each step should be expressed in a clear way

• the nature of the input should be specified carefully

Understanding the Problem

Fundamentals of Algorithmic Problem Solving

Understanding the Problem

• design an algorithm to find the maximum number of a finite
sequence of integers

Fundamentals of Algorithmic Problem Solving

Understanding the Problem

• design an algorithm to find the maximum number of a finite
sequence of integers

– input : {34, 23, 2, 101, 5, 98, 43}, output : 101

Fundamentals of Algorithmic Problem Solving

Understanding the Problem

• design an algorithm to find the maximum number of a finite
sequence of integers

– input : {34, 23, 2, 101, 5, 98, 43}, output : 101

• an algorithmic problem is specified by describing the set of
instances (input) it must work on, and what desired properties the
output must have

Fundamentals of Algorithmic Problem Solving

Understanding the Problem

• design an algorithm to find the maximum number of a finite
sequence of integers

– input : {34, 23, 2, 101, 5, 98, 43}, output : 101

• an algorithmic problem is specified by describing the set of
instances (input) it must work on, and what desired properties the
output must have

• design an algorithm to determine how ‘similar’ two given DNA
sequences are

Fundamentals of Algorithmic Problem Solving

Understanding the Problem

• design an algorithm to find the maximum number of a finite
sequence of integers

– input : {34, 23, 2, 101, 5, 98, 43}, output : 101

• an algorithmic problem is specified by describing the set of
instances (input) it must work on, and what desired properties the
output must have

• design an algorithm to determine how ‘similar’ two given DNA
sequences are

– DNA sequence is a string of arbitrary length over the alphabet
{A, C, G, T},

Fundamentals of Algorithmic Problem Solving

Understanding the Problem

• design an algorithm to find the maximum number of a finite
sequence of integers

– input : {34, 23, 2, 101, 5, 98, 43}, output : 101

• an algorithmic problem is specified by describing the set of
instances (input) it must work on, and what desired properties the
output must have

• design an algorithm to determine how ‘similar’ two given DNA
sequences are

– DNA sequence is a string of arbitrary length over the alphabet
{A, C, G, T},

– the degree of the similarity may be measured by the length of
their longest common subsequence

Fundamentals of Algorithmic Problem Solving

Understanding the Problem

• design an algorithm to find the maximum number of a finite
sequence of integers

– input : {34, 23, 2, 101, 5, 98, 43}, output : 101

• an algorithmic problem is specified by describing the set of
instances (input) it must work on, and what desired properties the
output must have

• design an algorithm to determine how ‘similar’ two given DNA
sequences are

– DNA sequence is a string of arbitrary length over the alphabet
{A, C, G, T},

– the degree of the similarity may be measured by the length of
their longest common subsequence

input :
output :

Fundamentals of Algorithmic Problem Solving

Understanding the Problem

• design an algorithm to find the maximum number of a finite
sequence of integers

– input : {34, 23, 2, 101, 5, 98, 43}, output : 101

• an algorithmic problem is specified by describing the set of
instances (input) it must work on, and what desired properties the
output must have

• design an algorithm to determine how ‘similar’ two given DNA
sequences are

– DNA sequence is a string of arbitrary length over the alphabet
{A, C, G, T},

– the degree of the similarity may be measured by the length of
their longest common subsequence

input : ACCACTGGT, ACTATCGAG

output :

Fundamentals of Algorithmic Problem Solving

Understanding the Problem

• design an algorithm to find the maximum number of a finite
sequence of integers

– input : {34, 23, 2, 101, 5, 98, 43}, output : 101

• an algorithmic problem is specified by describing the set of
instances (input) it must work on, and what desired properties the
output must have

• design an algorithm to determine how ‘similar’ two given DNA
sequences are

– DNA sequence is a string of arbitrary length over the alphabet
{A, C, G, T},

– the degree of the similarity may be measured by the length of
their longest common subsequence

input : ACCACTGGT, ACTATCGAG

output :

Fundamentals of Algorithmic Problem Solving

Understanding the Problem

• design an algorithm to find the maximum number of a finite
sequence of integers

– input : {34, 23, 2, 101, 5, 98, 43}, output : 101

• an algorithmic problem is specified by describing the set of
instances (input) it must work on, and what desired properties the
output must have

• design an algorithm to determine how ‘similar’ two given DNA
sequences are

– DNA sequence is a string of arbitrary length over the alphabet
{A, C, G, T},

– the degree of the similarity may be measured by the length of
their longest common subsequence

input : ACCACTGGT, ACTATCGAG

output : 6

Fundamentals of Algorithmic Problem Solving

Choosing Exact or Approximate Problem Solving

Fundamentals of Algorithmic Problem Solving

Choosing Exact or Approximate Problem Solving

– looking for an exact solution for the given problem, or an
approximate solution

Fundamentals of Algorithmic Problem Solving

Choosing Exact or Approximate Problem Solving

– looking for an exact solution for the given problem, or an
approximate solution

– some problems cannot be solved exactly for most of their
instances (extracting square roots, solving nonlinear
equations)

Fundamentals of Algorithmic Problem Solving

Choosing Exact or Approximate Problem Solving

– looking for an exact solution for the given problem, or an
approximate solution

– some problems cannot be solved exactly for most of their
instances (extracting square roots, solving nonlinear
equations)

– for some problems, the existing algorithms can be very
slow to generate an exact output

Fundamentals of Algorithmic Problem Solving

Choosing Exact or Approximate Problem Solving

– looking for an exact solution for the given problem, or an
approximate solution

– some problems cannot be solved exactly for most of their
instances (extracting square roots, solving nonlinear
equations)

– for some problems, the existing algorithms can be very
slow to generate an exact output

– approximation algorithm can be a sub-procedure of a
more sophisticated algorithm

Fundamentals of Algorithmic Problem Solving

Decide on Algorithm Design Techniques
(how do you design an algorithm to solve a given problem?)

Fundamentals of Algorithmic Problem Solving

Decide on Algorithm Design Techniques
(how do you design an algorithm to solve a given problem?)

– an algorithm design technique is a general approach in
solving problems algorithmically that is applicable to a
variety of problems

Fundamentals of Algorithmic Problem Solving

Decide on Algorithm Design Techniques
(how do you design an algorithm to solve a given problem?)

– an algorithm design technique is a general approach in
solving problems algorithmically that is applicable to a
variety of problems

– mastering these strategies provides guidance for
developing new algorithms for new problems

Fundamentals of Algorithmic Problem Solving

Decide on Algorithm Design Techniques
(how do you design an algorithm to solve a given problem?)

– an algorithm design technique is a general approach in
solving problems algorithmically that is applicable to a
variety of problems

– mastering these strategies provides guidance for
developing new algorithms for new problems

– enable us to classify and study algorithms according to a
corresponding design idea

Fundamentals of Algorithmic Problem Solving

Decide on Algorithm Design Techniques
(how do you design an algorithm to solve a given problem?)

– an algorithm design technique is a general approach in
solving problems algorithmically that is applicable to a
variety of problems

– mastering these strategies provides guidance for
developing new algorithms for new problems

– enable us to classify and study algorithms according to a
corresponding design idea

– Brute-Force, Decrease-and-Conquer, Divide-and-Conquer,
Transform-and-Conquer, Dynamic Programming, Greedy
Techniques

Fundamentals of Algorithmic Problem Solving

Choosing an appropriate data structure to implement the algorithm

– data structure, a systematic way of organizing and accessing
data

Fundamentals of Algorithmic Problem Solving

Choosing an appropriate data structure to implement the algorithm

– data structure, a systematic way of organizing and accessing
data

– structuring data in an effective way will improve the algorithms

Fundamentals of Algorithmic Problem Solving

Choosing an appropriate data structure to implement the algorithm

– data structure, a systematic way of organizing and accessing
data

– structuring data in an effective way will improve the algorithms

– Linear Data Structures

– one-to-one relationship between elements in the collection
– Arrays, Linked Lists, Stacks, Queues

Fundamentals of Algorithmic Problem Solving

Choosing an appropriate data structure to implement the algorithm

– data structure, a systematic way of organizing and accessing
data

– structuring data in an effective way will improve the algorithms

– Hierarchical Data Structures

– one-to-many relationship between elements in the collection
– Binary Trees, AVL Trees, Splay Trees, B Trees

Fundamentals of Algorithmic Problem Solving

Choosing an appropriate data structure to implement the algorithm

– data structure, a systematic way of organizing and accessing
data

– structuring data in an effective way will improve the algorithms

– Graph Data Structures

– many-to-many relationship between elements in the
collection

Fundamentals of Algorithmic Problem Solving

Choosing an appropiate methods to specify the Algorithm

Fundamentals of Algorithmic Problem Solving

Choosing an appropiate methods to specify the Algorithm
• two common ways of specifying an algorithm: in words, in pseudocode

Fundamentals of Algorithmic Problem Solving

Choosing an appropiate methods to specify the Algorithm
• two common ways of specifying an algorithm: in words, in pseudocode

• design an algorithm to find the greatest common divisor of two
nonnegative (not both of them zero) integers

Fundamentals of Algorithmic Problem Solving

Choosing an appropiate methods to specify the Algorithm
• two common ways of specifying an algorithm: in words, in pseudocode

• design an algorithm to find the greatest common divisor of two
nonnegative (not both of them zero) integers

• Euclid’s Algorithm for the integers m, n

Fundamentals of Algorithmic Problem Solving

Choosing an appropiate methods to specify the Algorithm
• two common ways of specifying an algorithm: in words, in pseudocode

• design an algorithm to find the greatest common divisor of two
nonnegative (not both of them zero) integers

• Euclid’s Algorithm for the integers m, n

Step 1 : if n = 0, return m; otherwise go to Step 2

Step 2 : divide m by n and set the variable r to the remainder

Step 3 : set m as n and n as r, go to Step 1

Fundamentals of Algorithmic Problem Solving

Choosing an appropiate methods to specify the Algorithm
• two common ways of specifying an algorithm: in words, in pseudocode

• design an algorithm to find the greatest common divisor of two
nonnegative (not both of them zero) integers

• Euclid’s Algorithm for the integers m, n

Step 1 : if n = 0, return m; otherwise go to Step 2

Step 2 : divide m by n and set the variable r to the remainder

Step 3 : set m as n and n as r, go to Step 1

• Euclid(m,n)

input : two non-negative, not-both-zero integers m and n
output: the greatest common divisor of m and n

while n ≠ 0
𝑟 ← 𝑚 (𝑚𝑜𝑑 𝑛)
m ← 𝑛
n ← 𝑟

return m

Fundamentals of Algorithmic Problem Solving

Choosing an appropiate methods to specify the Algorithm
• two common ways of specifying an algorithm: in words, in pseudocode

• design an algorithm to find the greatest common divisor of two
nonnegative (not both of them zero) integers

• Euclid’s Algorithm for the integers m, n

Step 1 : if n = 0, return m; otherwise go to Step 2

Step 2 : divide m by n and set the variable r to the remainder

Step 3 : set m as n and n as r, go to Step 1

• Euclid(m,n)

input : two non-negative, not-both-zero integers m and n
output: the greatest common divisor of m and n

while n ≠ 0
𝑟 ← 𝑚 (𝑚𝑜𝑑 𝑛)
m ← 𝑛
n ← 𝑟

return m

Fundamentals of Algorithmic Problem Solving

• high-level description of algorithms that
combines a natural language and familiar
structures from a programming language

• use ‘←’ for the assigments and ‘//’ for the
comments

Proving the correctness of the Algorithm

Fundamentals of Algorithmic Problem Solving

Proving the correctness of the Algorithm
• prove that the algorithm always returns the desired output for

every legitimate input in a finite amount of time in a formal way

Fundamentals of Algorithmic Problem Solving

Proving the correctness of the Algorithm
• prove that the algorithm always returns the desired output for

every legitimate input in a finite amount of time in a formal way

• use mathematical proof techniques such as proof by contradiction,
induction, etc.

Fundamentals of Algorithmic Problem Solving

Proving the correctness of the Algorithm
• prove that the algorithm always returns the desired output for

every legitimate input in a finite amount of time in a formal way

• use mathematical proof techniques such as proof by contradiction,
induction, etc.

• suppose there are n meetings requests for a meeting room. Each meeting i
has a starting time si and an ending time ti. We have a constraint : no two
meetings can be scheduled at same time. Design an algorithm that schedules
as many meetings as possible to the room

Fundamentals of Algorithmic Problem Solving

Proving the correctness of the Algorithm
• prove that the algorithm always returns the desired output for

every legitimate input in a finite amount of time in a formal way

• use mathematical proof techniques such as proof by contradiction,
induction, etc.

• suppose there are n meetings requests for a meeting room. Each meeting i
has a starting time si and an ending time ti. We have a constraint : no two
meetings can be scheduled at same time. Design an algorithm that schedules
as many meetings as possible to the room

Fundamentals of Algorithmic Problem Solving

I1

I2

I3

I4

I5

Proving the correctness of the Algorithm
• prove that the algorithm always returns the desired output for

every legitimate input in a finite amount of time in a formal way

• use mathematical proof techniques such as proof by contradiction,
induction, etc.

• suppose there are n meetings requests for a meeting room. Each meeting i
has a starting time si and an ending time ti. We have a constraint : no two
meetings can be scheduled at same time. Design an algorithm that schedules
as many meetings as possible to the room

Fundamentals of Algorithmic Problem Solving

I1

I2

I3

I4

I5
• choose the first interval as the

one having the earliest start time

• remove all intervals not
compatible with the chosen one

Proving the correctness of the Algorithm
• prove that the algorithm always returns the desired output for

every legitimate input in a finite amount of time in a formal way

• use mathematical proof techniques such as proof by contradiction,
induction, etc.

• suppose there are n meetings requests for a meeting room. Each meeting i
has a starting time si and an ending time ti. We have a constraint : no two
meetings can be scheduled at same time. Design an algorithm that schedules
as many meetings as possible to the room

Fundamentals of Algorithmic Problem Solving

I1

I2

I3

I4

I5
• choose the first interval as the

one having the earliest start time

• remove all intervals not
compatible with the chosen one

Proving the correctness of the Algorithm
• prove that the algorithm always returns the desired output for

every legitimate input in a finite amount of time in a formal way

• use mathematical proof techniques such as proof by contradiction,
induction, etc.

• suppose there are n meetings requests for a meeting room. Each meeting i
has a starting time si and an ending time ti. We have a constraint : no two
meetings can be scheduled at same time. Design an algorithm that schedules
as many meetings as possible to the room

• one instance of inputs for which the algorithm works would not be enough to

show the algorithm is correct

Fundamentals of Algorithmic Problem Solving

I1

I2

I3

I4

I5
• choose the first interval as the

one having the earliest start time

• remove all intervals not
compatible with the chosen one

Proving the correctness of the Algorithm
• prove that the algorithm always returns the desired output for

every legitimate input in a finite amount of time in a formal way

• use mathematical proof techniques such as proof by contradiction,
induction, etc.

• suppose there are n meetings requests for a meeting room. Each meeting i
has a starting time si and an ending time ti. We have a constraint : no two
meetings can be scheduled at same time. Design an algorithm that schedules
as many meetings as possible to the room

Fundamentals of Algorithmic Problem Solving

• choose the first interval as the
one having the earliest start time

• remove all intervals not
compatible with the chosen one

Proving the correctness of the Algorithm
• prove that the algorithm always returns the desired output for

every legitimate input in a finite amount of time in a formal way

• use mathematical proof techniques such as proof by contradiction,
induction, etc.

• suppose there are n meetings requests for a meeting room. Each meeting i
has a starting time si and an ending time ti. We have a constraint : no two
meetings can be scheduled at same time. Design an algorithm that schedules
as many meetings as possible to the room

• one instance of inputs for which the algorithm fails would be enough to show the
algorithm is incorrect

Fundamentals of Algorithmic Problem Solving

• choose the first interval as the
one having the earliest start time

• remove all intervals not
compatible with the chosen one

Proving the correctness of the Algorithm
• prove that the algorithm always returns the desired output for

every legitimate input in a finite amount of time in a formal way

• use mathematical proof techniques such as proof by contradiction,
induction, etc.

• suppose there are n meetings requests for a meeting room. Each meeting i
has a starting time si and an ending time ti. We have a constraint : no two
meetings can be scheduled at same time. Design an algorithm that schedules
as many meetings as possible to the room

• one instance of inputs for which the algorithm fails would be enough to show the
algorithm is incorrect
(however, failure to find such instance does not mean ‘it is obvious’ that
the algorithm is correct)

Fundamentals of Algorithmic Problem Solving

• choose the first interval as the
one having the earliest start time

• remove all intervals not
compatible with the chosen one

Evaluating the efficiency of the Algorithm

Fundamentals of Algorithmic Problem Solving

Evaluating the efficiency of the Algorithm

– investigate algorithm’s efficiency with respect to two
resources: running time and memory space
(time complexity and space complexity)

Fundamentals of Algorithmic Problem Solving

Evaluating the efficiency of the Algorithm

– investigate algorithm’s efficiency with respect to two
resources: running time and memory space
(time complexity and space complexity)

- how long does the algorithm take to generate a desired
output as a function of input size ?

Fundamentals of Algorithmic Problem Solving

Evaluating the efficiency of the Algorithm

– investigate algorithm’s efficiency with respect to two
resources: running time and memory space
(time complexity and space complexity)

- how long does the algorithm take to generate a desired
output as a function of input size ?

- how much working memory (typically RAM) required for
the algorithm to terminate as a function of input size ?

Fundamentals of Algorithmic Problem Solving

