
Brute Force and
Exhaustive Search

Murat Osmanoglu

Brute Force Approach
•  a straightforward approach to solving a given problem
(solving a given problem in the most simple, direct, or obvious way)

•  directly based on the problem statement and definitions of the
concepts involved

Brute Force Approach
•  a straightforward approach to solving a given problem
(solving a given problem in the most simple, direct, or obvious way)

•  directly based on the problem statement and definitions of the
concepts involved

•  does not take advantage of structure or pattern in the problem

Brute Force Approach
•  a straightforward approach to solving a given problem
(solving a given problem in the most simple, direct, or obvious way)

•  directly based on the problem statement and definitions of the
concepts involved

•  does not take advantage of structure or pattern in the problem

•  may perform more operations than necessary

•  typically not considered efficient method of solving a problem

Brute Force Approach
•  a straightforward approach to solving a given problem
(solving a given problem in the most simple, direct, or obvious way)

•  directly based on the problem statement and definitions of the
concepts involved

•  does not take advantage of structure or pattern in the problem

•  may perform more operations than necessary

•  typically not considered efficient method of solving a problem

Exponentiation Problem

•  Given a nonzero number A and a nonnegative integer n, compute An

Brute Force Approach
•  a straightforward approach to solving a given problem
(solving a given problem in the most simple, direct, or obvious way)

•  directly based on the problem statement and definitions of the
concepts involved

•  does not take advantage of structure or pattern in the problem

•  may perform more operations than necessary

•  typically not considered efficient method of solving a problem

Exponentiation Problem

•  Given a nonzero number A and a nonnegative integer n, compute An

-  An = A.A.A....A, thus multiply 1 by A n times to compute the output

n times	

Brute Force Approach
•  a straightforward approach to solving a given problem
(solving a given problem in the most simple, direct, or obvious way)

•  directly based on the problem statement and definitions of the
concepts involved

•  does not take advantage of structure or pattern in the problem

•  may perform more operations than necessary

•  typically not considered efficient method of solving a problem
Pluses and Minuses

•  Given n consecutive integer from 1 to n, devise an algorithm that puts signs “+” and “-”
between them so that the expression obtained is equal 0, or if no such expression exists,
returns the message “no solution”

Brute Force Approach
•  a straightforward approach to solving a given problem
(solving a given problem in the most simple, direct, or obvious way)

•  directly based on the problem statement and definitions of the
concepts involved

•  does not take advantage of structure or pattern in the problem

•  may perform more operations than necessary

•  typically not considered efficient method of solving a problem
Pluses and Minuses

•  Given n consecutive integer from 1 to n, devise an algorithm that puts signs “+” and “-”
between them so that the expression obtained is equal 0, or if no such expression exists,
returns the message “no solution”

-  write down all possible combinations to verify whether there is such expression

Brute Force Approach
•  a straightforward approach to solving a given problem
(solving a given problem in the most simple, direct, or obvious way)

•  directly based on the problem statement and definitions of the
concepts involved

•  does not take advantage of structure or pattern in the problem

•  may perform more operations than necessary

•  typically not considered efficient method of solving a problem
Pluses and Minuses

•  Given n consecutive integer from 1 to n, devise an algorithm that puts signs “+” and “-”
between them so that the expression obtained is equal 0, or if no such expression exists,
returns the message “no solution”

-  write down all possible combinations to verify whether there is such expression
(≈O(2n))

Brute Force Approach
•  a straightforward approach to solving a given problem
(solving a given problem in the most simple, direct, or obvious way)

•  directly based on the problem statement and definitions of the
concepts involved

•  does not take advantage of structure or pattern in the problem

•  may perform more operations than necessary

•  typically not considered efficient method of solving a problem
Pluses and Minuses

•  Given n consecutive integer from 1 to n, devise an algorithm that puts signs “+” and “-”
between them so that the expression obtained is equal 0, or if no such expression exists,
returns the message “no solution”

-  write down all possible combinations to verify whether there is such expression
(≈O(2n))

-  for the input 3, 7, 8, 2, 1, 5;

Brute Force Approach
•  a straightforward approach to solving a given problem
(solving a given problem in the most simple, direct, or obvious way)

•  directly based on the problem statement and definitions of the
concepts involved

•  does not take advantage of structure or pattern in the problem

•  may perform more operations than necessary

•  typically not considered efficient method of solving a problem
Pluses and Minuses

•  Given n consecutive integer from 1 to n, devise an algorithm that puts signs “+” and “-”
between them so that the expression obtained is equal 0, or if no such expression exists,
returns the message “no solution”

-  write down all possible combinations to verify whether there is such expression
(≈O(2n))

-  for the input 3, 7, 8, 2, 1, 5;

3-7-8-2-1-5 = -20, 3-7-8-2-1+5 = -10, 3-7-8-2+1-5 = -18, 3-7-8-2+1+5 = -8, 3-7-8+2-1-5 = -16
3-7-8+2-1+5 = -6, 3-7-8+2+1-5 = -14, 3-7-8+2+1+5 = -4, 3-7+8-2-1-5 = -4, 3-7+8-2-1+5 = 6,
…

Brute Force Approach
•  a straightforward approach to solving a given problem
(solving a given problem in the most simple, direct, or obvious way)

•  directly based on the problem statement and definitions of the
concepts involved

•  does not take advantage of structure or pattern in the problem

•  may perform more operations than necessary

•  typically not considered efficient method of solving a problem
Pluses and Minuses

•  Given n consecutive integer from 1 to n, devise an algorithm that puts signs “+” and “-”
between them so that the expression obtained is equal 0, or if no such expression exists,
returns the message “no solution”

-  write down all possible combinations to verify whether there is such expression
(≈O(2n))

-  for the input 3, 7, 8, 2, 1, 5;

3-7-8-2-1-5 = -20, 3-7-8-2-1+5 = -10, 3-7-8-2+1-5 = -18, 3-7-8-2+1+5 = -8, 3-7-8+2-1-5 = -16
3-7-8+2-1+5 = -6, 3-7-8+2+1-5 = -14, 3-7-8+2+1+5 = -4, 3-7+8-2-1-5 = -4, 3-7+8-2-1+5 = 6,
…
3+7-8+2+1-5 = 0

Brute Force Approach
•  a straightforward approach to solving a given problem
(solving a given problem in the most simple, direct, or obvious way)

•  directly based on the problem statement and definitions of the
concepts involved

•  does not take advantage of structure or pattern in the problem

•  may perform more operations than necessary

•  typically not considered efficient method of solving a problem
Pluses and Minuses

•  Given n consecutive integer from 1 to n, devise an algorithm that puts signs “+” and “-”
between them so that the expression obtained is equal 0, or if no such expression exists,
returns the message “no solution”

-  write down all possible combinations to verify whether there is such expression
(≈O(2n))

-  for the input 3, 7, 8, 2, 1, 5;

3-7-8-2-1-5 = -20, 3-7-8-2-1+5 = -10, 3-7-8-2+1-5 = -18, 3-7-8-2+1+5 = -8, 3-7-8+2-1-5 = -16
3-7-8+2-1+5 = -6, 3-7-8+2+1-5 = -14, 3-7-8+2+1+5 = -4, 3-7+8-2-1-5 = -4, 3-7+8-2-1+5 = 6,
…
3+7-8+2+1-5 = 0

•  unlike other design techniques, brute-force can be applied to
a very wide variety of problems

•  if only a few instances or small-size instances of a problem
need to be solved, brute-force can lift the burden of
designing more efficient algorithms

•  brute-force can serve as a reference point when judging the
efficiency of other alternatives

	

Brute Force Approach
(Sorting Problem)

•  given a sequence of n orderable items [a1, a2,…, an], reorder the
items as [a1’, a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

Brute Force Approach
(Sorting Problem)

•  given a sequence of n orderable items [a1, a2,…, an], reorder the
items as [a1’, a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  Why is sorting worth so much attention ?

Brute Force Approach
(Sorting Problem)

•  given a sequence of n orderable items [a1, a2,…, an], reorder the
items as [a1’, a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  Why is sorting worth so much attention ?

-  many important techniques have been developed for solving this
problem

Brute Force Approach
(Sorting Problem)

•  given a sequence of n orderable items [a1, a2,…, an], reorder the
items as [a1’, a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  Why is sorting worth so much attention ?

-  many important techniques have been developed for solving this
problem

-  the most studied problem in CS

Brute Force Approach
(Sorting Problem)

•  given a sequence of n orderable items [a1, a2,…, an], reorder the
items as [a1’, a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  Why is sorting worth so much attention ?

-  many important techniques have been developed for solving this
problem

-  the most studied problem in CS

-  the algorithms often use sorting as a key subroutine

Brute Force Approach
(Sorting Problem)

•  given a sequence of n orderable items [a1, a2,…, an], reorder the
items as [a1’, a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  Why is sorting worth so much attention ?

-  many important techniques have been developed for solving this
problem

-  the most studied problem in CS

-  the algorithms often use sorting as a key subroutine

 searching; given a set of n items and a separate item, search
 whether the set contains the given item

Brute Force Approach
(Sorting Problem)

•  given a sequence of n orderable items [a1, a2,…, an], reorder the
items as [a1’, a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  Why is sorting worth so much attention ?

-  many important techniques have been developed for solving this
problem

-  the most studied problem in CS

-  the algorithms often use sorting as a key subroutine

 searching; given a set of n items and a separate item, search
 whether the set contains the given item

 closest pair; given a set of n numbers, find the pair of numbers
 that have the smallest possible difference

Brute Force Approach
(Sorting Problem)

•  given a sequence of n orderable items [a1, a2,…, an], reorder the
items as [a1’, a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  Why is sorting worth so much attention ?

-  many important techniques have been developed for solving this
problem

-  the most studied problem in CS

-  the algorithms often use sorting as a key subroutine

 searching; given a set of n items and a separate item, search
 whether the set contains the given item

 closest pair; given a set of n numbers, find the pair of numbers
 that have the smallest possible difference

 frequency distribution; given a set of n items, find the
 frequencies of the items

Brute Force Approach
(Sorting Problem)

•  What would be the most straightforward way of solving sorting
problem ?

Brute Force Approach
(Sorting Problem)

•  What would be the most straightforward way of solving sorting
problem ?

 moving the smaller elements to the first positions in the sequence
 (Selection Sort)

Brute Force Approach
(Sorting Problem)

•  What would be the most straightforward way of solving sorting
problem ?

 moving the smaller elements to the first positions in the sequence
 (Selection Sort)

 moving the larger elements to the last positions in the sequence
 (Bubble Sort)

Brute Force Approach
(Sorting Problem)

•  What would be the most straightforward way of solving sorting
problem ?

 moving the smaller elements to the first positions in the sequence
 (Selection Sort)

 moving the larger elements to the last positions in the sequence
 (Bubble Sort)

Selection Sort

Brute Force Approach
(Sorting Problem)

•  What would be the most straightforward way of solving sorting
problem ?

 moving the smaller elements to the first positions in the sequence
 (Selection Sort)

 moving the larger elements to the last positions in the sequence
 (Bubble Sort)

Selection Sort

•  find the smallest element by scanning the sequence from the first to the
last, and exchange it with the first element of the sequence

Brute Force Approach
(Sorting Problem)

•  What would be the most straightforward way of solving sorting
problem ?

 moving the smaller elements to the first positions in the sequence
 (Selection Sort)

 moving the larger elements to the last positions in the sequence
 (Bubble Sort)

Selection Sort

•  find the smallest element by scanning the sequence from the first to the
last, and exchange it with the first element of the sequence

•  find the second smallest element by scanning the sequence from the second
to the last, and exchange it with the second element of the sequence

Brute Force Approach
(Sorting Problem)

•  What would be the most straightforward way of solving sorting
problem ?

 moving the smaller elements to the first positions in the sequence
 (Selection Sort)

 moving the larger elements to the last positions in the sequence
 (Bubble Sort)

Selection Sort

•  find the smallest element by scanning the sequence from the first to the
last, and exchange it with the first element of the sequence

•  find the second smallest element by scanning the sequence from the second
to the last, and exchange it with the second element of the sequence

•  find the i-th smallest element by scanning the sequence from the (i+1)-th to
the last, and exchange it with the i-th element of the sequence

.	.	.	

.	.	.	

.	.	.	

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

S E L E C T I O N
	

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

S E L E C T I O N
	

i = 1

j = 2

min ç 1

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

S E L E C T I O N
	

i = 1

j = 5

min ç 5

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E L E S T I O N
	

i = 1

j = 5

min ç 5

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E L E S T I O N
	

i = 2

j = 3

min ç 2

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E L E S T I O N
	

i = 2

j = 9

min ç 2

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E L E S T I O N
	

i = 3

j = 4

min ç 3

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E L E S T I O N
	

i = 3

j = 4

min ç 4

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E E L S T I O N
	

i = 3

j = 4

min ç 4

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E E L S T I O N
	

i = 4

j = 5

min ç 4

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E E L S T I O N
	

i = 4

j = 7

min ç 7

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E E I S T L O N
	

i = 4

j = 7

min ç 7

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E E I L N O S N
	

i = 8

j = 9

min ç 8

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E E I L N O S N
	

i = 8

j = 9

min ç 8

! ! = 1
!

!!!!!

!!!

!!!
= ! − ! + 1 + 1

!!!

!!!
= ! − !

!!!

!!!
	

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E E I L N O S N
	

i = 8

j = 9

min ç 8

! ! = 1
!

!!!!!

!!!

!!!
= ! − ! + 1 + 1

!!!

!!!
= ! − !

!!!

!!!
	

! ! = !
!!!

!!!
− !

!!!

!!!
	

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E E I L N O S N
	

i = 8

j = 9

min ç 8

! ! = 1
!

!!!!!

!!!

!!!
= ! − ! + 1 + 1

!!!

!!!
= ! − !

!!!

!!!
	

! ! = !
!!!

!!!
− !

!!!

!!!
= ! ! − 1 − ! ! − 1 2	

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 min ç i
 for j = i + 1 to n
 if aj < amin
 min ç j
 swap ai and amin

	

C E E I L N O S N
	

i = 8

j = 9

min ç 8

! ! = ! ! − 1 2 ∈ !(!!)	

! ! = !
!!!

!!!
− !

!!!

!!!
= ! ! − 1 − ! ! − 1 2	

! ! = 1
!

!!!!!

!!!

!!!
= ! − ! + 1 + 1

!!!

!!!
= ! − !

!!!

!!!
	

Brute Force Approach
(Sorting Problem)

•  What would be the most straightforward way of solving sorting
problem ?

 moving the smaller elements to the first positions in the sequence
 (Selection Sort)

 moving the larger elements to the last positions in the sequence
 (Bubble Sort)

Bubble Sort

Brute Force Approach
(Sorting Problem)

•  What would be the most straightforward way of solving sorting
problem ?

 moving the smaller elements to the first positions in the sequence
 (Selection Sort)

 moving the larger elements to the last positions in the sequence
 (Bubble Sort)

Bubble Sort

•  compare the adjacent elements of the sequence from the first to the last,
and exchange them if they are out of order in order to bubble up the
largest to the last position

Brute Force Approach
(Sorting Problem)

•  What would be the most straightforward way of solving sorting
problem ?

 moving the smaller elements to the first positions in the sequence
 (Selection Sort)

 moving the larger elements to the last positions in the sequence
 (Bubble Sort)

Bubble Sort

•  compare the adjacent elements of the sequence from the first to the last,
and exchange them if they are out of order in order to bubble up the
largest to the last position

•  compare the adjacent elements of the sequence from the first to the
second last, and exchange them if they are out of order in order to bubble
up the second largest to the second last position

Brute Force Approach
(Sorting Problem)

•  What would be the most straightforward way of solving sorting
problem ?

 moving the smaller elements to the first positions in the sequence
 (Selection Sort)

 moving the larger elements to the last positions in the sequence
 (Bubble Sort)

Bubble Sort

•  compare the adjacent elements of the sequence from the first to the last,
and exchange them if they are out of order in order to bubble up the
largest to the last position

•  compare the adjacent elements of the sequence from the first to the
second last, and exchange them if they are out of order in order to bubble
up the second largest to the second last position

.	.	.	

.	.	.	

.	.	.	

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

S E L E C T I O N
	

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

S E L E C T I O N
	

i = 1

j = 1

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

S E L E C T I O N
	

i = 1

j = 1

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E S L E C T I O N
	

i = 1

j = 2

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E L S E C T I O N
	

i = 1

j = 3

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E L E S C T I O N
	

i = 1

j = 4

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E L E C S T I O N
	

i = 1

j = 5

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E L E C S T I O N
	

i = 1

j = 6

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E L E C S I T O N
	

i = 1

j = 7

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E L E C S I O T N
	

i = 1

j = 8

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E L E C S I O N T
	

i = 1

j = 8

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E L E C S I O N T
	

i = 2

j = 1

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E L E C S I O N T
	

i = 2

j = 1

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E L E C S I O N T
	

i = 2

j = 2

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E E L C S I O N T
	

i = 2

j = 3

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E E C L S I O N T
	

i = 2

j = 4

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E E C L S I O N T
	

i = 2

j = 5

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E E C L I S O N T
	

i = 2

j = 6

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E E C L I O S N T
	

i = 2

j = 7

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

E E C L I O N S T
	

i = 2

j = 7

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

C E E I L O N S T
	

i = 8

j = 1

Brute Force Approach
(Sorting Problem)

SelectionSort([a1, a2,…, an])

input : a sequence of orderable items
output : sorted sequence in nondecreasing order

for i = 1 to n – 1
 for j = 1 to n – i
 if aj+1 < aj
 swap aj+1 and aj

	

C E E I L O N S T
	

i = 8

j = 1

! ! = 1
!!!

!!!

!!!

!!!
= ! − !

!!!

!!!
= ! ! − 1 2 ∈ !(!!)	

Brute Force Approach
(Searching Problem)

•  given a sequence of n items [a1, a2,…, an] and a search key K, determine
whether the sequence contains the search key K

Brute Force Approach
(Searching Problem)

•  given a sequence of n items [a1, a2,…, an] and a search key K, determine
whether the sequence contains the search key K

Linear Search

Brute Force Approach
(Searching Problem)

•  given a sequence of n items [a1, a2,…, an] and a search key K, determine
whether the sequence contains the search key K

Linear Search

•  simply compares the items of the sequence with the search key one

by one, or terminates without finding a match

Brute Force Approach
(Searching Problem)

•  given a sequence of n items [a1, a2,…, an] and a search key K, determine
whether the sequence contains the search key K

Linear Search

•  simply compares the items of the sequence with the search key one

by one, or terminates without finding a match

LinearSearch([a1, a2,…, an];K)

input : a sequence of n items
output : the index of the element that is equal
 to K, or 0 if no such element is found

for i = 1 to n
 if ai = K
 return i
return 0

Brute Force Approach
(Searching Problem)

•  given a sequence of n items [a1, a2,…, an] and a search key K, determine
whether the sequence contains the search key K

Linear Search

•  simply compares the items of the sequence with the search key one

by one, or terminates without finding a match

LinearSearch([a1, a2,…, an];K)

input : a sequence of n items
output : the index of the element that is equal
 to K, or 0 if no such element is found

for i = 1 to n
 if ai = K
 return i
return 0 ! ! = 1

!

!!!
= ! ∈ !(!)	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern
 (your algorithm outputs the index of the leftmost character of the first
 matching the substring if there is any, or 0 if there is no such matching)

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern
 (your algorithm outputs the index of the leftmost character of the first
 matching the substring if there is any, or 0 if there is no such matching)

 (the characters in the matching substring must be successive)

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern
 (your algorithm outputs the index of the leftmost character of the first
 matching the substring if there is any, or 0 if there is no such matching)

 (the characters in the matching substring must be successive)

 text : FEDERICO_FELLINI
 pattern : FEL

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern
 (your algorithm outputs the index of the leftmost character of the first
 matching the substring if there is any, or 0 if there is no such matching)

 (the characters in the matching substring must be successive)

 text : FEDERICO_FELLINI
 pattern : FEL

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern
 (your algorithm outputs the index of the leftmost character of the first
 matching the substring if there is any, or 0 if there is no such matching)

 (the characters in the matching substring must be successive)

•  find all the substrings of length m in the text, and check whether any of

them matches the pattern

 text : FEDERICO_FELLINI
 pattern : FEL

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern
 (your algorithm outputs the index of the leftmost character of the first
 matching the substring if there is any, or 0 if there is no such matching)

 (the characters in the matching substring must be successive)

•  find all the substrings of length m in the text, and check whether any of

them matches the pattern

 text : FEDERICO_FELLINI
 pattern : FEL

 FED, EDE, DER, ERI, RIC, ICO, CO_, O_F, _FE, FEL, ELL, LLI, LIN, INI

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern
 (your algorithm outputs the index of the leftmost character of the first
 matching the substring if there is any, or 0 if there is no such matching)

 (the characters in the matching substring must be successive)

•  find all the substrings of length m in the text, and check whether any of

them matches the pattern

 text : FEDERICO_FELLINI
 pattern : FEL

 FED, EDE, DER, ERI, RIC, ICO, CO_, O_F, _FE, FEL, ELL, LLI, LIN, INI

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern
 (your algorithm outputs the index of the leftmost character of the first
 matching the substring if there is any, or 0 if there is no such matching)

 (the characters in the matching substring must be successive)

•  find all the substrings of length m in the text, and check whether any of

them matches the pattern

 text : FEDERICO_FELLINI
 pattern : FEL

 FED, EDE, DER, ERI, RIC, ICO, CO_, O_F, _FE, FEL, ELL, LLI, LIN, INI

 output : 10

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	
j = 1	

i = 1	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	
j = 1	

i = 1	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	
j = 2	

i = 1	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	
j = 2	

i = 1	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	
j = 3	

i = 1	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	
j = 3	

i = 1	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0 j = 1	

i = 2	
FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	
j = 1	

i = 2	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	
j = 1	

i = 3	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	
j = 1	

i = 10	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	
j = 2	

i = 10	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	
j = 3	

i = 10	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	
j = 4	

i = 10	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

FEDERICO_FELLINI	

FEL	

n = 16	

m = 3	
j = 4	

i = 10	

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

Brute Force Approach
(Searching Problem)

String Matching

•  Given a string of n characters (text) and a string of m characters (pattern),

determine whether the text has a substring that matches the pattern

•  find all the substrings of length m in the text, and check whether any of
them matches the pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

input : a text with n characters and a pattern with m
characters

output : outputs the index of the leftmost character of the
first matching substring, or 0 if no such substring exists

for i = 1 to n – m + 1
 j ç 1
 while j < m + 1 and pj = ti+j-1

 j ç j+1
 if j = m + 1
 return i
return 0

T(n) = (n – m + 1).m = O(nm)	

Exhaustive Search
•  a brute force approach involving search for a solution with a special

property or constraint by exploring every possible combination from a set
of choices or values

Exhaustive Search
•  a brute force approach involving search for a solution with a special

property or constraint by exploring every possible combination from a set
of choices or values
-  create all possible solutions in a systematic manner
-  evaluate potential solutions one by one, remove infeasible ones and

keep track of the best one found so far
-  when there is no more to evaluate, output the solution found

Exhaustive Search
•  a brute force approach involving search for a solution with a special

property or constraint by exploring every possible combination from a set
of choices or values
-  create all possible solutions in a systematic manner
-  evaluate potential solutions one by one, remove infeasible ones and

keep track of the best one found so far
-  when there is no more to evaluate, output the solution found

Knapsack Problem

•  given a knapsack of capacity W, and n items so that each of them has a weight and
value pair (wi, pi), find the most valuable subset of the items that fit into knapsack	

Exhaustive Search
•  a brute force approach involving search for a solution with a special

property or constraint by exploring every possible combination from a set
of choices or values
-  create all possible solutions in a systematic manner
-  evaluate potential solutions one by one, remove infeasible ones and

keep track of the best one found so far
-  when there is no more to evaluate, output the solution found

Knapsack Problem

•  given a knapsack of capacity W, and n items so that each of them has a weight and
value pair (wi, pi), find the most valuable subset of the items that fit into knapsack	

W=10

Exhaustive Search
•  a brute force approach involving search for a solution with a special

property or constraint by exploring every possible combination from a set
of choices or values
-  create all possible solutions in a systematic manner
-  evaluate potential solutions one by one, remove infeasible ones and

keep track of the best one found so far
-  when there is no more to evaluate, output the solution found

Knapsack Problem

•  given a knapsack of capacity W, and n items so that each of them has a weight and
value pair (wi, pi), find the most valuable subset of the items that fit into knapsack	

7/16

4/20 3/12

5/24

W=10

Exhaustive Search
•  a brute force approach involving search for a solution with a special

property or constraint by exploring every possible combination from a set
of choices or values
-  create all possible solutions in a systematic manner
-  evaluate potential solutions one by one, remove infeasible ones and

keep track of the best one found so far
-  when there is no more to evaluate, output the solution found

Knapsack Problem

•  given a knapsack of capacity W, and n items so that each of them has a weight and
value pair (wi, pi), find the most valuable subset of the items that fit into knapsack	

7/16

4/20 3/12

5/24

W=10

subset total	weight total	value
{} 0 0
{1} 3 12
{2} 4 20
{3} 5 24
{4} 7 16
{1,2} 7 32
{1,3} 8 36
{1,4} 10 28

Exhaustive Search
•  a brute force approach involving search for a solution with a special

property or constraint by exploring every possible combination from a set
of choices or values
-  create all possible solutions in a systematic manner
-  evaluate potential solutions one by one, remove infeasible ones and

keep track of the best one found so far
-  when there is no more to evaluate, output the solution found

Knapsack Problem

•  given a knapsack of capacity W, and n items so that each of them has a weight and
value pair (wi, pi), find the most valuable subset of the items that fit into knapsack	

7/16

4/20 3/12

5/24

W=10

subset total	weight total	value
{} 0 0
{1} 3 12
{2} 4 20
{3} 5 24
{4} 7 16
{1,2} 7 32
{1,3} 8 36
{1,4} 10 28

subset total	weight total	value
{2,3} 9 44
{2,4} 11 no
{3,4} 12 no
{1,2,3} 12 no
{1,2,4} 14 no
{1,3,4} 15 no
{2,3,4} 16 no
{1,2,3,4} 19 no

Exhaustive Search
•  a brute force approach involving search for a solution with a special

property or constraint by exploring every possible combination from a set
of choices or values
-  create all possible solutions in a systematic manner
-  evaluate potential solutions one by one, remove infeasible ones and

keep track of the best one found so far
-  when there is no more to evaluate, output the solution found

Knapsack Problem

•  given a knapsack of capacity W, and n items so that each of them has a weight and
value pair (wi, pi), find the most valuable subset of the items that fit into knapsack	

7/16

4/20 3/12

5/24

W=10

subset total	weight total	value
{} 0 0
{1} 3 12
{2} 4 20
{3} 5 24
{4} 7 16
{1,2} 7 32
{1,3} 8 36
{1,4} 10 28

subset total	weight total	value
{2,3} 9 44
{2,4} 11 no
{3,4} 12 no
{1,2,3} 12 no
{1,2,4} 14 no
{1,3,4} 15 no
{2,3,4} 16 no
{1,2,3,4} 19 no

Exhaustive Search
(Graph Traversal)

•  can be applied to graph traversal algorithms that exhaustively
search a graph

Exhaustive Search
(Graph Traversal)

•  can be applied to graph traversal algorithms that exhaustively
search a graph

-  graph traversal algorithms systematically explore every vertex
and every edge of a graph

Exhaustive Search
(Graph Traversal)

•  can be applied to graph traversal algorithms that exhaustively
search a graph

-  graph traversal algorithms systematically explore every vertex
and every edge of a graph

Graph Theory

•  Königsberg was a city in Germany in 18th century. There was a

river Pregel that divide the city into four distinct regions

Is it possible to take a walk around the city
that passes each bridge exactly once ?	

