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•  unlike other design techniques, brute-force can be applied to 
a very wide variety of problems 

•  if only a few instances or small-size instances of a problem 
need to be solved, brute-force can lift the burden of 
designing more efficient algorithms 

•  brute-force can serve as a reference point when judging the 
efficiency of other alternatives 
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Brute Force Approach 
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determine whether the text has a substring that matches the pattern  
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Exhaustive Search 
(Graph Traversal) 

•  can be applied to graph traversal algorithms that exhaustively 
search a graph 

-  graph traversal algorithms systematically explore every vertex 
and every edge of a graph   

Graph Theory 
 
•  Königsberg was a city in Germany in 18th century. There was a 

river Pregel that divide the city into four distinct regions 

Is it possible to take a walk around the city 
that passes each bridge exactly once ?	


