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• ‘a sequence of unambiguous instructions for solving a given
problem’ (Levitin) – obtaining a required output for any
legitimate input in a finite amount of time
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• each step should be expressed in a clear way

• the nature of the input should be specified carefully
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Understanding the Problem

• design an algorithm to find the maximum number of a finite
sequence of integers

– input : {34, 23, 2, 101, 5, 98, 43}, output : 101

• an algorithmic problem is specified by describing the set of 
instances (input) it must work on, and what desired properties the
output must have

• design an algorithm to determine how ‘similar’ two given DNA 
sequences are

– DNA sequence is a string of arbitrary length over the alphabet
{A, C, G, T}, 

– the degree of the similarity may be measured by the length of 
their longest common subsequence

input : ACCACTGGT, ACTATCGAG

output :  6
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Choosing Exact or Approximate Problem Solving

– looking for an exact solution for the given problem, or an 
approximate solution

– some problems cannot be solved exactly for most of their
instances (extracting square roots, solving nonlinear
equations)

– for some problems, the existing algorithms can be very
slow to generate an exact output

– approximation algorithm can be a sub-procedure of a 
more sophisticated algorithm
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Decide on Algorithm Design Techniques
(how do you design an algorithm to solve a given problem?)

– an algorithm design technique is a general approach in 
solving problems algorithmically that is applicable to a 
variety of problems

– mastering these strategies provides guidance for
developing new algorithms for new problems

– enable us to classify and study algorithms according to a 
corresponding design idea 

– Brute-Force, Decrease-and-Conquer, Divide-and-Conquer, 
Transform-and-Conquer, Dynamic Programming, Greedy
Techniques
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– data structure, a systematic way of organizing and accessing
data

– structuring data in an effective way will improve the algorithms

– Linear Data Structures

– one-to-one relationship between elements in the collection
– Arrays, Linked Lists, Stacks, Queues
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Choosing an appropriate data structure to implement the algorithm

– data structure, a systematic way of organizing and accessing
data

– structuring data in an effective way will improve the algorithms

– Hierarchical Data Structures

– one-to-many relationship between elements in the collection
– Binary Trees, AVL Trees, Splay Trees, B Trees
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Choosing an appropriate data structure to implement the algorithm

– data structure, a systematic way of organizing and accessing
data

– structuring data in an effective way will improve the algorithms

– Graph Data Structures

– many-to-many relationship between elements in the
collection
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• high-level description of algorithms that
combines a natural language and familiar
structures from a programming language

• use ‘←’ for the assigments and ‘//’ for the
comments
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Proving the correctness of the Algorithm
• prove that the algorithm always returns the desired output for

every legitimate input in a finite amount of time in a formal way

• use mathematical proof techniques such as proof by contradiction, 
induction, etc.

• suppose there are n meetings requests for a meeting room. Each meeting i
has a starting time si and an ending time ti. We have a constraint : no two
meetings can be scheduled at same time. Design an algorithm that schedules
as many meetings as possible to the room

• one instance of inputs for which the algorithm works would not be enough to

show the algorithm is correct
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Proving the correctness of the Algorithm
• prove that the algorithm always returns the desired output for

every legitimate input in a finite amount of time in a formal way

• use mathematical proof techniques such as proof by contradiction, 
induction, etc.

• suppose there are n meetings requests for a meeting room. Each meeting i
has a starting time si and an ending time ti. We have a constraint : no two
meetings can be scheduled at same time. Design an algorithm that schedules
as many meetings as possible to the room

• one instance of inputs for which the algorithm fails would be enough to show the
algorithm is incorrect
(however, failure to find such instance does not mean ‘it is obvious’ that
the algorithm is correct)
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Evaluating the efficiency of the Algorithm

– investigate algorithm’s efficiency with respect to two
resources: running time and memory space
(time complexity and space complexity)

- how long does the algorithm take to generate a desired
output as a function of input size ?

- how much working memory (typically RAM) required for
the algorithm to terminate as a function of input size ?
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