Decrease-and-Conquer

Murat Osmanoglu

Decrease-and-Conquer

- for a given instance of a problem, take advantage of relationship between its solution and solution of its smaller instance

Decrease-and-Conquer

- for a given instance of a problem, take advantage of relationship between its solution and solution of its smaller instance
- reduce problem instance to its smaller instance
- solve the smaller instance
- extend the solution of smaller instance to obtain a solution for the original problem

Decrease-and-Conquer

- for a given instance of a problem, take advantage of relationship between its solution and solution of its smaller instance
- reduce problem instance to its smaller instance
- solve the smaller instance
- extend the solution of smaller instance to obtain a solution for the original problem
- three variations :
- decrease by a constant (usually 1),
- decrease by a constant factor (usually 2)
- decrease by a variable size

Decrease-and-Conquer

Decrease-by-a-Constant
(Exponentiation Problem)

Decrease-and-Conquer

Decrease-by-a-Constant
(Exponentiation Problem)

- Given a nonzero number a and a nonnegative integer n, compute a^{n}

Decrease-and-Conquer

Decrease-by-a-Constant

(Exponentiation Problem)

- Given a nonzero number a and a nonnegative integer n, compute a^{n}
- the formula $a^{n}=a^{n-1}$. a can be used to obtain the relationship between an instance of size n and an instance of size $n-1$

Decrease-and-Conquer

Decrease-by-a-Constant

(Exponentiation Problem)

- Given a nonzero number a and a nonnegative integer n, compute a^{n}
- the formula $a^{n}=a^{n-1}$. a can be used to obtain the relationship between an instance of size n and an instance of size $n-1$

$$
f(n)=\left\{\begin{array}{cc}
f(n-1) \cdot a & \text { if } n>0 \\
1 & \text { if } n=0
\end{array}\right.
$$

Decrease-and-Conquer

Decrease-by-a-Constant

(Exponentiation Problem)

- Given a nonzero number a and a nonnegative integer n, compute a^{n}
- the formula $\boldsymbol{a}^{\boldsymbol{n}}=\boldsymbol{a}^{\boldsymbol{n - 1}}$. \boldsymbol{a} can be used to obtain the relationship between an instance of size n and an instance of size $n-1$

$$
f(n)=\left\{\begin{array}{cc}
f(n-1) \cdot a & \text { if } n>0 \\
1 & \text { if } n=0
\end{array}\right.
$$

Decrease-by-a-Constant-Factor
(Exponentiation Problem)

Decrease-and-Conquer

Decrease-by-a-Constant

(Exponentiation Problem)

- Given a nonzero number a and a nonnegative integer n, compute a^{n}
- the formula $\boldsymbol{a}^{n}=\boldsymbol{a}^{\boldsymbol{n - 1}}$. \boldsymbol{a} can be used to obtain the relationship between an instance of size n and an instance of size $n-1$

$$
f(n)=\left\{\begin{array}{cc}
f(n-1) \cdot & \text { if } n>0 \\
1 & \text { if } n=0
\end{array}\right.
$$

Decrease-by-a-Constant-Factor
(Exponentiation Problem)

- the formula $a^{n}=\left(a^{n / 2}\right)^{2}$ can be used to obtain the relationship between an instance of size n and an instance of half of its size

Decrease-and-Conquer

Decrease-by-a-Constant

(Exponentiation Problem)

- Given a nonzero number a and a nonnegative integer n, compute a^{n}
- the formula $a^{n}=a^{n-1}$. a can be used to obtain the relationship between an instance of size n and an instance of size $n-1$

$$
f(n)=\left\{\begin{array}{cc}
f(n-1) \cdot & \text { if } n>0 \\
1 & \text { if } n=0
\end{array}\right.
$$

Decrease-by-a-Constant-Factor
(Exponentiation Problem)

- the formula $a^{n}=\left(a^{n / 2}\right)^{2}$ can be used to obtain the relationship between an instance of size n and an instance of half of its size

$$
f(n)=\left\{\begin{array}{cl}
\left(a^{n / 2}\right)^{2} & \text { if } n \text { is even } \\
\left(a^{(n-1) / 2}\right)^{2} \cdot a & \text { if } n \text { is odd } \\
1 & \text { if } n=0
\end{array}\right.
$$

Decrease-and-Conquer

Decrease-by-a-Constant-Factor (Exponentiation Problem)

- Given n coins, all the same except for one fake coin that is lighter than the others, and a balance scale allowing us to compare any two piles of coins, find the lighter coin with the minimum possible number of weighs

Decrease-and-Conquer

Decrease-by-a-Constant-Factor (Exponentiation Problem)

- Given n coins, all the same except for one fake coin that is lighter than the others, and a balance scale allowing us to compare any two piles of coins, find the lighter coin with the minimum possible number of weighs
- divide n coins into two piles of $[n / 2]$, leave one coin aside if n is odd, and put two piles on the scale
- if the piles weigh same, the extra coin must be fake
- otherwise, proceed with the lighter pile

Decrease-and-Conquer

Decrease-by-a-Constant-Factor (Exponentiation Problem)

- Given n coins, all the same except for one fake coin that is lighter than the others, and a balance scale allowing us to compare any two piles of coins, find the lighter coin with the minimum possible number of weighs
- divide n coins into two piles of $[n / 2]$, leave one coin aside if n is odd, and put two piles on the scale
- if the piles weigh same, the extra coin must be fake
- otherwise, proceed with the lighter pile

Decrease-by-Variable-Size
(Euclid's Algorithm)

- Given two integers m and n, find the largest number dividing both of them

Decrease-and-Conquer

Decrease-by-a-Constant-Factor (Exponentiation Problem)

- Given n coins, all the same except for one fake coin that is lighter than the others, and a balance scale allowing us to compare any two piles of coins, find the lighter coin with the minimum possible number of weighs
- divide n coins into two piles of $[n / 2]$, leave one coin aside if n is odd, and put two piles on the scale
- if the piles weigh same, the extra coin must be fake
- otherwise, proceed with the lighter pile

Decrease-by-Variable-Size
(Euclid's Algorithm)

- Given two integers m and n, find the largest number dividing both of them
- the formula $\operatorname{gcd}(\boldsymbol{m}, \boldsymbol{n})=\boldsymbol{g c d}(\boldsymbol{n}, \boldsymbol{m} \bmod \boldsymbol{n})$ can be used to obtain the relationship between an instance of size m and an instance of size n decrease-by-a-variable-size,

Decrease-and-Conquer

Decrease-by-a-Constant-Factor (Exponentiation Problem)

- Given n coins, all the same except for one fake coin that is lighter than the others, and a balance scale allowing us to compare any two piles of coins, find the lighter coin with the minimum possible number of weighs
- divide n coins into two piles of $[n / 2]$, leave one coin aside if n is odd, and put two piles on the scale
- if the piles weigh same, the extra coin must be fake
- otherwise, proceed with the lighter pile

Decrease-by-Variable-Size

(Euclid's Algorithm)

- Given two integers m and n, find the largest number dividing both of them
- the formula $\operatorname{gcd}(\boldsymbol{m}, \boldsymbol{n})=\boldsymbol{g c d}(\boldsymbol{n}, \boldsymbol{m} \bmod \boldsymbol{n})$ can be used to obtain the relationship between an instance of size m and an instance of size n decrease-by-a-variable-size, use the following recursive definition

$$
f(m, n)=\left\{\begin{array}{cc}
f(n, m \bmod n) & \text { if } n>0 \\
m & \text { if } n=0
\end{array}\right.
$$

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as
$\left\langle a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle$ such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \cdots \leq a_{n}{ }^{\prime}$

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as
$\left\langle a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle$ such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \cdots \leq a_{n}{ }^{\prime}$
- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as
$\left\langle a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle$ such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \cdots \leq a_{n}{ }^{\prime}$
- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as

$$
\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle \text { such that } a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements
output: sorted sequence in nondecreasing order
for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as

$$
\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle \text { such that } a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements
output: sorted sequence in nondecreasing order
for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
SELECTION
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as

$$
\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle \text { such that } a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp
temp $\leftarrow E$

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as

$$
\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle \text { such that } a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as

$$
\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle \text { such that } a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as
$\left\langle a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle$ such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \cdots \leq a_{n}{ }^{\prime}$
- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as
$\left\langle a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle$ such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \cdots \leq a_{n}{ }^{\prime}$
- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as

$$
\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle \text { such that } a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as

$$
\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle \text { such that } a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as
$\left\langle a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle$ such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \cdots \leq a_{n}{ }^{\prime}$
- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as

$$
\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle \text { such that } a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as
$\left\langle a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle$ such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \cdots \leq a_{n}{ }^{\prime}$
- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as
$\left\langle a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle$ such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \cdots \leq a_{n}{ }^{\prime}$
- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as

$$
\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle \text { such that } a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp
temp $\leftarrow E$

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as
$\left\langle a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle$ such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \cdots \leq a_{n}{ }^{\prime}$
- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as

$$
\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle \text { such that } a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as
$\left\langle a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle$ such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \cdots \leq a_{n}{ }^{\prime}$
- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as

$$
\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle \text { such that } a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
$$

- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp
temp $\leftarrow E$

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as
$\left\langle a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle$ such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \cdots \leq a_{n}{ }^{\prime}$
- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as
$\left\langle a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\rangle$ such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \cdots \leq a_{n}{ }^{\prime}$
- How can we use a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle$ to obtain a solution for the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$?
- just find an appropriate position to place a_{n}

InsertionSort $\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements output: sorted sequence in nondecreasing order for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

CEEILNOST
$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Sorting Problem

(Decrease-by-One)

- given a sequence of n orderable items $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, reorder the items as

- just find an appropriate position to place a_{n}

InsertionSort ($\left.\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)$
input : a sequence of orderable elements
output: sorted sequence in nondecreasing order
for $\mathrm{i}=2$ to n
temp $\leftarrow a_{i}$
$j \leftarrow i-1$
while $j \geq 0$ and $a_{j}>$ temp

$$
\begin{aligned}
& a_{j+1} \leftarrow a_{j} \\
& \mathrm{j} \leftarrow \mathrm{j}-1
\end{aligned}
$$

$a_{j+1} \leftarrow$ temp

Decrease-by-a-Constant

Topological Sort
(Decrease-by-One)

- Directed graph can be used to represent order-dependent tasks

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- Directed graph can be used to represent order-dependent tasks

task v can start only after task u finishes

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- Directed graph can be used to represent order-dependent tasks

task v can start only after task u finishes
- Directed Acyclic Graph (DAG) must be used to represent such order-dependent tasks

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- Directed graph can be used to represent order-dependent tasks

task v can start only after task u finishes
- Directed Acyclic Graph (DAG) must be used to represent such order-dependent tasks

Decrease-by-a-Constant

Topological Sort
(Decrease-by-One)

- a topological sort of a graph is a linear ordering of the vertices of a directed acyclic graph (DAG) such that if (u,v) is an edge in DAG, then u appears before v in this linear ordering

Decrease-by-a-Constant

Topological Sort
 (Decrease-by-One)

- a topological sort of a graph is a linear ordering of the vertices of a directed acyclic graph (DAG) such that if (u,v) is an edge in DAG, then u appears before v in this linear ordering
- for course dependency graph, a topological order gives in which order the courses should be taken

Decrease-by-a-Constant

Topological Sort
 (Decrease-by-One)

- a topological sort of a graph is a linear ordering of the vertices of a directed acyclic graph (DAG) such that if (u, v) is an edge in DAG, then u appears before v in this linear ordering
- for course dependency graph, a topological order gives in which order the courses should be taken

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- a topological sort of a graph is a linear ordering of the vertices of a directed acyclic graph (DAG) such that if (u, v) is an edge in DAG, then u appears before v in this linear ordering
- for course dependency graph, a topological order gives in which order the courses should be taken

$a, b, c, d, e, f, g, h, k, m$
$b, c, a, e, d, f, g, k, h, m$
$c, b, d, f, a, g, h, m, k, e$

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- a topological sort of a graph is a linear ordering of the vertices of a directed acyclic graph (DAG) such that if (u, v) is an edge in DAG, then u appears before v in this linear ordering
- for course dependency graph, a topological order gives in which order the courses should be taken

$a, b, c, d, e, f, g, h, k, m$
$b, c, a, e, d, f, g, k, h, m$
$c, b, d, f, a, g, h, m, k, e$

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- a topological sort of a graph is a linear ordering of the vertices of a directed acyclic graph (DAG) such that if (u, v) is an edge in DAG, then u appears before v in this linear ordering
- for course dependency graph, a topological order gives in which order the courses should be taken

$a, b, c, d, e, f, g, h, k, m$
$b, c, a, e, d, f, g, k, h, m$
$c, b, d, f, a, g, h, m, k, e$
- there is an edge (e,m) in the graph, but e comes after m in the ordering
- swap e and m

$$
c, b, d, f, a, g, h, e, k, m
$$

Decrease-by-a-Constant

Topological Sort
(Decrease-by-One)

Decrease-by-a-Constant

Topological Sort
(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\mathrm{in}}(\mathrm{u})=0$ from the graph

Decrease-by-a-Constant

Topological Sort
 (Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\operatorname{in}}(u)=0$ from the graph
- remove all outgoing edges

Decrease-by-a-Constant

Topological Sort
(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\mathrm{in}}(\mathrm{u})=0$ from the graph
- remove all outgoing edges
- repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant

Topological Sort
(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\mathrm{in}}(\mathrm{u})=0$ from the graph
- remove all outgoing edges
- repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\mathrm{in}}(\mathrm{u})=0$ from the graph
- remove all outgoing edges
- repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\mathrm{in}}(\mathrm{u})=0$ from the graph
- remove all outgoing edges
- repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\mathrm{in}}(\mathrm{u})=0$ from the graph
- remove all outgoing edges
- repeat the procedure until no more vertices in the graph
a, b

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\mathrm{in}}(\mathrm{u})=0$ from the graph
- remove all outgoing edges
- repeat the procedure until no more vertices in the graph
a, b, e

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\mathrm{in}}(\mathrm{u})=0$ from the graph
- remove all outgoing edges
- repeat the procedure until no more vertices in the graph
a, b, e, c

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\mathrm{in}}(\mathrm{u})=0$ from the graph
- remove all outgoing edges
- repeat the procedure until no more vertices in the graph

$$
a, b, e, c, d
$$

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\mathrm{in}}(\mathrm{u})=0$ from the graph
- remove all outgoing edges
- repeat the procedure until no more vertices in the graph
a, b, e, c, d, f

$O\left(I V I+\Sigma \operatorname{deg}^{\text {out }}(\mathrm{v})\right)=O(I V|+|E|)$

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\mathrm{in}}(\mathrm{u})=0$ from the graph
- remove all outgoing edges
- repeat the procedure until no more vertices in the graph

$$
a, b, e, c, d, f, g
$$

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\mathrm{in}}(\mathrm{u})=0$ from the graph
- remove all outgoing edges
- repeat the procedure until no more vertices in the graph

$$
a, b, e, c, d, f, g, k
$$

$O\left(I V I+\Sigma \operatorname{deg}^{\text {out }}(\mathrm{v})\right)=O(|\mathrm{~V}|+|E|)$

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\operatorname{in}}(u)=0$ from the graph
- remove all outgoing edges
- repeat the procedure until no more vertices in the graph

$$
a, b, e, c, d, f, g, k, h
$$

$$
O\left(|V|+\Sigma \operatorname{deg}^{\text {out }}(\mathrm{V})\right)=O(|\mathrm{~V}|+|E|)
$$

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- output a vertex u with $\operatorname{deg}^{\mathrm{in}}(\mathrm{u})=0$ from the graph
- remove all outgoing edges
- repeat the procedure until no more vertices in the graph

$$
a, b, e, c, d, f, g, k, h, m
$$

$$
O\left(\mid \mathrm{VI}+\Sigma \operatorname{deg}^{\text {out }}(\mathrm{V})\right)=O(|\mathrm{~V}|+|E|)
$$

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

Decrease-by-a-Constant

Topological Sort

(Decrease-by-One)

- run DFS on the given graph, and sort the vertices according to their finishing time

$c, f, a, g, h, k, b, d, e, m$

Decrease-by-a-Constant-Factor

Binary Search

- Given a sorted sequence of n items $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and a search key K, determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search

- Given a sorted sequence of n items $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and a search key K, determine whether the sorted sequence contains the key or not

BinarySearch ($\mathrm{X}, \mathrm{i}, \mathrm{j} ; \mathrm{x}$)

input : $\left\{X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} ; x\right\}$
output: 'yes' if $x \in X$, 'no' otherwise
while $\mathrm{i} \leq \mathrm{j}$
if $x=a_{\lfloor(i+j) / 2\rfloor}$ return 'yes'
elseif $x<a_{\lfloor(i+j) / 2\rfloor}$
BinarySearch (X,i, $\lfloor(i+j) / 2\rfloor-1 ; x)$
else BinarySearch $(X, l(i+j) / 2\rfloor+1, j ; x)$

Decrease-by-a-Constant-Factor

Binary Search

- Given a sorted sequence of n items $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and a search key K, determine whether the sorted sequence contains the key or not

BinarySearch ($\mathrm{X}, \mathrm{i}, \mathrm{j} ; \mathrm{x}$)
input : $\left\{X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} ; x\right\}$
output: 'yes' if $x \in X$, 'no' otherwise
while $\mathrm{i} \leq \mathrm{j}$

$$
x=70
$$

if $x=a_{\lfloor(i+j) / 2\rfloor}$ return 'yes'

3	14	27	31	39	42	55	70	74	81	85	93	98

elseif $x<a_{\lfloor(i+j) / 2\rfloor}$
BinarySearch (X,i, $\lfloor(i+j) / 2\rfloor-1 ; x)$
else BinarySearch $(X,\lfloor(i+j) / 2\rfloor+1, j ; x)$

Decrease-by-a-Constant-Factor

Binary Search

- Given a sorted sequence of n items $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and a search key K, determine whether the sorted sequence contains the key or not

BinarySearch ($\mathrm{X}, \mathrm{i}, \mathrm{j} ; \mathrm{x}$)
input : $\left\{X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} ; x\right\}$
output: 'yes' if $x \in X$, 'no' otherwise
while $\mathrm{i} \leq \mathrm{j}$
if $x=a_{\lfloor(i+j) / 2\rfloor}$ return 'yes'

3	14	27	31	39	42	55	70	74	81	85	93	98

elseif $x<a_{\lfloor(i+j) / 2\rfloor}$
BinarySearch $(\mathrm{X}, \mathrm{i},\lfloor(i+j) / 2\rfloor-1 ; x) \quad i=1$
$j=13$
else BinarySearch $(X,\lfloor(i+j) / 2\rfloor+1, j ; x)$

Decrease-by-a-Constant-Factor

Binary Search

- Given a sorted sequence of n items $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and a search key K, determine whether the sorted sequence contains the key or not

BinarySearch ($\mathrm{X}, \mathrm{i}, \mathrm{j} ; \mathrm{x}$)
input : $\left\{X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} ; x\right\}$
output: 'yes' if $x \in X$, 'no' otherwise
while $\mathrm{i} \leq \mathrm{j}$
if $x=a_{\lfloor(i+j) / 2\rfloor}$ return 'yes'

3	14	27	31	39	42	55	70	74	81	85	93	98

elseif $x<a_{\lfloor(i+j) / 2\rfloor}$
BinarySearch $(\mathrm{X}, \mathrm{i},\lfloor(i+j) / 2\rfloor-1 ; x) \quad i=1$
$j=13$
else BinarySearch $(X, l(i+j) / 2\rfloor+1, j ; x)$

$$
\lfloor(i+j) / 2\rfloor=7
$$

Decrease-by-a-Constant-Factor

Binary Search

- Given a sorted sequence of n items $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and a search key K, determine whether the sorted sequence contains the key or not

BinarySearch ($\mathrm{X}, \mathrm{i}, \mathrm{j} ; \mathrm{x}$)
input : $\left\{X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} ; x\right\}$
output: 'yes' if $x \in X$, 'no' otherwise
while $\mathrm{i} \leq \mathrm{j}$
if $x=a_{\lfloor(i+j) / 2\rfloor}$ return 'yes'

3	14	27	31	39	42	55	70	74	81	85	93	98

elseif $x<a_{\lfloor(i+j) / 2\rfloor}$
BinarySearch $(\mathrm{X}, \mathrm{i},\lfloor(i+j) / 2\rfloor-1 ; x) \quad i=1$
else BinarySearch $(X, l(i+j) / 2\rfloor+1, j ; x)$

$$
\begin{aligned}
& \quad\lfloor(i+j) / 2\rfloor=7 \\
& \quad \boldsymbol{x}>\boldsymbol{a}_{7}=\mathbf{5 5}
\end{aligned}
$$

Decrease-by-a-Constant-Factor

Binary Search

- Given a sorted sequence of n items $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and a search key K, determine whether the sorted sequence contains the key or not

BinarySearch ($\mathrm{X}, \mathrm{i}, \mathrm{j} ; \mathrm{x}$)
input : $\left\{X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} ; x\right\}$
output: 'yes' if $x \in X$, 'no' otherwise
while $\mathrm{i} \leq \mathrm{j}$
if $x=a_{\lfloor(i+j) / 2\rfloor}$ return 'yes'

3	14	27	31	39	42	55	70	74	81	85	93	98

elseif $x<a_{\lfloor(i+j) / 2\rfloor}$
BinarySearch $(\mathrm{X}, \mathrm{i},\lfloor(i+j) / 2\rfloor-1 ; x) \quad i=8$
$j=13$
else BinarySearch $(X,\lfloor(i+j) / 2\rfloor+1, j ; x)$

Decrease-by-a-Constant-Factor

Binary Search

- Given a sorted sequence of n items $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and a search key K, determine whether the sorted sequence contains the key or not

BinarySearch ($\mathrm{X}, \mathrm{i}, \mathrm{j} ; \mathrm{x}$)
input : $\left\{X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} ; x\right\}$
output: 'yes' if $x \in X$, 'no' otherwise
while $\mathrm{i} \leq \mathrm{j}$
if $x=a_{\lfloor(i+j) / 2\rfloor}$ return 'yes'

3	14	27	31	39	42	55	70	74	81	85	93	98

elseif $x<a_{\lfloor(i+j) / 2\rfloor}$
BinarySearch $(\mathrm{X}, \mathrm{i},\lfloor(i+j) / 2\rfloor-1 ; x) \quad i=8$
$j=13$
else BinarySearch $(X,\lfloor(i+j) / 2\rfloor+1, j ; x)$

$$
\lfloor(i+j) / 2\rfloor=10
$$

Decrease-by-a-Constant-Factor

Binary Search

- Given a sorted sequence of n items $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and a search key K, determine whether the sorted sequence contains the key or not

BinarySearch ($\mathrm{X}, \mathrm{i}, \mathrm{j} ; \mathrm{x}$)
input : $\left\{X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} ; x\right\}$
output: 'yes' if $x \in X$, 'no' otherwise
while $\mathrm{i} \leq \mathrm{j}$
if $x=a_{\lfloor(i+j) / 2\rfloor}$ return 'yes'

3	14	27	31	39	42	55	70	74	81	85	93	98

elseif $x<a_{\lfloor(i+j) / 2\rfloor}$
BinarySearch $(\mathrm{X}, \mathrm{i},\lfloor(i+j) / 2\rfloor-1 ; x) \quad i=8$
$j=13$
else BinarySearch $(X,\lfloor(i+j) / 2\rfloor+1, j ; x)$

$$
\begin{aligned}
\lfloor(i+j) / 2\rfloor & =10 \\
\boldsymbol{x}<\boldsymbol{a}_{\mathbf{1 0}} & =\mathbf{8 1}
\end{aligned}
$$

Decrease-by-a-Constant-Factor

Binary Search

- Given a sorted sequence of n items $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and a search key K, determine whether the sorted sequence contains the key or not

BinarySearch ($\mathrm{X}, \mathrm{i}, \mathrm{j} ; \mathrm{x}$)
input : $\left\{X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} ; x\right\}$
output: 'yes' if $x \in X$, 'no' otherwise
while $\mathrm{i} \leq \mathrm{j}$
if $x=a_{\lfloor(i+j) / 2\rfloor}$ return 'yes'

3	14	27	31	39	42	55	70	74	81	85	93	98

elseif $x<a_{\lfloor(i+j) / 2\rfloor}$
BinarySearch (X,i, $\lfloor(i+j) / 2\rfloor-1 ; x) \quad i=8$
$j=9$
else BinarySearch $(X,\lfloor(i+j) / 2\rfloor+1, j ; x)$

Decrease-by-a-Constant-Factor

Binary Search

- Given a sorted sequence of n items $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and a search key K, determine whether the sorted sequence contains the key or not

BinarySearch ($\mathrm{X}, \mathrm{i}, \mathrm{j} ; \mathrm{x}$)
input : $\left\{X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} ; x\right\}$
output: 'yes' if $x \in X$, 'no' otherwise
while $\mathrm{i} \leq \mathrm{j}$
if $x=a_{\lfloor(i+j) / 2\rfloor}$ return 'yes'

3	14	27	31	39	42	55	70	74	81	85	93	98

elseif $x<a_{\lfloor(i+j) / 2\rfloor}$
BinarySearch $(\mathrm{X}, \mathrm{i},\lfloor(i+j) / 2\rfloor-1 ; x) \quad i=8$
$j=9$
else BinarySearch $(X, l(i+j) / 2\rfloor+1, j ; x)$

$$
\lfloor(i+j) / 2\rfloor=8
$$

Decrease-by-a-Constant-Factor

Binary Search

- Given a sorted sequence of n items $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and a search key K, determine whether the sorted sequence contains the key or not

BinarySearch ($\mathrm{X}, \mathrm{i}, \mathrm{j} ; \mathrm{x}$)
input : $\left\{X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} ; x\right\}$
output: 'yes' if $x \in X$, 'no' otherwise
while $\mathrm{i} \leq \mathrm{j}$
if $x=a_{\lfloor(i+j) / 2\rfloor}$ return 'yes'

3	14	27	31	39	42	55	70	74	81	85	93	98

elseif $x<a_{\lfloor(i+j) / 2\rfloor}$
BinarySearch $(\mathrm{X}, \mathrm{i},\lfloor(i+j) / 2\rfloor-1 ; x) \quad i=8$
else BinarySearch $(X, l(i+j) / 2\rfloor+1, j ; x)$

$$
\begin{aligned}
& \lfloor(i+j) / 2\rfloor=8 \\
& \boldsymbol{x}=\boldsymbol{a}_{\mathbf{8}}=\mathbf{7 0}
\end{aligned}
$$

Decrease-by-a-Constant-Factor

Binary Search

 determine whether $T(n)=T(n / 2)+1$, and $T(n)=1$ for $\mathrm{n}=1$

BinarySearch(X,i,j;x)

$$
T(n)=\log n+1 \in \Theta\left(n^{2}\right)
$$

input : $\left\{X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} ; x\right\}$
output: 'yes' if $x \in X$, 'no' otherwise
while $\mathrm{i} \leq \mathrm{j}$

$$
x=70
$$

if $x=a_{\lfloor(i+j) / 2\rfloor}$ return 'yes'

| 3 | 14 | 27 | 31 | 39 | 42 | 55 | 70 | 74 | 81 | 85 | 93 | 98 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | elseif $x<a_{\lfloor(i+j) / 2\rfloor}$ BinarySearch $(X, i,\lfloor(i+j) / 2\rfloor-1 ; x) \quad i=8$ $j=9$ else BinarySearch $(X, L(i+j) / 2\rfloor+1, j ; x)$

$$
\begin{aligned}
& \lfloor(i+j) / 2\rfloor=8 \\
& \boldsymbol{x}=\boldsymbol{a}_{\mathbf{8}}=70
\end{aligned}
$$

Decrease-by-Variable-Size

Selection Problem

- Given a sequence of n numbers $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, determine the k -th smallest element of the sequence

Decrease-by-Variable-Size

Selection Problem

- Given a sequence of n numbers $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, determine the k -th smallest element of the sequence
- for $k=1$ or $k=n$, find the smallest or largest element by scanning the sequence

Decrease-by-Variable-Size

Selection Problem

- Given a sequence of n numbers $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, determine the k -th smallest element of the sequence
- for $k=1$ or $k=n$, find the smallest or largest element by scanning the sequence
- for $k=\lceil n / 2\rceil$, it's finding the median (the middle value) of the sequence

Decrease-by-Variable-Size

Selection Problem

- Given a sequence of n numbers $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, determine the k -th smallest element of the sequence
- for $k=1$ or $k=n$, find the smallest or largest element by scanning the sequence
- for $k=\lceil n / 2\rceil$, it's finding the median (the middle value) of the sequence
- Brute-force approach; first sort the given sequence, then output the k-th element of the sorted sequence

Decrease-by-Variable-Size

Selection Problem

- Given a sequence of n numbers $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, determine the k-th smallest element of the sequence
- for $k=1$ or $k=n$, find the smallest or largest element by scanning the sequence
- for $k=\lceil n / 2\rceil$, it's finding the median (the middle value) of the sequence
- Brute-force approach; first sort the given sequence, then output the k-th element of the sorted sequence
since the problem is to just find the k-th smallest element, sorting the entire sequence would be unnecessary

Decrease-by-Variable-Size

Selection Problem

- partition the given sequence around some value p (pivot), that is the first element

Decrease-by-Variable-Size

Selection Problem

- partition the given sequence around some value p (pivot), that is the first element
\square

Decrease-by-Variable-Size

Selection Problem

- partition the given sequence around some value p (pivot), that is the first element

Decrease-by-Variable-Size

Selection Problem

- partition the given sequence around some value p (pivot), that is the first element

- assume s be the index of the pivot

Decrease-by-Variable-Size

Selection Problem

- partition the given sequence around some value p (pivot), that is the first element

- assume s be the index of the pivot
- if $s=k$, then the pivot is the k-th smallest element

Decrease-by-Variable-Size

Selection Problem

- partition the given sequence around some value p (pivot), that is the first element

- assume s be the index of the pivot
- if $s=k$, then the pivot is the k-th smallest element
- if $s>k$, then the k-th smallest element will be the k-th smallest of the left

Decrease-by-Variable-Size

Selection Problem

- partition the given sequence around some value p (pivot), that is the first element

- assume s be the index of the pivot
- if $s=k$, then the pivot is the k-th smallest element
- if $s>k$, then the k-th smallest element will be the k-th smallest of the left
- if $s<k$, then the k-th smallest element will be the ($k-s$)-th smallest element of the right

Decrease-by-Variable-Size

Selection Probler QuickSelect(i, j, k)

- partition the gi input : $X=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$ and an integer k
hat is the first element output: the k-th smallest of the sequence X

```
s}\leftarrow\mathrm{ if s=kartition({a, , a
if }s=
    return }\mp@subsup{a}{s}{
    elseif s > i + k
    QuickSelect(i,s - 1,k )
    else QuickSelect(s + 1, j,k-s )
```

- assume s be the index of the pivot
- if $s=k$, then the pivot is the k-th smallest element
- if $s>k$, then the k-th smallest element will be the k-th smallest of the left
- if $s<k$, then the k-th smallest element will be the ($k-s$)-th smallest element of the right

Decrease-by-Variable-Size

Selection Problem

- partition the given sequence around some value p (pivot), that is the first element

$\leq \mathrm{P}$	P	$\geq \mathrm{P}$

- assume s LomutoPartition(i, j)
- if $s=\begin{aligned} & \text { input : } X=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\} \\ & \text { output: the partition of } X \text { and the new position of the pivot }\end{aligned}$
- if $s>p \leftarrow a_{i} ; s \leftarrow i$
smallest
of th for $k=i+1$ to j
if $\begin{aligned} & a_{k}\end{aligned}<\mathrm{p} .1: \operatorname{swap}\left(a_{s}, a_{k}\right)$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; \mathrm{s} \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$ return s

13	21	5	14	8	10

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$ return s

13	21	5	14	8	10

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s

$$
i=1
$$

$j=6$

13	21	5	14	8	10

$$
p=13 \quad s=1
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$i=1$
$j=6$

13	21	5	14	8	10

$$
p=13 \quad s=1 \quad k=2
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$i=1$
$j=6$

13	21	5	14	8	10

$$
p=13 \quad s=1 \quad k=2
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s

$$
i=1 \quad j=6
$$

13	21	5	14	8	10

$$
p=13 \quad s=1 \quad k=3
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$i=1$
$j=6$

13	21	5	14	8	10

$$
p=13 \quad s=1 \quad k=3
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$i=1$
$j=6$

13	21	5	14	8	10

$$
p=13 \quad s=2 \quad k=3
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$i=1$
$j=6$

13	5	21	14	8	10

$$
p=13 \quad s=2 \quad k=3
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$j=6$

13	5	21	14	8	10

$$
p=13 \quad s=2 \quad k=4
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s

13	5	21	14	8	10

$$
p=13 \quad s=2 \quad k=4
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$j=6$

13	5	21	14	8	10

$$
p=13 \quad s=2 \quad k=5
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$j=6$

13	5	21	14	8	10

$$
p=13 \quad s=2 \quad k=5
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$i=1$
$j=6$

13	5	21	14	8	10

$$
p=13 \quad s=3 \quad k=5
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$i=1$
$j=6$

13	5	8	14	21	10

$$
p=13 \quad s=3 \quad k=5
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$j=6$

13	5	8	14	21	10

$$
p=13 \quad s=3 \quad k=6
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$j=6$

13	5	8	14	21	10

$$
p=13 \quad s=3 \quad k=6
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$i=1$
$j=6$

13	5	8	14	21	10

$$
p=13 \quad s=4 \quad k=6
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$i=1$
$j=6$

13	5	8	10	21	14

$$
p=13 \quad s=4 \quad k=6
$$

Decrease-by-Variable-Size

Selection Problem

LomutoPartition(i, j)

```
input : }X={\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{},\ldots,\mp@subsup{a}{j}{}
```

output: the partition of X and the new position of the pivot
$\mathrm{p} \leftarrow a_{i} ; s \leftarrow \mathrm{i}$
for $k=i+1$ to j
if $a_{k}<p$
$s \leftarrow s+1 ; \operatorname{swap}\left(a_{s}, a_{k}\right)$
$\operatorname{swap}\left(a_{i}, a_{s}\right)$
return s
$j=6$

10	5	8	13	21	14

$$
p=13 \quad s=4 \quad k=6
$$

Decrease-by-Variable-Size

Selection Problem

QuickSelect (i, j, k)
input : $X=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$ and an integer k output: the k-th smallest of the sequence X
$s \leftarrow \operatorname{Partition}\left(\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}\right)$
if $s=k$
$i=1$
$k=5$
$j=9$
return a_{s}
elseif $s>i+k$

4	1	10	8	7	12	9	2	15

QuickSelect(i, s-1,k)
else QuickSelect($s+1, j, k-s)$

Decrease-by-Variable-Size

Selection Problem

QuickSelect(i, j, k)
input : $X=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$ and an integer k output: the k-th smallest of the sequence X
$s \leftarrow \operatorname{Partition}\left(\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}\right)$
if $s=k$
$i=1$
$k=5$
$j=9$
return a_{s}
elseif $s>i+k$
QuickSelect(i,s-1,k)
else QuickSelect($s+1, j, k-s)$

4	1	10	8	7	12	9	2	15								
$s=3$																
2	1	4	8	7	12	9	10	15								

Decrease-by-Variable-Size

Selection Problem

QuickSelect (i, j, k)
input : $X=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$ and an integer k output: the k-th smallest of the sequence X
$s \leftarrow \operatorname{Partition}\left(\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}\right)$
if $s=k$

$j=9$
return a_{s}
elseif $s>i+k$
QuickSelect(i, s-1,k)
else QuickSelect ($s+1, j, k-s$)

4	1	10	8	7	12	9	2	15

2	1	4	8	7	12	9	10	15
$i=4 \quad j=9$								
			8	7	12	9	10	15

Decrease-by-Variable-Size

Selection Problem

QuickSelect (i, j, k)
input : $X=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$ and an integer k output: the k-th smallest of the sequence X
$s \leftarrow \operatorname{Partition}\left(\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}\right)$
if $s=k$

$j=9$
return a_{s}
elseif $s>i+k$
QuickSelect(i,s-1,k)
else QuickSelect ($s+1, j, k-s$)

4	1	10	8	7	12	9	2	15							
$s=3$															

8	7	12	9	10	15
$s=5$					
7	8	12	9	10	15

Decrease-by-Variable-Size

Selection Problem

QuickSelect (i, j, k)
input : $X=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$ and an integer k output: the k-th smallest of the sequence X
$s \leftarrow \operatorname{Partition}\left(\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}\right)$
if $s=k$

$j=9$ return a_{s} elseif $s>i+k$

QuickSelect(i,s-1,k)
else QuickSelect($s+1, j, k-s)$

Decrease-by-Variable-Size

Selection Problem

QuickSelect(i, j, k)
input : $X=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$ and an integer k output: the k-th smallest of the sequence X
$s \leftarrow \operatorname{Partition}\left(\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}\right)$
if $s=k$

$j=9$ return a_{s} elseif $s>i+k$

QuickSelect(i,s-1,k)
else QuickSelect ($s+1, j, k-s)$

4	1	10	8	7	12	9	2	15

$s=3$

$$
T(n)=(n-1)+(n-2)+\cdots+1=n(n-1) / 2
$$

7	8	12	9	10	15

