
Analysis of Algorithm
Efficiency

Murat Osmanoglu

• we evaluate the efficiency of an algorithm independent
of the software and the hardware

Algorithm Efficiency

• we evaluate the efficiency of an algorithm independent
of the software and the hardware

• two important tools that enable us to evalute the
efficiency of the algorithms without implementing
them :

Algorithm Efficiency

• we evaluate the efficiency of an algorithm independent
of the software and the hardware

• two important tools that enable us to evalute the
efficiency of the algorithms without implementing
them :

– the RAM model of computation

– the asymptotic analysis

Algorithm Efficiency

• specifies what operations an algorithm is allowed to perform, cost of
each operation

• Random Access Machine(RAM), Vector Machine, Turing Machine, …

Model of Computation

• specifies what operations an algorithm is allowed to perform, cost of
each operation

• Random Access Machine(RAM), Vector Machine, Turing Machine, …

• when designing an algorithm, we consider RAM Model that closely
resembles the modern day computers

Model of Computation

• specifies what operations an algorithm is allowed to perform, cost of
each operation

• Random Access Machine(RAM), Vector Machine, Turing Machine, …

• when designing an algorithm, we consider RAM Model that closely
resembles the modern day computers

– the memory is composed of words where each word is w bits integer
or floating point (we assume that 𝑤 ≥ log𝑛 where n is input size)

Model of Computation

• specifies what operations an algorithm is allowed to perform, cost of
each operation

• Random Access Machine(RAM), Vector Machine, Turing Machine, …

• when designing an algorithm, we consider RAM Model that closely
resembles the modern day computers

– the memory is composed of words where each word is w bits integer
or floating point (we assume that 𝑤 ≥ log𝑛 where n is input size)

– instructions are executed one after another with no concurrent
operations

Model of Computation

• specifies what operations an algorithm is allowed to perform, cost of
each operation

• Random Access Machine(RAM), Vector Machine, Turing Machine, …

• when designing an algorithm, we consider RAM Model that closely
resembles the modern day computers

– the memory is composed of words where each word is w bits integer
or floating point (we assume that 𝑤 ≥ log𝑛 where n is input size)

– instructions are executed one after another with no concurrent
operations

– arithmetic operations(such as add, subtract, multiply, divide,
remainder, floor, ceiling), data movement (load, store, copy), and
control (conditional and unconditional branch, subroutine call and
return)

Model of Computation

• specifies what operations an algorithm is allowed to perform, cost of
each operation

• Random Access Machine(RAM), Vector Machine, Turing Machine, …

• when designing an algorithm, we consider RAM Model that closely
resembles the modern day computers

– the memory is composed of words where each word is w bits integer
or floating point (we assume that 𝑤 ≥ log𝑛 where n is input size)

– instructions are executed one after another with no concurrent
operations

– arithmetic operations(such as add, subtract, multiply, divide,
remainder, floor, ceiling), data movement (load, store, copy), and
control (conditional and unconditional branch, subroutine call and
return)

– each such instruction (and each memory access) takes a constant
amount of time

Model of Computation

Measuring an Input’s Size

Analysis Framework

Measuring an Input’s Size

• almost all algorithms run longer on larger inputs, i.e. it takes longer to
sort larger arrays, multiply the matrices with the larger dimensions, …

Analysis Framework

Measuring an Input’s Size

• almost all algorithms run longer on larger inputs, i.e. it takes longer to
sort larger arrays, multiply the matrices with the larger dimensions, …

• analyze an algorithm’s efficiency as a function of some parameter n
indicating the algorithm’s input size

Analysis Framework

Measuring an Input’s Size

• almost all algorithms run longer on larger inputs, i.e. it takes longer to
sort larger arrays, multiply the matrices with the larger dimensions, …

• analyze an algorithm’s efficiency as a function of some parameter n
indicating the algorithm’s input size

– when dealing with the problems of sorting, searching, finding the
maximum element of a list, it will be the size of the list

– when dealing with multiplying two matrices, it will be the dimensions
of the matrices

Analysis Framework

Measuring an Input’s Size

• almost all algorithms run longer on larger inputs, i.e. it takes longer to
sort larger arrays, multiply the matrices with the larger dimensions, …

• analyze an algorithm’s efficiency as a function of some parameter n
indicating the algorithm’s input size

– when dealing with the problems of sorting, searching, finding the
maximum element of a list, it will be the size of the list

– when dealing with multiplying two matrices, it will be the dimensions
of the matrices

• can be influenced by operations the algorithm will perform

Analysis Framework

Measuring an Input’s Size

• almost all algorithms run longer on larger inputs, i.e. it takes longer to
sort larger arrays, multiply the matrices with the larger dimensions, …

• analyze an algorithm’s efficiency as a function of some parameter n
indicating the algorithm’s input size

– when dealing with the problems of sorting, searching, finding the
maximum element of a list, it will be the size of the list

– when dealing with multiplying two matrices, it will be the dimensions
of the matrices

• can be influenced by operations the algorithm will perform

– for a spell-checking algorithm, if the algorithm works the individual
characters, it will be the number of characters, if it works on words,
it will be the number of words

Analysis Framework

Measuring an Input’s Size

• almost all algorithms run longer on larger inputs, i.e. it takes longer to
sort larger arrays, multiply the matrices with the larger dimensions, …

• analyze an algorithm’s efficiency as a function of some parameter n
indicating the algorithm’s input size

– when dealing with the problems of sorting, searching, finding the
maximum element of a list, it will be the size of the list

– when dealing with multiplying two matrices, it will be the dimensions
of the matrices

• can be influenced by operations the algorithm will perform

– for a spell-checking algorithm, if the algorithm works the individual
characters, it will be the number of characters, if it works on words,
it will be the number of words

• for some algorithms it might be the magnitute of a single input

– for an algorithm checking primality of a given positive integer n, it
will be log 𝑛 + 1

Analysis Framework

Units for Measuring Running Time

• some standard metrics such as second, millisecond can be used to
measure the running time of an algorithm through the program
implementing it

Analysis Framework

Units for Measuring Running Time

• some standard metrics such as second, millisecond can be used to
measure the running time of an algorithm through the program
implementing it

– the speed of a specific computer, or the quality of the program
executing the algorithm, or the quality of the compiler may directly
affect the running time

Analysis Framework

Units for Measuring Running Time

• some standard metrics such as second, millisecond can be used to
measure the running time of an algorithm through the program
implementing it

– the speed of a specific computer, or the quality of the program
executing the algorithm, or the quality of the compiler may directly
affect the running time

– thus, the metric should be independent of these factors

Analysis Framework

Units for Measuring Running Time

• some standard metrics such as second, millisecond can be used to
measure the running time of an algorithm through the program
implementing it

– the speed of a specific computer, or the quality of the program
executing the algorithm, or the quality of the compiler may directly
affect the running time

– thus, the metric should be independent of these factors

• identify the basic operations of the algorithm, and count the number of
times the basic operations are executed on the input size

Analysis Framework

Units for Measuring Running Time

• some standard metrics such as second, millisecond can be used to
measure the running time of an algorithm through the program
implementing it

– the speed of a specific computer, or the quality of the program
executing the algorithm, or the quality of the compiler may directly
affect the running time

– thus, the metric should be independent of these factors

• identify the basic operations of the algorithm, and count the number of
times the basic operations are executed on the input size

• Let 𝑐𝑜𝑝 be the execution time of an algorithm’s basic operation and 𝐶(𝑛)
be the number of times this operation is executed,

Analysis Framework

Units for Measuring Running Time

• some standard metrics such as second, millisecond can be used to
measure the running time of an algorithm through the program
implementing it

– the speed of a specific computer, or the quality of the program
executing the algorithm, or the quality of the compiler may directly
affect the running time

– thus, the metric should be independent of these factors

• identify the basic operations of the algorithm, and count the number of
times the basic operations are executed on the input size

• Let 𝑐𝑜𝑝 be the execution time of an algorithm’s basic operation and 𝐶(𝑛)
be the number of times this operation is executed, the running time of
the algorithm can be estimated by the formula

𝑇 𝑛 ≈ 𝐶 𝑛 ∗ 𝑐𝑜𝑝

Analysis Framework

Units for Measuring Running Time

• Let 𝑐𝑜𝑝 be the execution time of an algorithm’s basic operation and 𝐶(𝑛) be
the number of times this operation is executed, the running time of the
algorithm can be estimated by the formula

𝑇 𝑛 ≈ 𝐶 𝑛 ∗ 𝑐𝑜𝑝

Analysis Framework

Units for Measuring Running Time

• Let 𝑐𝑜𝑝 be the execution time of an algorithm’s basic operation and 𝐶(𝑛) be
the number of times this operation is executed, the running time of the
algorithm can be estimated by the formula

𝑇 𝑛 ≈ 𝐶 𝑛 ∗ 𝑐𝑜𝑝

• How will the running time change if we double the input size ?

Analysis Framework

Units for Measuring Running Time

• Let 𝑐𝑜𝑝 be the execution time of an algorithm’s basic operation and 𝐶(𝑛) be
the number of times this operation is executed, the running time of the
algorithm can be estimated by the formula

𝑇 𝑛 ≈ 𝐶 𝑛 ∗ 𝑐𝑜𝑝

• How will the running time change if we double the input size ?

– Let’s observe how it changes depending on the input size

Analysis Framework

Units for Measuring Running Time

• Let 𝑐𝑜𝑝 be the execution time of an algorithm’s basic operation and 𝐶(𝑛) be
the number of times this operation is executed, the running time of the
algorithm can be estimated by the formula

𝑇 𝑛 ≈ 𝐶 𝑛 ∗ 𝑐𝑜𝑝

• How will the running time change if we double the input size ?

– Let’s observe how it changes depending on the input size

– Assume 𝐶 𝑛 =
1

2
𝑛2. Then

𝑇(2𝑛)

𝑇(𝑛)
≈

𝐶 2𝑛 ∗𝑐𝑜𝑝

𝐶 𝑛 ∗𝑐𝑜𝑝
≈

1

2
(2𝑛)2

1

2
𝑛2

≈ 4

Analysis Framework

Units for Measuring Running Time

• Let 𝑐𝑜𝑝 be the execution time of an algorithm’s basic operation and 𝐶(𝑛) be
the number of times this operation is executed, the running time of the
algorithm can be estimated by the formula

𝑇 𝑛 ≈ 𝐶 𝑛 ∗ 𝑐𝑜𝑝

• How will the running time change if we double the input size ?

– Let’s observe how it changes depending on the input size

– Assume 𝐶 𝑛 =
1

2
𝑛2. Then

𝑇(2𝑛)

𝑇(𝑛)
≈

𝐶 2𝑛 ∗𝑐𝑜𝑝

𝐶 𝑛 ∗𝑐𝑜𝑝
≈

1

2
(2𝑛)2

1

2
𝑛2

≈ 4

– cop and the multiplicative constant ½ can be removed from the formula

(we can answer such question without knowing them)

Analysis Framework

Units for Measuring Running Time

• Let 𝑐𝑜𝑝 be the execution time of an algorithm’s basic operation and 𝐶(𝑛) be
the number of times this operation is executed, the running time of the
algorithm can be estimated by the formula

𝑇 𝑛 ≈ 𝐶 𝑛 ∗ 𝑐𝑜𝑝

• How will the running time change if we double the input size ?

– Let’s observe how it changes depending on the input size

– Assume 𝐶 𝑛 =
1

2
𝑛2. Then

𝑇(2𝑛)

𝑇(𝑛)
≈

𝐶 2𝑛 ∗𝑐𝑜𝑝

𝐶 𝑛 ∗𝑐𝑜𝑝
≈

1

2
(2𝑛)2

1

2
𝑛2

≈ 4

– cop and the multiplicative constant ½ can be removed from the formula

(we can answer such question without knowing them)

– focus on rate of growth of the function 𝑇(𝑛)

Analysis Framework

Order of Growth (Rate of Growth)

• For small inputs, a difference in running times can be ignored
(it does not actually distinguish efficient algorithms from inefficient ones)

• For large inputs, a difference in running times becomes clear and remarkable

Analysis Framework

Order of Growth (Rate of Growth)

• For small inputs, a difference in running times can be ignored
(it does not actually distinguish efficient algorithms from inefficient ones)

• For large inputs, a difference in running times becomes clear and remarkable

• Growth rates of common functions measured in nanoseconds (assume each operation
takes one nanosecond)

Analysis Framework

Order of Growth (Rate of Growth)

• For small inputs, a difference in running times can be ignored
(it does not actually distinguish efficient algorithms from inefficient ones)

• For large inputs, a difference in running times becomes clear and remarkable

• Growth rates of common functions measured in nanoseconds (assume each operation
takes one nanosecond)

– for 𝑛 = 10, all such algorithms take roughly the same time

Analysis Framework

Order of Growth (Rate of Growth)

• For small inputs, a difference in running times can be ignored
(it does not actually distinguish efficient algorithms from inefficient ones)

• For large inputs, a difference in running times becomes clear and remarkable

• Growth rates of common functions measured in nanoseconds (assume each operation
takes one nanosecond)

– for 𝑛 = 10, all such algorithms take roughly the same time
– any algorithm with 𝑛! running time becomes useless for 𝑛 ≥ 20

Analysis Framework

Order of Growth (Rate of Growth)

• For small inputs, a difference in running times can be ignored
(it does not actually distinguish efficient algorithms from inefficient ones)

• For large inputs, a difference in running times becomes clear and remarkable

• Growth rates of common functions measured in nanoseconds (assume each operation
takes one nanosecond)

– for 𝑛 = 10, all such algorithms take roughly the same time
– any algorithm with 𝑛! running time becomes useless for 𝑛 ≥ 20
– any algorithm with 2𝑛 running time becomes impractical for 𝑛 > 40

Analysis Framework

Order of Growth (Rate of Growth)

• For small inputs, a difference in running times can be ignored
(it does not actually distinguish efficient algorithms from inefficient ones)

• For large inputs, a difference in running times becomes clear and remarkable

• Growth rates of common functions measured in nanoseconds (assume each operation
takes one nanosecond)

– for 𝑛 = 10, all such algorithms take roughly the same time
– any algorithm with 𝑛! running time becomes useless for 𝑛 ≥ 20
– any algorithm with 2𝑛 running time becomes impractical for 𝑛 > 40
– quadratic-time algorithms are practical up to 𝑛 = 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

Analysis Framework

Order of Growth (Rate of Growth)

• For small inputs, a difference in running times can be ignored
(it does not actually distinguish efficient algorithms from inefficient ones)

• For large inputs, a difference in running times becomes clear and remarkable

• Growth rates of common functions measured in nanoseconds (assume each operation
takes one nanosecond)

– for 𝑛 = 10, all such algorithms take roughly the same time
– any algorithm with 𝑛! running time becomes useless for 𝑛 ≥ 20
– any algorithm with 2𝑛 running time becomes impractical for 𝑛 > 40
– quadratic-time algorithms are practical up to 𝑛 = 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

• by analyzing the order of growth of the function 𝑇(𝑛) that counts the algorithm’s
basic operation (simply considering the leading term of the function), we can evaluate
whether a given algorithm is practical for a problem of a given size

Analysis Framework

Analysis Framework
Worst-Case, Best-Case, Average-Case Analysis

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 0

Worst-Case, Best-Case, Average-Case Analysis

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 0

1 op

n steps

Worst-Case, Best-Case, Average-Case Analysis

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 𝑙𝑜𝑐

Worst Case :

• consider the worst-case input of size n
for which the algorithm runs the longest
among all possible inputs of same size

1 op

n steps

Worst-Case, Best-Case, Average-Case Analysis

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 𝑙𝑜𝑐

Worst Case :

• consider the worst-case input of size n
for which the algorithm runs the longest
among all possible inputs of same size

(the element x matches the last one in the list,
or the list does not contain the element x)

• 𝑇 𝑛 = 𝑛 + 3

1 op

n steps

Worst-Case, Best-Case, Average-Case Analysis

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 𝑙𝑜𝑐

Worst Case :

• consider the worst-case input of size n
for which the algorithm runs the longest
among all possible inputs of same size

(the element x matches the last one in the list,
or the list does not contain the element x)

• 𝑇 𝑛 = 𝑛 + 3

Best Case :

• consider the best-case input of size n for
which the algorithm runs the fastest
among all possible inputs of same size

1 op

n steps

Worst-Case, Best-Case, Average-Case Analysis

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 𝑙𝑜𝑐

Worst Case :

• consider the worst-case input of size n
for which the algorithm runs the longest
among all possible inputs of same size

(the element x matches the last one in the list,
or the list does not contain the element x)

• 𝑇 𝑛 = 𝑛 + 3

Best Case :

• consider the best-case input of size n for
which the algorithm runs the fastest
among all possible inputs of same size

(the element x matches the first one in the list)

• 𝑇 𝑛 = 2

1 op

n steps

Worst-Case, Best-Case, Average-Case Analysis

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 𝑙𝑜𝑐

Worst Case :

• consider the worst-case input of size n
for which the algorithm runs the longest
among all possible inputs of same size

(the element x matches the last one in the list,
or the list does not contain the element x)

• 𝑇 𝑛 = 𝑛 + 3

Best Case :

• consider the best-case input of size n for
which the algorithm runs the fastest
among all possible inputs of same size

(the element x matches the first one in the list)

• 𝑇 𝑛 = 2

1 op

n steps

Worst-Case, Best-Case, Average-Case Analysis

Average Case :

• neither the worst-case nor the best-
case analysis gives us the necessary
information about how the algorithm
behaves on a random input

• it’s the expected value for the number
of operations

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 𝑙𝑜𝑐

1 op

n steps

Worst-Case, Best-Case, Average-Case Analysis

• if 𝑥 = 𝑎1, then the algorithm terminates
after 2 operations

if 𝑥 = 𝑎2, then the algorithm terminates
after 3 operations

⋮
if 𝑥 = 𝑎𝑖 , then the algorithm terminates
after 𝑖 + 1 operation

⋮
if 𝑥 = 𝑎𝑛, then the algorithm terminates
after 𝑛 + 1 operations

if𝑥 ∉ 𝐿, then the algorithm terminates
after 𝑛 + 1 operations

Average Case :

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 𝑙𝑜𝑐

1 op

n steps

Worst-Case, Best-Case, Average-Case Analysis

• if 𝑥 = 𝑎1, then the algorithm terminates
after 2 operations

if 𝑥 = 𝑎2, then the algorithm terminates
after 3 operations

⋮
if 𝑥 = 𝑎𝑖 , then the algorithm terminates
after 𝑖 + 1 operation

⋮
if 𝑥 = 𝑎𝑛, then the algorithm terminates
after 𝑛 + 1 operations

if𝑥 ∉ 𝐿, then the algorithm terminates
after 𝑛 + 1 operations

• let 𝑝 be the probability that 𝑥 ∈ 𝐿, and
𝑞 = 1 − 𝑝 be the probability that 𝑥 ∉ 𝐿

Average Case :

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 𝑙𝑜𝑐

1 op

n steps

Worst-Case, Best-Case, Average-Case Analysis

• if 𝑥 = 𝑎1, then the algorithm terminates
after 2 operations

if 𝑥 = 𝑎2, then the algorithm terminates
after 3 operations

⋮
if 𝑥 = 𝑎𝑖 , then the algorithm terminates
after 𝑖 + 1 operation

⋮
if 𝑥 = 𝑎𝑛, then the algorithm terminates
after 𝑛 + 1 operations

if𝑥 ∉ 𝐿, then the algorithm terminates
after 𝑛 + 1 operations

• let 𝑝 be the probability that 𝑥 ∈ 𝐿, and
𝑞 = 1 − 𝑝 be the probability that 𝑥 ∉ 𝐿

• for each element 𝑎𝑖, the probability that 𝑥 = 𝑎𝑖 is Τ𝑝 𝑛

Average Case :

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 𝑙𝑜𝑐

1 op

n steps

Worst-Case, Best-Case, Average-Case Analysis

• if 𝑥 = 𝑎1, then the algorithm terminates
after 2 operations

if 𝑥 = 𝑎2, then the algorithm terminates
after 3 operations

⋮
if 𝑥 = 𝑎𝑖 , then the algorithm terminates
after 𝑖 + 1 operation

⋮
if 𝑥 = 𝑎𝑛, then the algorithm terminates
after 𝑛 + 1 operations

if𝑥 ∉ 𝐿, then the algorithm terminates
after 𝑛 + 1 operations

• let 𝑝 be the probability that 𝑥 ∈ 𝐿, and
𝑞 = 1 − 𝑝 be the probability that 𝑥 ∉ 𝐿

• for each element 𝑎𝑖, the probability that 𝑥 = 𝑎𝑖 is Τ𝑝 𝑛

• the expected value for the number of operations

𝐸 𝑋 = σ𝑝 𝑠 . 𝑋 𝑠

Average Case :

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 𝑙𝑜𝑐

1 op

n steps

Worst-Case, Best-Case, Average-Case Analysis

• if 𝑥 = 𝑎1, then the algorithm terminates
after 2 operations

if 𝑥 = 𝑎2, then the algorithm terminates
after 3 operations

⋮
if 𝑥 = 𝑎𝑖 , then the algorithm terminates
after 𝑖 + 1 operation

⋮
if 𝑥 = 𝑎𝑛, then the algorithm terminates
after 𝑛 + 1 operations

if𝑥 ∉ 𝐿, then the algorithm terminates
after 𝑛 + 1 operations

• let 𝑝 be the probability that 𝑥 ∈ 𝐿, and
𝑞 = 1 − 𝑝 be the probability that 𝑥 ∉ 𝐿

• for each element 𝑎𝑖, the probability that 𝑥 = 𝑎𝑖 is Τ𝑝 𝑛

• the expected value for the number of operations

𝐸 𝑋 = σ𝑝 𝑠 . 𝑋 𝑠

= 2.
𝑝

𝑛
+ 3.

𝑝

𝑛
+ . . . + 𝑛 + 1 .

𝑝

𝑛
+ 𝑛 + 1 . 𝑞 = 𝑝

𝑛+3

2
+ 𝑞. 𝑛 + 1

Average Case :

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 𝑙𝑜𝑐

1 op

n steps

Worst-Case, Best-Case, Average-Case Analysis

• if 𝑥 = 𝑎1, then the algorithm terminates
after 2 operations

if 𝑥 = 𝑎2, then the algorithm terminates
after 3 operations

⋮
if 𝑥 = 𝑎𝑖 , then the algorithm terminates
after 𝑖 + 1 operation

⋮
if 𝑥 = 𝑎𝑛, then the algorithm terminates
after 𝑛 + 1 operations

if𝑥 ∉ 𝐿, then the algorithm terminates
after 𝑛 + 1 operations

• let 𝑝 be the probability that 𝑥 ∈ 𝐿, and
𝑞 = 1 − 𝑝 be the probability that 𝑥 ∉ 𝐿

• for each element 𝑎𝑖, the probability that 𝑥 = 𝑎𝑖 is Τ𝑝 𝑛

• the expected value for the number of operations

𝐸 𝑋 = σ𝑝 𝑠 . 𝑋 𝑠

= 2.
𝑝

𝑛
+ 3.

𝑝

𝑛
+ . . . + 𝑛 + 1 .

𝑝

𝑛
+ 𝑛 + 1 . 𝑞 = 𝑝

𝑛+3

2
+ 𝑞. 𝑛 + 1

• for 𝑝 = 1 and 𝑞 = 0

𝐸 𝑋 = (𝑛 + 3)/2

• for 𝑝 = 0 and 𝑞 = 1

𝐸 𝑋 = 𝑛 + 1

• for 𝑝 = 𝑞 = 1/2

𝐸 𝑋 = (3𝑛 + 5)/4

Average Case :

Analysis Framework

Linear-Search(list,x)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖
return 𝑖

return 𝑙𝑜𝑐

1 op

n steps

Worst-Case, Best-Case, Average-Case Analysis

• if 𝑥 = 𝑎1, then the algorithm terminates
after 2 operations

if 𝑥 = 𝑎2, then the algorithm terminates
after 3 operations

⋮
if 𝑥 = 𝑎𝑖 , then the algorithm terminates
after 𝑖 + 1 operation

⋮
if 𝑥 = 𝑎𝑛, then the algorithm terminates
after 𝑛 + 1 operations

if𝑥 ∉ 𝐿, then the algorithm terminates
after 𝑛 + 1 operations

• let 𝑝 be the probability that 𝑥 ∈ 𝐿, and
𝑞 = 1 − 𝑝 be the probability that 𝑥 ∉ 𝐿

• for each element 𝑎𝑖, the probability that 𝑥 = 𝑎𝑖 is Τ𝑝 𝑛

• the expected value for the number of operations

𝐸 𝑋 = σ𝑝 𝑠 . 𝑋 𝑠

= 2.
𝑝

𝑛
+ 3.

𝑝

𝑛
+ . . . + 𝑛 + 1 .

𝑝

𝑛
+ 𝑛 + 1 . 𝑞 = 𝑝

𝑛+3

2
+ 𝑞. 𝑛 + 1

• for 𝑝 = 1 and 𝑞 = 0

𝐸 𝑋 = (𝑛 + 3)/2

• for 𝑝 = 0 and 𝑞 = 1

𝐸 𝑋 = 𝑛 + 1

• for 𝑝 = 𝑞 = 1/2

𝐸 𝑋 = (3𝑛 + 5)/4

Average Case :

• average-case analysis is more difficult than
worst-case and best-case analysis

• applying the corresponding values to formula
is easy, but probabilistic assumption for each
particular case is hard to verify

• mostly deal with worst-case analysis

• for the algorithm’s efficiency, we focus on the order of
growth of the function that counts the algorithm’s basic
operations

Asymptotic Notations

• for the algorithm’s efficiency, we focus on the order of
growth of the function that counts the algorithm’s basic
operations

• to compare and rank such orders of growth, three common
tools will be employed:

– Ο (big-oh), asymptotic upper bound

– Ω (big-omega), asymptotic lower bound

– Θ (big-theta), asymptotic tight bound

Asymptotic Notations

• Ο(g(n)) is the class of all functions with a lower or same order of
growth as g(n)

Asymptotic Notations

• Ο(g(n)) is the class of all functions with a lower or same order of
growth as g(n)

24𝑛 + 21 ∈ Ο 𝑛2 , 3𝑛(𝑛 − 1) ∈ Ο 𝑛2 , 0.02𝑛3 + 0,04𝑛2 ∉ Ο 𝑛2 , 𝑛4 ∉ Ο 𝑛2

Asymptotic Notations

• Ο(g(n)) is the class of all functions with a lower or same order of
growth as g(n)

24𝑛 + 21 ∈ Ο 𝑛2 , 3𝑛(𝑛 − 1) ∈ Ο 𝑛2 , 0.02𝑛3 + 0,04𝑛2 ∉ Ο 𝑛2 , 𝑛4 ∉ Ο 𝑛2

• Ω(g(n)) is the class of all functions with a higher or same order of
growth as g(n)

Asymptotic Notations

• Ο(g(n)) is the class of all functions with a lower or same order of
growth as g(n)

24𝑛 + 21 ∈ Ο 𝑛2 , 3𝑛(𝑛 − 1) ∈ Ο 𝑛2 , 0.02𝑛3 + 0,04𝑛2 ∉ Ο 𝑛2 , 𝑛4 ∉ Ο 𝑛2

• Ω(g(n)) is the class of all functions with a higher or same order of
growth as g(n)

24𝑛3 ∈ Ω 𝑛2 , 3𝑛(𝑛 − 1) ∈ Ω 𝑛2 , 27𝑛 + 100 ∉ Ω 𝑛2

Asymptotic Notations

• Ο(g(n)) is the class of all functions with a lower or same order of
growth as g(n)

24𝑛 + 21 ∈ Ο 𝑛2 , 3𝑛(𝑛 − 1) ∈ Ο 𝑛2 , 0.02𝑛3 + 0,04𝑛2 ∉ Ο 𝑛2 , 𝑛4 ∉ Ο 𝑛2

• Ω(g(n)) is the class of all functions with a higher or same order of
growth as g(n)

24𝑛3 ∈ Ω 𝑛2 , 3𝑛(𝑛 − 1) ∈ Ω 𝑛2 , 27𝑛 + 100 ∉ Ω 𝑛2

• Θ(g(n)) is the class of all functions with the same order of growth as
g(n)

Asymptotic Notations

• Ο(g(n)) is the class of all functions with a lower or same order of
growth as g(n)

24𝑛 + 21 ∈ Ο 𝑛2 , 3𝑛(𝑛 − 1) ∈ Ο 𝑛2 , 0.02𝑛3 + 0,04𝑛2 ∉ Ο 𝑛2 , 𝑛4 ∉ Ο 𝑛2

• Ω(g(n)) is the class of all functions with a higher or same order of
growth as g(n)

24𝑛3 ∈ Ω 𝑛2 , 3𝑛(𝑛 − 1) ∈ Ω 𝑛2 , 27𝑛 + 100 ∉ Ω 𝑛2

• Θ(g(n)) is the class of all functions with the same order of growth as
g(n)

24𝑛2 + 17𝑛 ∈ Θ 𝑛2 ,𝑛2 + 17 log𝑛 ∈ Θ 𝑛2 , 27𝑛 + 100 ∉ Θ 𝑛2 , 𝑛3 ∉ Θ 𝑛2

Asymptotic Notations

Big-Oh Notation

Definition : Let 𝑓, 𝑔 ∶ ℤ+ → ℝ be two functions. If there are
constants 𝐶 and 𝑛0 such that 𝑓(𝑛) ≤ 𝐶. 𝑔(𝑛) for all 𝑛 ∈ ℤ where
𝑛 ≥ 𝑛0, we say that 𝑓 is big-oh of 𝑔,

𝑓 𝑛 = 𝑂(𝑔 𝑛)

Big-Omega Notation

Definition : Let 𝑓, 𝑔 ∶ ℤ+ → ℝ be two functions. If there are
constants 𝐶 and 𝑛0 such that 𝑓(𝑛) ≥ 𝐶. 𝑔(𝑛) for all 𝑛 ∈ ℤ where
𝑛 ≥ 𝑛0, we say that 𝑓 is big-omega of 𝑔,

𝑓 𝑛 = Ω(𝑔 𝑛)

Big-Theta Notation

Definition : Let 𝑓, 𝑔 ∶ ℤ+ → ℝ be two functions. If there are
constants 𝐶1, 𝐶2, and 𝑛0 such that 𝐶1. 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝐶2. 𝑔(𝑛) for
all 𝑛 ∈ ℤ where 𝑛 ≥ 𝑛0, we say that 𝑓 is big-theta of 𝑔,

𝑓 𝑛 = Θ(𝑔 𝑛)

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛 and 𝑔 𝑛 = 𝑛2.

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛 and 𝑔 𝑛 = 𝑛2.

– 𝑓 1 = 5, 𝑓 2 = 10, 𝑓 3 = 15, 𝑓 4 = 20, 𝑓 5 = 25, . . .
𝑔 1 = 1, 𝑔 2 = 4, 𝑔 3 = 9, 𝑔 4 = 16, 𝑔 5 = 25, . . .

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛 and 𝑔 𝑛 = 𝑛2.

– 𝑓 1 = 5, 𝑓 2 = 10, 𝑓 3 = 15, 𝑓 4 = 20, 𝑓 5 = 25, . . .
𝑔 1 = 1, 𝑔 2 = 4, 𝑔 3 = 9, 𝑔 4 = 16, 𝑔 5 = 25, . . .

– for 𝑛 ≥ 5, 𝑛2 ≥ 5𝑛 → 𝑓(𝑛) ≤ 𝑔(𝑛)

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛 and 𝑔 𝑛 = 𝑛2.

– 𝑓 1 = 5, 𝑓 2 = 10, 𝑓 3 = 15, 𝑓 4 = 20, 𝑓 5 = 25, . . .
𝑔 1 = 1, 𝑔 2 = 4, 𝑔 3 = 9, 𝑔 4 = 16, 𝑔 5 = 25, . . .

– for 𝑛 ≥ 5, 𝑛2 ≥ 5𝑛 → 𝑓(𝑛) ≤ 𝑔(𝑛)

– for 𝐶 = 1 and 𝑛0 = 5,

𝑓(𝑛) ≤ 𝐶. 𝑔(𝑛) for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑔 𝑛).

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛 and 𝑔 𝑛 = 𝑛2.

– 𝑓 1 = 5, 𝑓 2 = 10, 𝑓 3 = 15, 𝑓 4 = 20, 𝑓 5 = 25, . . .
𝑔 1 = 1, 𝑔 2 = 4, 𝑔 3 = 9, 𝑔 4 = 16, 𝑔 5 = 25, . . .

– for 𝑛 ≥ 5, 𝑛2 ≥ 5𝑛 → 𝑓(𝑛) ≤ 𝑔(𝑛)

– for 𝐶 = 1 and 𝑛0 = 5,

𝑓(𝑛) ≤ 𝐶. 𝑔(𝑛) for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑔 𝑛).

– C and 𝑛0 don’t have to be unique

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 and 𝑔 𝑛 = 𝑛2.

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 and 𝑔 𝑛 = 𝑛2.

𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 and 𝑔 𝑛 = 𝑛2.

𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 = 5𝑛2 + 3𝑛 + 1

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 and 𝑔 𝑛 = 𝑛2.

𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 = 5𝑛2 + 3𝑛 + 1

≤ 5𝑛2 + 3𝑛2 + 𝑛2

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 and 𝑔 𝑛 = 𝑛2.

𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 = 5𝑛2 + 3𝑛 + 1

≤ 5𝑛2 + 3𝑛2 + 𝑛2 = 9𝑛2

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 and 𝑔 𝑛 = 𝑛2.

𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 = 5𝑛2 + 3𝑛 + 1

≤ 5𝑛2 + 3𝑛2 + 𝑛2 = 9𝑛2 = 9 𝑔 𝑛

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 and 𝑔 𝑛 = 𝑛2.

𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 = 5𝑛2 + 3𝑛 + 1

≤ 5𝑛2 + 3𝑛2 + 𝑛2 = 9𝑛2 = 9 𝑔 𝑛

for 𝐶 = 9 and 𝑛0 = 1,

𝑓(𝑛) ≤ 𝐶. 𝑔(𝑛) for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑔 𝑛).

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 and 𝑔 𝑛 = 𝑛2.

𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 = 5𝑛2 + 3𝑛 + 1

≤ 5𝑛2 + 3𝑛2 + 𝑛2 = 9𝑛2 = 9 𝑔 𝑛

for 𝐶 = 9 and 𝑛0 = 1,

𝑓(𝑛) ≤ 𝐶. 𝑔(𝑛) for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑔 𝑛).

𝑔 𝑛 = 𝑛2 = 𝑛2

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 and 𝑔 𝑛 = 𝑛2.

𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 = 5𝑛2 + 3𝑛 + 1

≤ 5𝑛2 + 3𝑛2 + 𝑛2 = 9𝑛2 = 9 𝑔 𝑛

for 𝐶 = 9 and 𝑛0 = 1,

𝑓(𝑛) ≤ 𝐶. 𝑔(𝑛) for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑔 𝑛).

𝑔 𝑛 = 𝑛2 = 𝑛2 ≤ 5𝑛2

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 and 𝑔 𝑛 = 𝑛2.

𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 = 5𝑛2 + 3𝑛 + 1

≤ 5𝑛2 + 3𝑛2 + 𝑛2 = 9𝑛2 = 9 𝑔 𝑛

for 𝐶 = 9 and 𝑛0 = 1,

𝑓(𝑛) ≤ 𝐶. 𝑔(𝑛) for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑔 𝑛).

𝑔 𝑛 = 𝑛2 = 𝑛2 ≤ 5𝑛2 ≤ 5𝑛2 + 3𝑛 + 1 = 𝑓(𝑛)

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 and 𝑔 𝑛 = 𝑛2.

𝑓 𝑛 = 5𝑛2 + 3𝑛 + 1 = 5𝑛2 + 3𝑛 + 1

≤ 5𝑛2 + 3𝑛2 + 𝑛2 = 9𝑛2 = 9 𝑔 𝑛

for 𝐶 = 9 and 𝑛0 = 1,

𝑓(𝑛) ≤ 𝐶. 𝑔(𝑛) for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑔 𝑛).

𝑔 𝑛 = 𝑛2 = 𝑛2 ≤ 5𝑛2 ≤ 5𝑛2 + 3𝑛 + 1 = 𝑓(𝑛)

for 𝐶 = 1 and 𝑛0 = 1,

𝑔(𝑛) ≤ 𝐶. 𝑓(𝑛) for all 𝑛 ≥ 𝑛0. Thus, 𝑔 𝑛 = 𝑂(𝑓 𝑛).

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 7𝑛2 and 𝑔 𝑛 = 𝑛3.

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 7𝑛2 and 𝑔 𝑛 = 𝑛3.

𝑓 𝑛 = 7𝑛2 =7𝑛2

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 7𝑛2 and 𝑔 𝑛 = 𝑛3.

𝑓 𝑛 = 7𝑛2 =7𝑛2 ≤ 7𝑛3 = 7 𝑔 𝑛

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 7𝑛2 and 𝑔 𝑛 = 𝑛3.

𝑓 𝑛 = 7𝑛2 =7𝑛2 ≤ 7𝑛3 = 7 𝑔 𝑛

for 𝐶 = 7 and 𝑛0 = 1,

𝑓(𝑛) ≤ 𝐶. 𝑔(𝑛) for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑔 𝑛).

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 7𝑛2 and 𝑔 𝑛 = 𝑛3.

𝑓 𝑛 = 7𝑛2 =7𝑛2 ≤ 7𝑛3 = 7 𝑔 𝑛

for 𝐶 = 7 and 𝑛0 = 1,

𝑓(𝑛) ≤ 𝐶. 𝑔(𝑛) for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑔 𝑛).

𝑔 𝑛 = 𝑛3 = 𝑛3 ≤ 𝐶.7. 𝑛2= 𝐶. 𝑓(𝑛)

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 7𝑛2 and 𝑔 𝑛 = 𝑛3.

𝑓 𝑛 = 7𝑛2 =7𝑛2 ≤ 7𝑛3 = 7 𝑔 𝑛

for 𝐶 = 7 and 𝑛0 = 1,

𝑓(𝑛) ≤ 𝐶. 𝑔(𝑛) for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑔 𝑛).

𝑔 𝑛 = 𝑛3 = 𝑛3 ≤ 𝐶.7. 𝑛2= 𝐶. 𝑓(𝑛) → 𝑛 ≤ 𝐶. 7 for all 𝑛 ≥ 𝑛0

Big-Oh Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 7𝑛2 and 𝑔 𝑛 = 𝑛3.

𝑓 𝑛 = 7𝑛2 =7𝑛2 ≤ 7𝑛3 = 7 𝑔 𝑛

for 𝐶 = 7 and 𝑛0 = 1,

𝑓(𝑛) ≤ 𝐶. 𝑔(𝑛) for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑔 𝑛).

𝑔 𝑛 = 𝑛3 = 𝑛3 ≤ 𝐶.7. 𝑛2= 𝐶. 𝑓(𝑛) → 𝑛 ≤ 𝐶. 7 for all 𝑛 ≥ 𝑛0

there cannot be any 𝐶 and 𝑛0that satisfy this inequality.

Big-Oh Notation

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 𝑎𝑡𝑛
𝑡 + 𝑎𝑡−1𝑛

𝑡−1+. . . +𝑎1𝑛 + 𝑎0

Big-Oh Notation

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 𝑎𝑡𝑛
𝑡 + 𝑎𝑡−1𝑛

𝑡−1+. . . +𝑎1𝑛 + 𝑎0

𝑓 𝑛 = 𝑎𝑡𝑛
𝑡 + 𝑎𝑡−1𝑛

𝑡−1+. . . +𝑎1𝑛 + 𝑎0 ≤ 𝑎𝑡𝑛
𝑡 +. . . + 𝑎1𝑛 + 𝑎0

Big-Oh Notation

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 𝑎𝑡𝑛
𝑡 + 𝑎𝑡−1𝑛

𝑡−1+. . . +𝑎1𝑛 + 𝑎0

𝑓 𝑛 = 𝑎𝑡𝑛
𝑡 + 𝑎𝑡−1𝑛

𝑡−1+. . . +𝑎1𝑛 + 𝑎0 ≤ 𝑎𝑡𝑛
𝑡 +. . . + 𝑎1𝑛 + 𝑎0

= 𝑎𝑡 . 𝑛
𝑡+. . . + 𝑎1 . 𝑛 + 𝑎0

Big-Oh Notation

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 𝑎𝑡𝑛
𝑡 + 𝑎𝑡−1𝑛

𝑡−1+. . . +𝑎1𝑛 + 𝑎0

𝑓 𝑛 = 𝑎𝑡𝑛
𝑡 + 𝑎𝑡−1𝑛

𝑡−1+. . . +𝑎1𝑛 + 𝑎0 ≤ 𝑎𝑡𝑛
𝑡 +. . . + 𝑎1𝑛 + 𝑎0

= 𝑎𝑡 . 𝑛
𝑡+. . . + 𝑎1 . 𝑛 + 𝑎0

≤ 𝑎𝑡 . 𝑛
𝑡+. . . + 𝑎1 . 𝑛

𝑡+ 𝑎0 . 𝑛
𝑡

Big-Oh Notation

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 𝑎𝑡𝑛
𝑡 + 𝑎𝑡−1𝑛

𝑡−1+. . . +𝑎1𝑛 + 𝑎0

𝑓 𝑛 = 𝑎𝑡𝑛
𝑡 + 𝑎𝑡−1𝑛

𝑡−1+. . . +𝑎1𝑛 + 𝑎0 ≤ 𝑎𝑡𝑛
𝑡 +. . . + 𝑎1𝑛 + 𝑎0

= 𝑎𝑡 . 𝑛
𝑡+. . . + 𝑎1 . 𝑛 + 𝑎0

≤ 𝑎𝑡 . 𝑛
𝑡+. . . + 𝑎1 . 𝑛

𝑡+ 𝑎0 . 𝑛
𝑡

≤ 𝑎𝑡 +. . . + 𝑎1 + 𝑎0 . 𝑛𝑡= 𝐶. 𝑛𝑡

Big-Oh Notation

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 𝑎𝑡𝑛
𝑡 + 𝑎𝑡−1𝑛

𝑡−1+. . . +𝑎1𝑛 + 𝑎0

𝑓 𝑛 = 𝑎𝑡𝑛
𝑡 + 𝑎𝑡−1𝑛

𝑡−1+. . . +𝑎1𝑛 + 𝑎0 ≤ 𝑎𝑡𝑛
𝑡 +. . . + 𝑎1𝑛 + 𝑎0

= 𝑎𝑡 . 𝑛
𝑡+. . . + 𝑎1 . 𝑛 + 𝑎0

≤ 𝑎𝑡 . 𝑛
𝑡+. . . + 𝑎1 . 𝑛

𝑡+ 𝑎0 . 𝑛
𝑡

≤ 𝑎𝑡 +. . . + 𝑎1 + 𝑎0 . 𝑛𝑡= 𝐶. 𝑛𝑡

for 𝐶 = 𝑎𝑡 +. . . + 𝑎1 + 𝑎0 and 𝑛0 = 1,

𝑓(𝑛) ≤ 𝐶. 𝑛𝑡 for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑛𝑡)

Big-Oh Notation

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 1 + 2+ . . . +𝑛

𝑓 𝑛 = 1 + 2+ . . . + n = 1 + 2+ . . . +𝑛 ≤ 𝑛 + 𝑛+ . . . +𝑛 = 𝑛2

for 𝐶 = 1 and 𝑛0 = 1,

𝑓(𝑛) ≤ 𝐶. 𝑛2 for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑛2)

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑛 = 12 + 22+ . . . +𝑛2

𝑓 𝑛 = 12 + 22+ . . . +𝑛2 = 12 + 22+ . . . +𝑛2 ≤ 𝑛2 + 𝑛2+ . . . +𝑛2 = 𝑛3

for 𝐶 = 1 and 𝑛0 = 1,

𝑓(𝑛) ≤ 𝐶. 𝑛3 for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑛3)

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑥 = 1𝑡 + 2𝑡+ . . . +𝑛𝑡

𝑓 𝑛 = 1𝑡 + 2𝑡+ . . . +𝑛𝑡 = 1𝑡 + 2𝑡+ . . . +𝑛𝑡 ≤ 𝑛𝑡 + 𝑛𝑡+ . . . +𝑛𝑡 = 𝑛𝑡+1

for 𝐶 = 1 and 𝑛0 = 1,

𝑓(𝑛) ≤ 𝐶. 𝑛𝑡+1 for all 𝑛 ≥ 𝑛0. Thus, 𝑓 𝑛 = 𝑂(𝑛𝑡+1)

Big-Oh Notation

• Basic Efficieny Classes

Big-Oh Notation

1 : constant

log 𝑛 : logarithmic

𝑛 : linear

𝑛 log𝑛 : linearithmic (loglinear)

𝑛2 : quadratic

𝑛𝑡 : polynomial

2𝑛 : exponential

𝑛! : factorial

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

Big-Oh Notation

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

≤ 𝐶1 𝑔1 𝑛 + 𝐶2 𝑔2 𝑛

Big-Oh Notation

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

≤ 𝐶1 𝑔1 𝑛 + 𝐶2 𝑔2 𝑛

≤ 𝐶1 𝑔 𝑛 + 𝐶2 𝑔 𝑛 where 𝑔 𝑛 = 𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 }

Big-Oh Notation

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

≤ 𝐶1 𝑔1 𝑛 + 𝐶2 𝑔2 𝑛

≤ 𝐶1 𝑔 𝑛 + 𝐶2 𝑔 𝑛 where 𝑔 𝑛 = 𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 }

= (𝐶1+𝐶2) 𝑔 𝑛

Big-Oh Notation

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

≤ 𝐶1 𝑔1 𝑛 + 𝐶2 𝑔2 𝑛

≤ 𝐶1 𝑔 𝑛 + 𝐶2 𝑔 𝑛 where 𝑔 𝑛 = 𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 }

= (𝐶1+𝐶2) 𝑔 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 = 𝑂(𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 })

Big-Oh Notation

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

≤ 𝐶1 𝑔1 𝑛 + 𝐶2 𝑔2 𝑛

≤ 𝐶1 𝑔 𝑛 + 𝐶2 𝑔 𝑛 where 𝑔 𝑛 = 𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 }

= (𝐶1+𝐶2) 𝑔 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 = 𝑂(𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 })

𝑓1 𝑛 . 𝑓2 𝑛 = 𝑂(𝑔1 𝑛 .𝑔2 𝑛)

Big-Oh Notation

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

≤ 𝐶1 𝑔1 𝑛 + 𝐶2 𝑔2 𝑛

≤ 𝐶1 𝑔 𝑛 + 𝐶2 𝑔 𝑛 where 𝑔 𝑛 = 𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 }

= (𝐶1+𝐶2) 𝑔 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 = 𝑂(𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 })

𝑓1 𝑛 . 𝑓2 𝑛 = 𝑂(𝑔1 𝑛 .𝑔2 𝑛)

• 𝑓 𝑛 = 𝑛 + 1 log 𝑛2 + 1 + 3𝑛2

Big-Oh Notation

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

≤ 𝐶1 𝑔1 𝑛 + 𝐶2 𝑔2 𝑛

≤ 𝐶1 𝑔 𝑛 + 𝐶2 𝑔 𝑛 where 𝑔 𝑛 = 𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 }

= (𝐶1+𝐶2) 𝑔 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 = 𝑂(𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 })

𝑓1 𝑛 . 𝑓2 𝑛 = 𝑂(𝑔1 𝑛 .𝑔2 𝑛)

• 𝑓 𝑛 = 𝑛 + 1 log 𝑛2 + 1 + 3𝑛2

𝑂(𝑛) 𝑂(𝑛2)

Big-Oh Notation

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

≤ 𝐶1 𝑔1 𝑛 + 𝐶2 𝑔2 𝑛

≤ 𝐶1 𝑔 𝑛 + 𝐶2 𝑔 𝑛 where 𝑔 𝑛 = 𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 }

= (𝐶1+𝐶2) 𝑔 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 = 𝑂(𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 })

𝑓1 𝑛 . 𝑓2 𝑛 = 𝑂(𝑔1 𝑛 .𝑔2 𝑛)

• 𝑓 𝑛 = 𝑛 + 1 log 𝑛2 + 1 + 3𝑛2

𝑂(𝑛)

log 𝑛2 + 1 ≤ log 2𝑛2

𝑂(𝑛2)

Big-Oh Notation

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

≤ 𝐶1 𝑔1 𝑛 + 𝐶2 𝑔2 𝑛

≤ 𝐶1 𝑔 𝑛 + 𝐶2 𝑔 𝑛 where 𝑔 𝑛 = 𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 }

= (𝐶1+𝐶2) 𝑔 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 = 𝑂(𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 })

𝑓1 𝑛 . 𝑓2 𝑛 = 𝑂(𝑔1 𝑛 .𝑔2 𝑛)

• 𝑓 𝑛 = 𝑛 + 1 log 𝑛2 + 1 + 3𝑛2

𝑂(𝑛)

log 𝑛2 + 1 ≤ log 2𝑛2

= log 2 + log𝑛2
𝑂(𝑛2)

Big-Oh Notation

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

≤ 𝐶1 𝑔1 𝑛 + 𝐶2 𝑔2 𝑛

≤ 𝐶1 𝑔 𝑛 + 𝐶2 𝑔 𝑛 where 𝑔 𝑛 = 𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 }

= (𝐶1+𝐶2) 𝑔 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 = 𝑂(𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 })

𝑓1 𝑛 . 𝑓2 𝑛 = 𝑂(𝑔1 𝑛 .𝑔2 𝑛)

• 𝑓 𝑛 = 𝑛 + 1 log 𝑛2 + 1 + 3𝑛2

𝑂(𝑛)

log 𝑛2 + 1 ≤ log 2𝑛2

= log 2 + log𝑛2

= log 2 +2 log 𝑛
𝑂(𝑛2)

Big-Oh Notation

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

≤ 𝐶1 𝑔1 𝑛 + 𝐶2 𝑔2 𝑛

≤ 𝐶1 𝑔 𝑛 + 𝐶2 𝑔 𝑛 where 𝑔 𝑛 = 𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 }

= (𝐶1+𝐶2) 𝑔 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 = 𝑂(𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 })

𝑓1 𝑛 . 𝑓2 𝑛 = 𝑂(𝑔1 𝑛 .𝑔2 𝑛)

• 𝑓 𝑛 = 𝑛 + 1 log 𝑛2 + 1 + 3𝑛2

𝑂(𝑛)

log 𝑛2 + 1 ≤ log 2𝑛2

= log 2 + log𝑛2

= log 2 +2 log 𝑛
≤ 3 log𝑛

𝑂(log 𝑛) 𝑂(𝑛2)

Big-Oh Notation

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

≤ 𝐶1 𝑔1 𝑛 + 𝐶2 𝑔2 𝑛

≤ 𝐶1 𝑔 𝑛 + 𝐶2 𝑔 𝑛 where 𝑔 𝑛 = 𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 }

= (𝐶1+𝐶2) 𝑔 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 = 𝑂(𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 })

𝑓1 𝑛 . 𝑓2 𝑛 = 𝑂(𝑔1 𝑛 .𝑔2 𝑛)

• 𝑓 𝑛 = 𝑛 + 1 log 𝑛2 + 1 + 3𝑛2

𝑂(𝑛)

log 𝑛2 + 1 ≤ log 2𝑛2

= log 2 + log𝑛2

= log 2 +2 log 𝑛
≤ 3 log𝑛

𝑂(log 𝑛) 𝑂(𝑛2)

𝑓 𝑛 = 𝑂(𝑛2)

Big-Oh Notation

Max-Integer(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: max of {𝑎1, 𝑎2, . . . , 𝑎𝑛}

max ← 𝑎1
for i = 2 to n

if max < 𝑎𝑖
max ← 𝑎𝑖

return max

Worst-Case Analysis

Max-Integer(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: max of {𝑎1, 𝑎2, . . . , 𝑎𝑛}

max ← 𝑎1
for i = 2 to n

if max < 𝑎𝑖
max ← 𝑎𝑖

return max

Worst-Case Analysis

• T(𝑛) : the number of operations the algorithm performs

Max-Integer(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: max of {𝑎1, 𝑎2, . . . , 𝑎𝑛}

max ← 𝑎1
for i = 2 to n

if max < 𝑎𝑖
max ← 𝑎𝑖

return max

Worst-Case Analysis

• T(𝑛) : the number of operations the algorithm performs

• the algorithm performs 2 operations on each execution of the loop

2 op

Max-Integer(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: max of {𝑎1, 𝑎2, . . . , 𝑎𝑛}

max ← 𝑎1
for i = 2 to n

if max < 𝑎𝑖
max ← 𝑎𝑖

return max

Worst-Case Analysis

• T(𝑛) : the number of operations the algorithm performs

• the algorithm performs 2 operations on each execution of the loop

• loop’s variable increases from 2 to n (use sum formula)

2 op

Max-Integer(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: max of {𝑎1, 𝑎2, . . . , 𝑎𝑛}

max ← 𝑎1
for i = 2 to n

if max < 𝑎𝑖
max ← 𝑎𝑖

return max

Worst-Case Analysis

• T(𝑛) : the number of operations the algorithm performs

• the algorithm performs 2 operations on each execution of the loop

• loop’s variable increases from 2 to n (use sum formula)

𝐶 𝑛 =෍
𝑖=2

𝑛

2 + 1

2 op

1 op

Max-Integer(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: max of {𝑎1, 𝑎2, . . . , 𝑎𝑛}

max ← 𝑎1
for i = 2 to n

if max < 𝑎𝑖
max ← 𝑎𝑖

return max

Worst-Case Analysis

• T(𝑛) : the number of operations the algorithm performs

• the algorithm performs 2 operations on each execution of the loop

• loop’s variable increases from 2 to n (use sum formula)

𝐶 𝑛 =෍
𝑖=2

𝑛

2 + 1 =෍
𝑖=1

𝑛 −1

2 + 1

2 op

1 op

Max-Integer(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: max of {𝑎1, 𝑎2, . . . , 𝑎𝑛}

max ← 𝑎1
for i = 2 to n

if max < 𝑎𝑖
max ← 𝑎𝑖

return max

Worst-Case Analysis

• T(𝑛) : the number of operations the algorithm performs

• the algorithm performs 2 operations on each execution of the loop

• loop’s variable increases from 2 to n (use sum formula)

𝐶 𝑛 =෍
𝑖=2

𝑛

2 + 1 =෍
𝑖=1

𝑛 −1

2 + 1 = 2. 𝑛 − 1 + 1 ∈ 𝑂(𝑛)

2 op

1 op

UniqueElements(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: return ‘true’ if all the elements are
distinct; ‘false’ otherwise

for i = 1 to n – 1
for j = i+1 to n

if 𝑎𝑖 = 𝑎𝑗
return false

return true

Worst-Case Analysis

UniqueElements(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: return ‘true’ if all the elements are
distinct; ‘false’ otherwise

for i = 1 to n – 1
for j = i+1 to n

if 𝑎𝑖 = 𝑎𝑗
return false

return true

Worst-Case Analysis

• the algorithm performs 1 operation on each execution of the innermost loop

1 op

UniqueElements(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: return ‘true’ if all the elements are
distinct; ‘false’ otherwise

for i = 1 to n – 1
for j = i+1 to n

if 𝑎𝑖 = 𝑎𝑗
return false

return true

Worst-Case Analysis

• the algorithm performs 1 operation on each execution of the innermost loop

• loop’s variable increases from 1 to n – 1 for the outer loop, and from i + 1 to n
for the innermost loop

1 op

UniqueElements(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: return ‘true’ if all the elements are
distinct; ‘false’ otherwise

for i = 1 to n – 1
for j = i+1 to n

if 𝑎𝑖 = 𝑎𝑗
return false

return true

Worst-Case Analysis

• the algorithm performs 1 operation on each execution of the innermost loop

• loop’s variable increases from 1 to n – 1 for the outer loop, and from i + 1 to n
for the innermost loop

𝑇 𝑛 =෍
𝑖=1

𝑛−1

෍
𝑗=𝑖+1

𝑛

1

1 op

UniqueElements(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: return ‘true’ if all the elements are
distinct; ‘false’ otherwise

for i = 1 to n – 1
for j = i+1 to n

if 𝑎𝑖 = 𝑎𝑗
return false

return true

Worst-Case Analysis

• the algorithm performs 1 operation on each execution of the innermost loop

• loop’s variable increases from 1 to n – 1 for the outer loop, and from i + 1 to n
for the innermost loop

𝑇 𝑛 =෍
𝑖=1

𝑛−1

෍
𝑗=𝑖+1

𝑛

1 =෍
𝑖=1

𝑛 −1

𝑛 − 𝑖 + 1 + 1

1 op

UniqueElements(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: return ‘true’ if all the elements are
distinct; ‘false’ otherwise

for i = 1 to n – 1
for j = i+1 to n

if 𝑎𝑖 = 𝑎𝑗
return false

return true

Worst-Case Analysis

• the algorithm performs 1 operation on each execution of the innermost loop

• loop’s variable increases from 1 to n – 1 for the outer loop, and from i + 1 to n
for the innermost loop

𝑇 𝑛 =෍
𝑖=1

𝑛−1

෍
𝑗=𝑖+1

𝑛

1 =෍
𝑖=1

𝑛 −1

𝑛 − 𝑖 + 1 + 1 =෍
𝑖=1

𝑛 −1

(𝑛 − 𝑖)

1 op

UniqueElements(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: return ‘true’ if all the elements are
distinct; ‘false’ otherwise

for i = 1 to n – 1
for j = i+1 to n

if 𝑎𝑖 = 𝑎𝑗
return false

return true

Worst-Case Analysis

• the algorithm performs 1 operation on each execution of the innermost loop

• loop’s variable increases from 1 to n – 1 for the outer loop, and from i + 1 to n
for the innermost loop

𝑇 𝑛 =෍
𝑖=1

𝑛−1

෍
𝑗=𝑖+1

𝑛

1 =෍
𝑖=1

𝑛 −1

𝑛 − 𝑖 + 1 + 1 =෍
𝑖=1

𝑛 −1

(𝑛 − 𝑖)

=෍
𝑖=1

𝑛 −1

𝑛 −෍
𝑖=1

𝑛 −1

𝑖

1 op

UniqueElements(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: return ‘true’ if all the elements are
distinct; ‘false’ otherwise

for i = 1 to n – 1
for j = i+1 to n

if 𝑎𝑖 = 𝑎𝑗
return false

return true

Worst-Case Analysis

• the algorithm performs 1 operation on each execution of the innermost loop

• loop’s variable increases from 1 to n – 1 for the outer loop, and from i + 1 to n
for the innermost loop

𝑇 𝑛 =෍
𝑖=1

𝑛−1

෍
𝑗=𝑖+1

𝑛

1 =෍
𝑖=1

𝑛 −1

𝑛 − 𝑖 + 1 + 1 =෍
𝑖=1

𝑛 −1

(𝑛 − 𝑖)

=෍
𝑖=1

𝑛 −1

𝑛 −෍
𝑖=1

𝑛 −1

𝑖 = 𝑛 𝑛 − 1 −
𝑛 𝑛 − 1

2

1 op

UniqueElements(list)

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: return ‘true’ if all the elements are
distinct; ‘false’ otherwise

for i = 1 to n – 1
for j = i+1 to n

if 𝑎𝑖 = 𝑎𝑗
return false

return true

Worst-Case Analysis

• the algorithm performs 1 operation on each execution of the innermost loop

• loop’s variable increases from 1 to n – 1 for the outer loop, and from i + 1 to n
for the innermost loop

𝑇 𝑛 =෍
𝑖=1

𝑛−1

෍
𝑗=𝑖+1

𝑛

1 =෍
𝑖=1

𝑛 −1

𝑛 − 𝑖 + 1 + 1 =෍
𝑖=1

𝑛 −1

(𝑛 − 𝑖)

=෍
𝑖=1

𝑛 −1

𝑛 −෍
𝑖=1

𝑛 −1

𝑖 = 𝑛 𝑛 − 1 −
𝑛 𝑛 − 1

2
=
1

2
𝑛 𝑛 − 1 ∈ 𝑂(𝑛2)

1 op

UniqueElements(list)

input : two nxn matrices A,B
output: C = A.B

for i = 1 to n
for j = 1 to n

𝐶 𝑖, 𝑗 ← 0
for k = 1 to n

𝐶 𝑖, 𝑗 ← 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ∗ 𝐵 𝑘, 𝑗
return C

Worst-Case Analysis

𝑎𝑖1 𝑎𝑖2 . . . 𝑎𝑖𝑛

𝑏1𝑗
𝑏2𝑗
.
.
.

𝑏𝑛𝑗

𝑐𝑖𝑗 = 𝑎𝑖1. 𝑏1𝑗 + 𝑎𝑖2. 𝑏2𝑗 +⋯+ 𝑎𝑖𝑛. 𝑏𝑛𝑗

mxn matrix A nxk matrix B mxk matrix C

UniqueElements(list)

input : two nxn matrices A,B
output: A.B

for i = 1 to n
for j = 1 to n

𝐶 𝑖, 𝑗 ← 0
for k = 1 to n

𝐶 𝑖, 𝑗 ← 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ∗ 𝐵 𝑘, 𝑗
return C

Worst-Case Analysis

UniqueElements(list)

input : two nxn matrices A,B
output: A.B

for i = 1 to n
for j = 1 to n

𝐶 𝑖, 𝑗 ← 0
for k = 1 to n

𝐶 𝑖, 𝑗 ← 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ∗ 𝐵 𝑘, 𝑗
return C

Worst-Case Analysis

1 op

2 op

UniqueElements(list)

input : two nxn matrices A,B
output: A.B

for i = 1 to n
for j = 1 to n

𝐶 𝑖, 𝑗 ← 0
for k = 1 to n

𝐶 𝑖, 𝑗 ← 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ∗ 𝐵 𝑘, 𝑗
return C

Worst-Case Analysis

𝑇 𝑛 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

1 + …

1 op

2 op

UniqueElements(list)

input : two nxn matrices A,B
output: A.B

for i = 1 to n
for j = 1 to n

𝐶 𝑖, 𝑗 ← 0
for k = 1 to n

𝐶 𝑖, 𝑗 ← 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ∗ 𝐵 𝑘, 𝑗
return C

Worst-Case Analysis

𝑇 𝑛 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

1 +෍
𝑘=1

𝑛

2

1 op

2 op

UniqueElements(list)

input : two nxn matrices A,B
output: A.B

for i = 1 to n
for j = 1 to n

𝐶 𝑖, 𝑗 ← 0
for k = 1 to n

𝐶 𝑖, 𝑗 ← 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ∗ 𝐵 𝑘, 𝑗
return C

Worst-Case Analysis

𝑇 𝑛 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

1 +෍
𝑘=1

𝑛

2 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

2𝑛 + 1

1 op

2 op

UniqueElements(list)

input : two nxn matrices A,B
output: A.B

for i = 1 to n
for j = 1 to n

𝐶 𝑖, 𝑗 ← 0
for k = 1 to n

𝐶 𝑖, 𝑗 ← 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ∗ 𝐵 𝑘, 𝑗
return C

Worst-Case Analysis

𝑇 𝑛 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

1 +෍
𝑘=1

𝑛

2 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

2𝑛 + 1 =෍
𝑖=1

𝑛

𝑛(2𝑛 + 1)

1 op

2 op

UniqueElements(list)

input : two nxn matrices A,B
output: A.B

for i = 1 to n
for j = 1 to n

𝐶 𝑖, 𝑗 ← 0
for k = 1 to n

𝐶 𝑖, 𝑗 ← 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ∗ 𝐵 𝑘, 𝑗
return C

Worst-Case Analysis

𝑇 𝑛 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

1 +෍
𝑘=1

𝑛

2 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

2𝑛 + 1 =෍
𝑖=1

𝑛

𝑛(2𝑛 + 1)

= 𝑛. 𝑛. 2𝑛 + 1

1 op

2 op

UniqueElements(list)

input : two nxn matrices A,B
output: A.B

for i = 1 to n
for j = 1 to n

𝐶 𝑖, 𝑗 ← 0
for k = 1 to n

𝐶 𝑖, 𝑗 ← 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ∗ 𝐵 𝑘, 𝑗
return C

Worst-Case Analysis

𝑇 𝑛 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

1 +෍
𝑘=1

𝑛

2 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

2𝑛 + 1 =෍
𝑖=1

𝑛

𝑛(2𝑛 + 1)

= 𝑛. 𝑛. 2𝑛 + 1 = 2𝑛3 + 𝑛2 ∈ 𝑂(𝑛3)

1 op

2 op

UniqueElements(list)

input : two nxn matrices A,B
output: A.B

for i = 1 to n
for j = 1 to n

𝐶 𝑖, 𝑗 ← 0
for k = 1 to n

𝐶 𝑖, 𝑗 ← 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ∗ 𝐵 𝑘, 𝑗
return C

Worst-Case Analysis

𝑇 𝑛 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

1 +෍
𝑘=1

𝑛

2 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

2𝑛 + 1 =෍
𝑖=1

𝑛

𝑛(2𝑛 + 1)

= 𝑛. 𝑛. 2𝑛 + 1 = 2𝑛3 + 𝑛2 ∈ 𝑂(𝑛3)

1 op

2 op

can be ignored

since constant number of
operations can be counted as
1 operation, it can be ignored

𝑇 𝑛 =෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

෍
𝑘=1

𝑛

1 = 𝑛3 ∈ 𝑂(𝑛3)

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

if i = j
if 𝑥 = 𝑎𝑖

return ‘yes’
else

return ‘no’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

Worst-Case Analysis

MergeSort(X,i,j)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}}
output: sorted sequence of elements in X

if i < j
𝑘 = (𝑖 + 𝑗)/2
MergeSort(X,i,k)
MergeSort(X,k+1,j)
Merge(A,i,k,j)

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

if i = j
if 𝑥 = 𝑎𝑖

return ‘yes’
else

return ‘no’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

Worst-Case Analysis

• Let 𝑇 𝑛 be the number of operations BinarySearch performs on an
input of size n, then

𝑇 𝑛 = 𝑇 Τ𝑛 2 + 1, and 𝑇 𝑛 = 1 for n ≤ 2

MergeSort(X,i,j)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}}
output: sorted sequence of elements in X

if i < j
𝑘 = (𝑖 + 𝑗)/2
MergeSort(X,i,k)
MergeSort(X,k+1,j)
Merge(A,i,k,j)

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

if i = j
if 𝑥 = 𝑎𝑖

return ‘yes’
else

return ‘no’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

Worst-Case Analysis

• Let 𝑇 𝑛 be the number of operations BinarySearch performs on an
input of size n, then

𝑇 𝑛 = 𝑇 Τ𝑛 2 + 1, and 𝑇 𝑛 = 1 for n ≤ 2
• Let 𝑇 𝑛 be the number of operations MergeSort performs on an input

of size n, then

𝑇 𝑛 = 2𝑇 Τ𝑛 2 + Θ 𝑛 , and T 𝑛 = 1 for n = 1

MergeSort(X,i,j)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}}
output: sorted sequence of elements in X

if i < j
𝑘 = (𝑖 + 𝑗)/2
MergeSort(X,i,k)
MergeSort(X,k+1,j)
Merge(A,i,k,j)

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛 = 22𝑇(Τ𝑛 22) + 2𝑛

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛 = 22𝑇(Τ𝑛 22) + 2𝑛

𝑇 𝑛 = 22 2𝑇(Τ𝑛 23) + Τ𝑛 22 + 2𝑛

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛 = 22𝑇(Τ𝑛 22) + 2𝑛

𝑇 𝑛 = 22 2𝑇(Τ𝑛 23) + Τ𝑛 22 + 2𝑛 = 23𝑇(Τ𝑛 23) + 3𝑛

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛 = 22𝑇(Τ𝑛 22) + 2𝑛

𝑇 𝑛 = 22 2𝑇(Τ𝑛 23) + Τ𝑛 22 + 2𝑛 = 23𝑇(Τ𝑛 23) + 3𝑛

𝑇 𝑛 = 2𝑖𝑇(Τ𝑛 2𝑖) + 𝑖. 𝑛

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛 = 22𝑇(Τ𝑛 22) + 2𝑛

𝑇 𝑛 = 22 2𝑇(Τ𝑛 23) + Τ𝑛 22 + 2𝑛 = 23𝑇(Τ𝑛 23) + 3𝑛

𝑇 𝑛 = 2𝑖𝑇(Τ𝑛 2𝑖) + 𝑖. 𝑛

• Base Case : Τ𝑛 2𝑖 = 2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛 = 22𝑇(Τ𝑛 22) + 2𝑛

𝑇 𝑛 = 22 2𝑇(Τ𝑛 23) + Τ𝑛 22 + 2𝑛 = 23𝑇(Τ𝑛 23) + 3𝑛

𝑇 𝑛 = 2𝑖𝑇(Τ𝑛 2𝑖) + 𝑖. 𝑛

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛 = 22𝑇(Τ𝑛 22) + 2𝑛

𝑇 𝑛 = 22 2𝑇(Τ𝑛 23) + Τ𝑛 22 + 2𝑛 = 23𝑇(Τ𝑛 23) + 3𝑛

𝑇 𝑛 = 2𝑖𝑇(Τ𝑛 2𝑖) + 𝑖. 𝑛

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log𝑛 − 1

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛 = 22𝑇(Τ𝑛 22) + 2𝑛

𝑇 𝑛 = 22 2𝑇(Τ𝑛 23) + Τ𝑛 22 + 2𝑛 = 23𝑇(Τ𝑛 23) + 3𝑛

𝑇 𝑛 = 2𝑖𝑇(Τ𝑛 2𝑖) + 𝑖. 𝑛

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log𝑛 − 1

• Thus, 𝑇 𝑛 = 2𝑖𝑇 Τ𝑛 2𝑖) + 𝑖. 𝑛 = 2log 𝑛 −1𝑇 2 + (log 𝑛 − 1 𝑛

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛 = 22𝑇(Τ𝑛 22) + 2𝑛

𝑇 𝑛 = 22 2𝑇(Τ𝑛 23) + Τ𝑛 22 + 2𝑛 = 23𝑇(Τ𝑛 23) + 3𝑛

𝑇 𝑛 = 2𝑖𝑇(Τ𝑛 2𝑖) + 𝑖. 𝑛

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log𝑛 − 1

• Thus, 𝑇 𝑛 = 2𝑖𝑇 Τ𝑛 2𝑖) + 𝑖. 𝑛 = 2log 𝑛 −1𝑇 2 + (log 𝑛 − 1 𝑛

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛 = 22𝑇(Τ𝑛 22) + 2𝑛

𝑇 𝑛 = 22 2𝑇(Τ𝑛 23) + Τ𝑛 22 + 2𝑛 = 23𝑇(Τ𝑛 23) + 3𝑛

𝑇 𝑛 = 2𝑖𝑇(Τ𝑛 2𝑖) + 𝑖. 𝑛

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log𝑛 − 1

• Thus, 𝑇 𝑛 = 2𝑖𝑇 Τ𝑛 2𝑖) + 𝑖. 𝑛 = 2log 𝑛 −1𝑇 2 + (log 𝑛 − 1 𝑛

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛 = 22𝑇(Τ𝑛 22) + 2𝑛

𝑇 𝑛 = 22 2𝑇(Τ𝑛 23) + Τ𝑛 22 + 2𝑛 = 23𝑇(Τ𝑛 23) + 3𝑛

𝑇 𝑛 = 2𝑖𝑇(Τ𝑛 2𝑖) + 𝑖. 𝑛

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log𝑛 − 1

• Thus, 𝑇 𝑛 = 2𝑖𝑇 Τ𝑛 2𝑖) + 𝑖. 𝑛 = 2log 𝑛 −1𝑇 2 + (log 𝑛 − 1 𝑛

𝑇 𝑛 = Τ(𝑛 2) + 𝑛 log 𝑛 − 𝑛

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛 = 22𝑇(Τ𝑛 22) + 2𝑛

𝑇 𝑛 = 22 2𝑇(Τ𝑛 23) + Τ𝑛 22 + 2𝑛 = 23𝑇(Τ𝑛 23) + 3𝑛

𝑇 𝑛 = 2𝑖𝑇(Τ𝑛 2𝑖) + 𝑖. 𝑛

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log𝑛 − 1

• Thus, 𝑇 𝑛 = 2𝑖𝑇 Τ𝑛 2𝑖) + 𝑖. 𝑛 = 2log 𝑛 −1𝑇 2 + (log 𝑛 − 1 𝑛

𝑇 𝑛 = Τ(𝑛 2) + 𝑛 log 𝑛 − 𝑛 = 𝑛 log𝑛 − Τ(𝑛 2)

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

2𝑇 Τ𝑛 2 + 𝑛

, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 2 2𝑇(Τ𝑛 4) + Τ𝑛 2 + 𝑛 = 22𝑇(Τ𝑛 22) + 2𝑛

𝑇 𝑛 = 22 2𝑇(Τ𝑛 23) + Τ𝑛 22 + 2𝑛 = 23𝑇(Τ𝑛 23) + 3𝑛

𝑇 𝑛 = 2𝑖𝑇(Τ𝑛 2𝑖) + 𝑖. 𝑛

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log𝑛 − 1

• Thus, 𝑇 𝑛 = 2𝑖𝑇 Τ𝑛 2𝑖) + 𝑖. 𝑛 = 2log 𝑛 −1𝑇 2 + (log 𝑛 − 1 𝑛

𝑇 𝑛 = Τ(𝑛 2) + 𝑛 log 𝑛 − 𝑛 = 𝑛 log𝑛 − Τ(𝑛 2) = 𝑂(𝑛 log 𝑛) (= Θ(𝑛 log 𝑛))

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2 = 5𝑖𝑇(Τ𝑛 2𝑖) +
(Τ5 4)𝑖−1

Τ5 4 −1
𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2 = 5𝑖𝑇(Τ𝑛 2𝑖) +
(Τ5 4)𝑖−1

Τ5 4 −1
𝑛2

• Base Case : Τ𝑛 2𝑖 = 2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2 = 5𝑖𝑇(Τ𝑛 2𝑖) +
(Τ5 4)𝑖−1

Τ5 4 −1
𝑛2

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2 = 5𝑖𝑇(Τ𝑛 2𝑖) +
(Τ5 4)𝑖−1

Τ5 4 −1
𝑛2

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log 𝑛 − 1

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2 = 5𝑖𝑇(Τ𝑛 2𝑖) +
(Τ5 4)𝑖−1

Τ5 4 −1
𝑛2

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log 𝑛 − 1

• Thus, 𝑇 𝑛 = 5𝑖𝑇 Τ𝑛 2𝑖 + 4 (Τ5 4)𝑖−1 𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2 = 5𝑖𝑇(Τ𝑛 2𝑖) +
(Τ5 4)𝑖−1

Τ5 4 −1
𝑛2

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log 𝑛 − 1

• Thus, 𝑇 𝑛 = 5𝑖𝑇 Τ𝑛 2𝑖 + 4 (Τ5 4)𝑖−1 𝑛2 = 5log 𝑛 −1𝑇 2 + 4 (Τ5 4)log 𝑛 −1−1 𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2 = 5𝑖𝑇(Τ𝑛 2𝑖) +
(Τ5 4)𝑖−1

Τ5 4 −1
𝑛2

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log 𝑛 − 1

• Thus, 𝑇 𝑛 = 5𝑖𝑇 Τ𝑛 2𝑖 + 4 (Τ5 4)𝑖−1 𝑛2 = 5log 𝑛 −1𝑇 2 + 4 (Τ5 4)log 𝑛 −1−1 𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2 = 5𝑖𝑇(Τ𝑛 2𝑖) +
(Τ5 4)𝑖−1

Τ5 4 −1
𝑛2

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log 𝑛 − 1

• Thus, 𝑇 𝑛 = 5𝑖𝑇 Τ𝑛 2𝑖 + 4 (Τ5 4)𝑖−1 𝑛2 = 5log 𝑛 −1𝑇 2 + 4 (Τ5 4)log 𝑛 −1−1 𝑛2

𝑇 𝑛 = Τ1 5 𝑛log 5 + Τ16 5 (Τ5 4)log 𝑛 − 4 𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2 = 5𝑖𝑇(Τ𝑛 2𝑖) +
(Τ5 4)𝑖−1

Τ5 4 −1
𝑛2

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log 𝑛 − 1

• Thus, 𝑇 𝑛 = 5𝑖𝑇 Τ𝑛 2𝑖 + 4 (Τ5 4)𝑖−1 𝑛2 = 5log 𝑛 −1𝑇 2 + 4 (Τ5 4)log 𝑛 −1−1 𝑛2

𝑇 𝑛 = Τ1 5 𝑛log 5 + Τ16 5 (Τ5 4)log 𝑛 − 4 𝑛2

𝑇 𝑛 =
1

5
𝑛log 5 +

16.5log 𝑛

5.4log 𝑛 − 4 𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2 = 5𝑖𝑇(Τ𝑛 2𝑖) +
(Τ5 4)𝑖−1

Τ5 4 −1
𝑛2

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log 𝑛 − 1

• Thus, 𝑇 𝑛 = 5𝑖𝑇 Τ𝑛 2𝑖 + 4 (Τ5 4)𝑖−1 𝑛2 = 5log 𝑛 −1𝑇 2 + 4 (Τ5 4)log 𝑛 −1−1 𝑛2

𝑇 𝑛 = Τ1 5 𝑛log 5 + Τ16 5 (Τ5 4)log 𝑛 − 4 𝑛2

𝑇 𝑛 =
1

5
𝑛log 5 +

16.5log 𝑛

5.4log 𝑛 − 4 𝑛2 =
1

5
𝑛log 5 +

16.𝑛log 5

5.𝑛log 4 − 4 𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2 = 5𝑖𝑇(Τ𝑛 2𝑖) +
(Τ5 4)𝑖−1

Τ5 4 −1
𝑛2

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log 𝑛 − 1

• Thus, 𝑇 𝑛 = 5𝑖𝑇 Τ𝑛 2𝑖 + 4 (Τ5 4)𝑖−1 𝑛2 = 5log 𝑛 −1𝑇 2 + 4 (Τ5 4)log 𝑛 −1−1 𝑛2

𝑇 𝑛 = Τ1 5 𝑛log 5 + Τ16 5 (Τ5 4)log 𝑛 − 4 𝑛2

𝑇 𝑛 =
1

5
𝑛log 5 +

16.5log 𝑛

5.4log 𝑛 − 4 𝑛2 =
1

5
𝑛log 5 +

16.𝑛log 5

5.𝑛log 4 − 4 𝑛2

𝑇 𝑛 =
1

5
𝑛log 5 +

16.𝑛log 5

5.𝑛2
− 4 𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2 = 5𝑖𝑇(Τ𝑛 2𝑖) +
(Τ5 4)𝑖−1

Τ5 4 −1
𝑛2

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log 𝑛 − 1

• Thus, 𝑇 𝑛 = 5𝑖𝑇 Τ𝑛 2𝑖 + 4 (Τ5 4)𝑖−1 𝑛2 = 5log 𝑛 −1𝑇 2 + 4 (Τ5 4)log 𝑛 −1−1 𝑛2

𝑇 𝑛 = Τ1 5 𝑛log 5 + Τ16 5 (Τ5 4)log 𝑛 − 4 𝑛2

𝑇 𝑛 =
1

5
𝑛log 5 +

16.5log 𝑛

5.4log 𝑛 − 4 𝑛2 =
1

5
𝑛log 5 +

16.𝑛log 5

5.𝑛log 4 − 4 𝑛2

𝑇 𝑛 =
1

5
𝑛log 5 +

16.𝑛log 5

5.𝑛2
− 4 𝑛2 =

1

5
𝑛log 5 +

16

5
𝑛log 5 − 4𝑛2

Backward Substitution for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

5𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 2
, 𝑖𝑓 𝑛 > 2

• 𝑇 𝑛 = 5 5𝑇(Τ𝑛 4) + Τ(𝑛 2)2 + 𝑛2 = 52𝑇(Τ𝑛 22) + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 52 5𝑇(Τ𝑛 23) + Τ(𝑛 22)2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 53𝑇(Τ𝑛 23) + Τ5 4 2𝑛2 + Τ5 4 𝑛2 + 𝑛2

𝑇 𝑛 = 5𝑖𝑇(Τ𝑛 2𝑖) + (Τ5 4)𝑖−1+⋯+ Τ5 4 + 1 𝑛2 = 5𝑖𝑇(Τ𝑛 2𝑖) +
(Τ5 4)𝑖−1

Τ5 4 −1
𝑛2

• Base Case : Τ𝑛 2𝑖 = 2 → 𝑛 = 2𝑖+1 → 𝑖 = log 𝑛 − 1

• Thus, 𝑇 𝑛 = 5𝑖𝑇 Τ𝑛 2𝑖 + 4 (Τ5 4)𝑖−1 𝑛2 = 5log 𝑛 −1𝑇 2 + 4 (Τ5 4)log 𝑛 −1−1 𝑛2

𝑇 𝑛 = Τ1 5 𝑛log 5 + Τ16 5 (Τ5 4)log 𝑛 − 4 𝑛2

𝑇 𝑛 =
1

5
𝑛log 5 +

16.5log 𝑛

5.4log 𝑛 − 4 𝑛2 =
1

5
𝑛log 5 +

16.𝑛log 5

5.𝑛log 4 − 4 𝑛2

𝑇 𝑛 =
1

5
𝑛log 5 +

16.𝑛log 5

5.𝑛2
− 4 𝑛2 =

1

5
𝑛log 5 +

16

5
𝑛log 5 − 4𝑛2

𝑇 𝑛 = 𝑂 𝑛log 5 (= Θ(𝑛log 5))

Recursion Tree for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

𝑇 Τ𝑛 4 + 𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 1
, 𝑖𝑓 𝑛 > 1

Recursion Tree for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

𝑇 Τ𝑛 4 + 𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 1
, 𝑖𝑓 𝑛 > 1

𝑇 𝑛

Recursion Tree for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

𝑇 Τ𝑛 4 + 𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 1
, 𝑖𝑓 𝑛 > 1

𝑇 Τ𝑛 4 𝑇 Τ𝑛 2

𝑛2

Recursion Tree for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

𝑇 Τ𝑛 4 + 𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 1
, 𝑖𝑓 𝑛 > 1

Τ𝑛 4 2

𝑛2

Τ𝑛 2 2

𝑇 Τ𝑛 16 𝑇 Τ𝑛 8 𝑇 Τ𝑛 8 𝑇 Τ𝑛 4

Recursion Tree for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

𝑇 Τ𝑛 4 + 𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 1
, 𝑖𝑓 𝑛 > 1

Τ𝑛 4 2

𝑛2

Τ𝑛 2 2

Τ𝑛 16 2 Τ𝑛 8 2 Τ𝑛 8 2 Τ𝑛 4 2

Θ(1)

Recursion Tree for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

𝑇 Τ𝑛 4 + 𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 1
, 𝑖𝑓 𝑛 > 1

Τ𝑛 4 2

𝑛2

Τ𝑛 2 2

Τ𝑛 16 2 Τ𝑛 8 2 Τ𝑛 8 2 Τ𝑛 4 2

Θ(1)

𝑛2

Recursion Tree for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

𝑇 Τ𝑛 4 + 𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 1
, 𝑖𝑓 𝑛 > 1

Τ𝑛 4 2

𝑛2

Τ𝑛 2 2

Τ𝑛 16 2 Τ𝑛 8 2 Τ𝑛 8 2 Τ𝑛 4 2

Θ(1)

𝑛2

5

16
𝑛2

Recursion Tree for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

𝑇 Τ𝑛 4 + 𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 1
, 𝑖𝑓 𝑛 > 1

Τ𝑛 4 2

𝑛2

Τ𝑛 2 2

Τ𝑛 16 2 Τ𝑛 8 2 Τ𝑛 8 2 Τ𝑛 4 2

Θ(1)

𝑛2

5

16
𝑛2

25

256
𝑛2

Recursion Tree for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

𝑇 Τ𝑛 4 + 𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 1
, 𝑖𝑓 𝑛 > 1

Τ𝑛 4 2

𝑛2

Τ𝑛 2 2

Τ𝑛 16 2 Τ𝑛 8 2 Τ𝑛 8 2 Τ𝑛 4 2

Θ(1)

𝑛2

5

16
𝑛2

25

256
𝑛2

total = 𝑛2 1 +
5

16
+

5

16

2
+

5

16

3
+⋯

Recursion Tree for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

𝑇 Τ𝑛 4 + 𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 1
, 𝑖𝑓 𝑛 > 1

Τ𝑛 4 2

𝑛2

Τ𝑛 2 2

Τ𝑛 16 2 Τ𝑛 8 2 Τ𝑛 8 2 Τ𝑛 4 2

Θ(1)

𝑛2

5

16
𝑛2

25

256
𝑛2

total = 𝑛2 1 +
5

16
+

5

16

2
+

5

16

3
+⋯

=
16

11
𝑛2

1 + 𝑥 + 𝑥2 + 𝑥3 +⋯ =
1

1−𝑥
, if 𝑥 < 1

Recursion Tree for Recurrence Relation

Worst-Case Analysis

𝑇 𝑛 = ቊ
1

𝑇 Τ𝑛 4 + 𝑇 Τ𝑛 2 + 𝑛2
, 𝑖𝑓 n ≤ 1
, 𝑖𝑓 𝑛 > 1

Τ𝑛 4 2

𝑛2

Τ𝑛 2 2

Τ𝑛 16 2 Τ𝑛 8 2 Τ𝑛 8 2 Τ𝑛 4 2

Θ(1)

𝑛2

5

16
𝑛2

25

256
𝑛2

total = 𝑛2 1 +
5

16
+

5

16

2
+

5

16

3
+⋯

=
16

11
𝑛2

= Θ(𝑛2)
1 + 𝑥 + 𝑥2 + 𝑥3 +⋯ =

1

1−𝑥
, if 𝑥 < 1

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

𝑇(𝑛)

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

𝑇(Τ𝑛 𝑏)

𝑓(𝑛)

𝑇(Τ𝑛 𝑏)

𝑇(Τ𝑛 𝑏)

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

𝑓(Τ𝑛 𝑏)

𝑓(𝑛)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏)

𝑇(Τ𝑛 𝑏2)

𝑇(Τ𝑛 𝑏2)
𝑇(Τ𝑛 𝑏2)

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

𝑓(Τ𝑛 𝑏)

𝑓(𝑛)

T(1)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏2)

𝑓(Τ𝑛 𝑏2)
𝑓(Τ𝑛 𝑏2)

T(1)

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

𝑓(Τ𝑛 𝑏)

𝑓(𝑛)

T(1)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏2)

𝑓(Τ𝑛 𝑏2)
𝑓(Τ𝑛 𝑏2)

𝑓(𝑛)

T(1)

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

𝑓(Τ𝑛 𝑏)

𝑓(𝑛)

T(1)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏2)

𝑓(Τ𝑛 𝑏2)
𝑓(Τ𝑛 𝑏2)

𝑓(𝑛)

𝑎𝑓(Τ𝑛 𝑏)

T(1)

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

𝑓(Τ𝑛 𝑏)

𝑓(𝑛)

T(1)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏2)

𝑓(Τ𝑛 𝑏2)
𝑓(Τ𝑛 𝑏2)

𝑓(𝑛)

𝑎𝑓(Τ𝑛 𝑏)

𝑎2𝑓(Τ𝑛 𝑏2)

T(1)

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

𝑓(Τ𝑛 𝑏)

𝑓(𝑛)

T(1)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏2)

𝑓(Τ𝑛 𝑏2)
𝑓(Τ𝑛 𝑏2)

𝑓(𝑛)

𝑎𝑓(Τ𝑛 𝑏)

𝑎2𝑓(Τ𝑛 𝑏2)

𝑎log𝑏 𝑛𝑇(1)

T(1)

Τ𝑛 𝑏𝑖 = 1 → 𝑖 = log𝑏 𝑛

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

𝑓(Τ𝑛 𝑏)

𝑓(𝑛)

T(1)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏2)

𝑓(Τ𝑛 𝑏2)
𝑓(Τ𝑛 𝑏2)

𝑓(𝑛)

𝑎𝑓(Τ𝑛 𝑏)

𝑎2𝑓(Τ𝑛 𝑏2)

𝑎log𝑏 𝑛𝑇(1)

T(1)
= Θ(𝑛log𝑏 𝑎)

Τ𝑛 𝑏𝑖 = 1 → 𝑖 = log𝑏 𝑛

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

𝑓(Τ𝑛 𝑏)

𝑓(𝑛)

T(1)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏2)

𝑓(Τ𝑛 𝑏2)
𝑓(Τ𝑛 𝑏2)

𝑓(𝑛)

𝑎𝑓(Τ𝑛 𝑏)

𝑎2𝑓(Τ𝑛 𝑏2)

𝑎log𝑏 𝑛𝑇(1)

T(1)
= Θ(𝑛log𝑏 𝑎)

Τ𝑛 𝑏𝑖 = 1 → 𝑖 = log𝑏 𝑛

𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛

𝑏
+ 𝑎2𝑓

𝑛

𝑏2
+⋯+ 𝛩(𝑛𝑙𝑜𝑔𝑏 𝑎)

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

𝑓(Τ𝑛 𝑏)

𝑓(𝑛)

T(1)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏2)

𝑓(Τ𝑛 𝑏2)
𝑓(Τ𝑛 𝑏2)

𝑓(𝑛)

𝑎𝑓(Τ𝑛 𝑏)

𝑎2𝑓(Τ𝑛 𝑏2)

𝑎log𝑏 𝑛𝑇(1)

T(1)
= Θ(𝑛log𝑏 𝑎)

• if 𝑓 𝑛 = 𝑂 𝑛log𝑏 𝑎−𝜀 for some constant 𝜀 > 0,
sums geometrically increase level by level, and
the last level dominates. Thus,

𝑇 𝑛 = Θ 𝑛log𝑏 𝑎

𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛

𝑏
+ 𝑎2𝑓

𝑛

𝑏2
+⋯+ 𝛩(𝑛𝑙𝑜𝑔𝑏 𝑎)

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

𝑓(Τ𝑛 𝑏)

𝑓(𝑛)

T(1)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏2)

𝑓(Τ𝑛 𝑏2)
𝑓(Τ𝑛 𝑏2)

𝑓(𝑛)

𝑎𝑓(Τ𝑛 𝑏)

𝑎2𝑓(Τ𝑛 𝑏2)

𝑎log𝑏 𝑛𝑇(1)

T(1)
= Θ(𝑛log𝑏 𝑎)

• if 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 . log𝑘𝑛 for some constant k ≥ 0,
sums aritmetically increase level by level, and no
level dominates. Thus,

𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 . log(𝑘+1) 𝑛

𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛

𝑏
+ 𝑎2𝑓

𝑛

𝑏2
+⋯+ 𝛩(𝑛𝑙𝑜𝑔𝑏 𝑎)

Master Theorem

Worst-Case Analysis

𝑇 𝑛 = ቊ
Θ(1)

𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

, 𝑖𝑓 n ≤ 1
, otherwise

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓(𝑛) is a non-negative integer function

𝑓(Τ𝑛 𝑏)

𝑓(𝑛)

T(1)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏)

𝑓(Τ𝑛 𝑏2)

𝑓(Τ𝑛 𝑏2)
𝑓(Τ𝑛 𝑏2)

𝑓(𝑛)

𝑎𝑓(Τ𝑛 𝑏)

𝑎2𝑓(Τ𝑛 𝑏2)

𝑎log𝑏 𝑛𝑇(1)

T(1)
= Θ(𝑛log𝑏 𝑎)

• if 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜀 and 𝑎𝑓(Τ𝑛 𝑏) ≤ c𝑓 𝑛 for some
constant 𝜀 > 0 and c < 1, sums geometrically decrease
level by level, and the first level dominates. Thus,

𝑇 𝑛 = Θ 𝑓(𝑛)

𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛

𝑏
+ 𝑎2𝑓

𝑛

𝑏2
+⋯+ 𝛩(𝑛𝑙𝑜𝑔𝑏 𝑎)

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛2

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛2

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛2, thus 𝑛log𝑏 𝑎 = 𝑛2

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛2

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛2, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Θ 𝑛2. log0𝑛 for 𝑘 = 0 and it’s the second case

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛2

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛2, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Θ 𝑛2. log0𝑛 for 𝑘 = 0 and it’s the second case

– thus, 𝑇 𝑛 = Θ 𝑛2. log 𝑛

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛2

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛2, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Θ 𝑛2. log0𝑛 for 𝑘 = 0 and it’s the second case

– thus, 𝑇 𝑛 = Θ 𝑛2. log 𝑛

• 𝑇 𝑛 = 3𝑇 Τ𝑛 2 + 𝑛

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛2

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛2, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Θ 𝑛2. log0𝑛 for 𝑘 = 0 and it’s the second case

– thus, 𝑇 𝑛 = Θ 𝑛2. log 𝑛

• 𝑇 𝑛 = 3𝑇 Τ𝑛 2 + 𝑛

– 𝑎 = 3, 𝑏 = 2, 𝑓 𝑛 = 𝑛, thus 𝑛log𝑏 𝑎 = 𝑛log2 3

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛2

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛2, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Θ 𝑛2. log0𝑛 for 𝑘 = 0 and it’s the second case

– thus, 𝑇 𝑛 = Θ 𝑛2. log 𝑛

• 𝑇 𝑛 = 3𝑇 Τ𝑛 2 + 𝑛

– 𝑎 = 3, 𝑏 = 2, 𝑓 𝑛 = 𝑛, thus 𝑛log𝑏 𝑎 = 𝑛log2 3

– since 𝑓 𝑛 = 𝑂 𝑛log2 3−𝜀 for 𝜀 = log2 Τ3 2 and it’s the first case

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛2

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛2, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Θ 𝑛2. log0𝑛 for 𝑘 = 0 and it’s the second case

– thus, 𝑇 𝑛 = Θ 𝑛2. log 𝑛

• 𝑇 𝑛 = 3𝑇 Τ𝑛 2 + 𝑛

– 𝑎 = 3, 𝑏 = 2, 𝑓 𝑛 = 𝑛, thus 𝑛log𝑏 𝑎 = 𝑛log2 3

– since 𝑓 𝑛 = 𝑂 𝑛log2 3−𝜀 for 𝜀 = log2 Τ3 2 and it’s the first case

– thus, 𝑇 𝑛 = Θ 𝑛log2 3

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛2

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛2, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Θ 𝑛2. log0𝑛 for 𝑘 = 0 and it’s the second case

– thus, 𝑇 𝑛 = Θ 𝑛2. log 𝑛

• 𝑇 𝑛 = 3𝑇 Τ𝑛 2 + 𝑛

– 𝑎 = 3, 𝑏 = 2, 𝑓 𝑛 = 𝑛, thus 𝑛log𝑏 𝑎 = 𝑛log2 3

– since 𝑓 𝑛 = 𝑂 𝑛log2 3−𝜀 for 𝜀 = log2 Τ3 2 and it’s the first case

– thus, 𝑇 𝑛 = Θ 𝑛log2 3

• 𝑇 𝑛 =
1

2
𝑇 Τ𝑛 2 + 𝑛2

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛2

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛2, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Θ 𝑛2. log0𝑛 for 𝑘 = 0 and it’s the second case

– thus, 𝑇 𝑛 = Θ 𝑛2. log 𝑛

• 𝑇 𝑛 = 3𝑇 Τ𝑛 2 + 𝑛

– 𝑎 = 3, 𝑏 = 2, 𝑓 𝑛 = 𝑛, thus 𝑛log𝑏 𝑎 = 𝑛log2 3

– since 𝑓 𝑛 = 𝑂 𝑛log2 3−𝜀 for 𝜀 = log2 Τ3 2 and it’s the first case

– thus, 𝑇 𝑛 = Θ 𝑛log2 3

• 𝑇 𝑛 =
1

2
𝑇 Τ𝑛 2 + 𝑛2

– since 𝑎 =
1

2
is not ≥ 1, Master Theorem cannot be applied

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛3

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛3

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛3, thus 𝑛log𝑏 𝑎 = 𝑛2

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛3

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛3, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Ω 𝑛2+𝜀 for 𝜀 = 1 and 4 Τ𝑐𝑛 2 3 ≤ c𝑛3 for c = 1/2,
it’s the third case

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛3

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛3, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Ω 𝑛2+𝜀 for 𝜀 = 1 and 4 Τ𝑐𝑛 2 3 ≤ c𝑛3 for c = 1/2,
it’s the third case

– thus, 𝑇 𝑛 = Θ 𝑛3

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛3

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛3, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Ω 𝑛2+𝜀 for 𝜀 = 1 and 4 Τ𝑐𝑛 2 3 ≤ c𝑛3 for c = 1/2,
it’s the third case

– thus, 𝑇 𝑛 = Θ 𝑛3

• 𝑇 𝑛 = 2𝑇 Τ𝑛 2 + 𝑛

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛3

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛3, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Ω 𝑛2+𝜀 for 𝜀 = 1 and 4 Τ𝑐𝑛 2 3 ≤ c𝑛3 for c = 1/2,
it’s the third case

– thus, 𝑇 𝑛 = Θ 𝑛3

• 𝑇 𝑛 = 2𝑇 Τ𝑛 2 + 𝑛

– 𝑎 = 2, 𝑏 = 2, 𝑓 𝑛 = 𝑛, thus 𝑛log𝑏 𝑎 = 𝑛

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛3

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛3, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Ω 𝑛2+𝜀 for 𝜀 = 1 and 4 Τ𝑐𝑛 2 3 ≤ c𝑛3 for c = 1/2,
it’s the third case

– thus, 𝑇 𝑛 = Θ 𝑛3

• 𝑇 𝑛 = 2𝑇 Τ𝑛 2 + 𝑛

– 𝑎 = 2, 𝑏 = 2, 𝑓 𝑛 = 𝑛, thus 𝑛log𝑏 𝑎 = 𝑛

– since 𝑓 𝑛 = Θ 𝑛. log0𝑛 for 𝑘 = 0 and it’s the second case

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛3

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛3, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Ω 𝑛2+𝜀 for 𝜀 = 1 and 4 Τ𝑐𝑛 2 3 ≤ c𝑛3 for c = 1/2,
it’s the third case

– thus, 𝑇 𝑛 = Θ 𝑛3

• 𝑇 𝑛 = 2𝑇 Τ𝑛 2 + 𝑛

– 𝑎 = 2, 𝑏 = 2, 𝑓 𝑛 = 𝑛, thus 𝑛log𝑏 𝑎 = 𝑛

– since 𝑓 𝑛 = Θ 𝑛. log0𝑛 for 𝑘 = 0 and it’s the second case

– thus, 𝑇 𝑛 = Θ 𝑛. log 𝑛

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛3

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛3, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Ω 𝑛2+𝜀 for 𝜀 = 1 and 4 Τ𝑐𝑛 2 3 ≤ c𝑛3 for c = 1/2,
it’s the third case

– thus, 𝑇 𝑛 = Θ 𝑛3

• 𝑇 𝑛 = 2𝑇 Τ𝑛 2 + 𝑛

– 𝑎 = 2, 𝑏 = 2, 𝑓 𝑛 = 𝑛, thus 𝑛log𝑏 𝑎 = 𝑛

– since 𝑓 𝑛 = Θ 𝑛. log0𝑛 for 𝑘 = 0 and it’s the second case

– thus, 𝑇 𝑛 = Θ 𝑛. log 𝑛

• 𝑇 𝑛 = 2𝑇 4 Τ𝑛 3 + 𝑛2

Master Theorem

Worst-Case Analysis

• 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 𝑛3

– 𝑎 = 4, 𝑏 = 2, 𝑓 𝑛 = 𝑛3, thus 𝑛log𝑏 𝑎 = 𝑛2

– since 𝑓 𝑛 = Ω 𝑛2+𝜀 for 𝜀 = 1 and 4 Τ𝑐𝑛 2 3 ≤ c𝑛3 for c = 1/2,
it’s the third case

– thus, 𝑇 𝑛 = Θ 𝑛3

• 𝑇 𝑛 = 2𝑇 Τ𝑛 2 + 𝑛

– 𝑎 = 2, 𝑏 = 2, 𝑓 𝑛 = 𝑛, thus 𝑛log𝑏 𝑎 = 𝑛

– since 𝑓 𝑛 = Θ 𝑛. log0𝑛 for 𝑘 = 0 and it’s the second case

– thus, 𝑇 𝑛 = Θ 𝑛. log 𝑛

• 𝑇 𝑛 = 2𝑇 4 Τ𝑛 3 + 𝑛2

– since b =
3

4
is not > 1, Master Theorem cannot be applied

