
Decrease-and-Conquer

Murat Osmanoglu



• for a given instance of a problem, take advantage of relationship
between its solution and solution of its smaller instance

Decrease-and-Conquer



• for a given instance of a problem, take advantage of relationship
between its solution and solution of its smaller instance

– reduce problem instance to its smaller instance

– solve the smaller instance

– extend the solution of smaller instance to obtain a solution for
the original problem 

Decrease-and-Conquer



• for a given instance of a problem, take advantage of relationship
between its solution and solution of its smaller instance

– reduce problem instance to its smaller instance

– solve the smaller instance

– extend the solution of smaller instance to obtain a solution for
the original problem 

• three variations :

• decrease by a constant (usually 1),

• decrease by a constant factor (usually 2)

• decrease by a variable size

Decrease-and-Conquer



Decrease-by-a-Constant
(Exponentiation Problem)

Decrease-and-Conquer



Decrease-by-a-Constant
(Exponentiation Problem)

• Given a nonzero number a and a nonnegative integer n, compute 𝑎𝑛

Decrease-and-Conquer



Decrease-by-a-Constant
(Exponentiation Problem)

• Given a nonzero number a and a nonnegative integer n, compute 𝑎𝑛

• the formula 𝒂𝒏 = 𝒂𝒏−𝟏. 𝒂 can be used to obtain the relationship between an 
instance of size n and an instance of size n – 1 

Decrease-and-Conquer



Decrease-by-a-Constant
(Exponentiation Problem)

• Given a nonzero number a and a nonnegative integer n, compute 𝑎𝑛

• the formula 𝒂𝒏 = 𝒂𝒏−𝟏. 𝒂 can be used to obtain the relationship between an 
instance of size n and an instance of size n – 1 

𝑓 𝑛 = ቊ
𝑓 𝑛 − 1 . 𝑎 𝑖𝑓 𝑛 > 0

1 𝑖𝑓 𝑛 = 0

Decrease-and-Conquer



Decrease-by-a-Constant
(Exponentiation Problem)

• Given a nonzero number a and a nonnegative integer n, compute 𝑎𝑛

• the formula 𝒂𝒏 = 𝒂𝒏−𝟏. 𝒂 can be used to obtain the relationship between an 
instance of size n and an instance of size n – 1 

𝑓 𝑛 = ቊ
𝑓 𝑛 − 1 . 𝑎 𝑖𝑓 𝑛 > 0

1 𝑖𝑓 𝑛 = 0

Decrease-by-a-Constant-Factor
(Exponentiation Problem)

Decrease-and-Conquer



Decrease-by-a-Constant
(Exponentiation Problem)

• Given a nonzero number a and a nonnegative integer n, compute 𝑎𝑛

• the formula 𝒂𝒏 = 𝒂𝒏−𝟏. 𝒂 can be used to obtain the relationship between an 
instance of size n and an instance of size n – 1 

𝑓 𝑛 = ቊ
𝑓 𝑛 − 1 . 𝑎 𝑖𝑓 𝑛 > 0

1 𝑖𝑓 𝑛 = 0

Decrease-by-a-Constant-Factor
(Exponentiation Problem)

• the formula 𝒂𝒏 = 𝒂𝒏/𝟐
𝟐

can be used to obtain the relationship between an 
instance of size n and an instance of half of its size

Decrease-and-Conquer



Decrease-by-a-Constant
(Exponentiation Problem)

• Given a nonzero number a and a nonnegative integer n, compute 𝑎𝑛

• the formula 𝒂𝒏 = 𝒂𝒏−𝟏. 𝒂 can be used to obtain the relationship between an 
instance of size n and an instance of size n – 1 

𝑓 𝑛 = ቊ
𝑓 𝑛 − 1 . 𝑎 𝑖𝑓 𝑛 > 0

1 𝑖𝑓 𝑛 = 0

Decrease-by-a-Constant-Factor
(Exponentiation Problem)

• the formula 𝒂𝒏 = 𝒂𝒏/𝟐
𝟐

can be used to obtain the relationship between an 
instance of size n and an instance of half of its size

𝑓 𝑛 =

𝑎𝑛/2
2

𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑎(𝑛−1)/2
2
. 𝑎 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

1 𝑖𝑓 𝑛 = 0

Decrease-and-Conquer



Decrease-by-a-Constant-Factor
(Exponentiation Problem)

• Given n coins, all the same except for one fake coin that is lighter than the
others, and a balance scale allowing us to compare any two piles of coins, find
the lighter coin with the minimum possible number of weighs

Decrease-and-Conquer



Decrease-by-a-Constant-Factor
(Exponentiation Problem)

• Given n coins, all the same except for one fake coin that is lighter than the
others, and a balance scale allowing us to compare any two piles of coins, find
the lighter coin with the minimum possible number of weighs

– divide n coins into two piles of 𝑛/2 , leave one coin aside 
if n is odd, and put two piles on the scale

– if the piles weigh same, the extra coin must be fake
– otherwise, proceed with the lighter pile

Decrease-and-Conquer



Decrease-by-a-Constant-Factor
(Exponentiation Problem)

• Given n coins, all the same except for one fake coin that is lighter than the
others, and a balance scale allowing us to compare any two piles of coins, find
the lighter coin with the minimum possible number of weighs

– divide n coins into two piles of 𝑛/2 , leave one coin aside 
if n is odd, and put two piles on the scale

– if the piles weigh same, the extra coin must be fake
– otherwise, proceed with the lighter pile

Decrease-by-Variable-Size
(Euclid’s Algorithm)

• Given two integers m and n, find the largest number dividing both of them

Decrease-and-Conquer



Decrease-by-a-Constant-Factor
(Exponentiation Problem)

• Given n coins, all the same except for one fake coin that is lighter than the
others, and a balance scale allowing us to compare any two piles of coins, find
the lighter coin with the minimum possible number of weighs

– divide n coins into two piles of 𝑛/2 , leave one coin aside 
if n is odd, and put two piles on the scale

– if the piles weigh same, the extra coin must be fake
– otherwise, proceed with the lighter pile

Decrease-by-Variable-Size
(Euclid’s Algorithm)

• Given two integers m and n, find the largest number dividing both of them

• the formula 𝒈𝒄𝒅 𝒎,𝒏 = 𝒈𝒄𝒅(𝒏,𝒎𝒎𝒐𝒅 𝒏) can be used to obtain the
relationship between an instance of size m and an instance of size n 
decrease-by-a-variable-size, 

Decrease-and-Conquer



Decrease-by-a-Constant-Factor
(Exponentiation Problem)

• Given n coins, all the same except for one fake coin that is lighter than the
others, and a balance scale allowing us to compare any two piles of coins, find
the lighter coin with the minimum possible number of weighs

– divide n coins into two piles of 𝑛/2 , leave one coin aside 
if n is odd, and put two piles on the scale

– if the piles weigh same, the extra coin must be fake
– otherwise, proceed with the lighter pile

Decrease-by-Variable-Size
(Euclid’s Algorithm)

• Given two integers m and n, find the largest number dividing both of them

• the formula 𝒈𝒄𝒅 𝒎,𝒏 = 𝒈𝒄𝒅(𝒏,𝒎𝒎𝒐𝒅 𝒏) can be used to obtain the
relationship between an instance of size m and an instance of size n 
decrease-by-a-variable-size, use the following recursive definition

𝑓 𝑚, 𝑛 = ቊ
𝑓 𝑛,𝑚 𝑚𝑜𝑑 𝑛 𝑖𝑓 𝑛 > 0

𝑚 𝑖𝑓 𝑛 = 0

Decrease-and-Conquer



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

Decrease-by-a-Constant



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

Decrease-by-a-Constant



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 2

temp ← E



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 2

temp ← E

S 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 2

temp ← E

S



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 2

temp ← E

S 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 2

temp ← E

E S 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 3

temp ← L

E S 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 3

temp ← L

E S



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 3

temp ← L

E S 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 3

temp ← L

E S 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 3

temp ← L

E L S 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 4

temp ← E

E L S 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 4

temp ← E

E L S



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 4

temp ← E

E L S 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 4

temp ← E

E L S 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 4

temp ← E

E    L S 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 4

temp ← E

E L S 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 4

temp ← E

E E L S 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 9

temp ← N

C E E I L N O S T 



Sorting Problem
(Decrease-by-One)
• given a sequence of n orderable items 𝑎1, 𝑎2, … , 𝑎𝑛 , reorder the

items as

𝑎1′, 𝑎2′, … , 𝑎𝑛′ such that 𝑎1′ ≤ 𝑎2′ ≤ ⋯ ≤ 𝑎𝑛′

• How can we use a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛−1 to 
obtain a solution for the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ?

– just find an appropriate position to place 𝑎𝑛

Decrease-by-a-Constant

InsertionSort( 𝑎1, 𝑎2, . . . , 𝑎𝑛 )

input : a sequence of orderable elements
output: sorted sequence in nondecreasing order

for i = 2 to n     
temp ← 𝑎𝑖
j ← 𝑖 − 1

while 𝑗 ≥ 0 and 𝑎𝑗 > temp
𝑎𝑗+1 ← 𝑎𝑗
j ← j-1 

𝑎𝑗+1 ← temp

S E L E C T I O N

i = 9

temp ← N

C E E I L N O S T 

𝑇 𝑛 =෍
𝑖=1

𝑛−1

෍
𝑗=𝑜

𝑖−1

1 =෍
𝑖=1

𝑛 −1

𝑖 =
1

2
𝑛 𝑛 − 1 ∈ Θ(𝑛2)



• Directed graph can be used to represent order-dependent tasks 

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• Directed graph can be used to represent order-dependent tasks 

u v

task v can start only after task u finishes

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• Directed graph can be used to represent order-dependent tasks 

u v

task v can start only after task u finishes

• Directed Acyclic Graph (DAG) must be used to represent such 
order-dependent tasks 

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• Directed graph can be used to represent order-dependent tasks 

u v

task v can start only after task u finishes

• Directed Acyclic Graph (DAG) must be used to represent such 
order-dependent tasks 

COM101

COM103

COM201

COM223

COM234

COM304

COM342

COM364

COM463

COM423

COM368course dependency graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• a topological sort of a graph is a linear ordering of the vertices
of a directed acyclic graph (DAG) such that if (u,v) is an edge
in DAG, then u appears before v in this linear ordering

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• a topological sort of a graph is a linear ordering of the vertices
of a directed acyclic graph (DAG) such that if (u,v) is an edge
in DAG, then u appears before v in this linear ordering

• for course dependency graph, a topological order gives in which
order the courses should be taken

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• a topological sort of a graph is a linear ordering of the vertices
of a directed acyclic graph (DAG) such that if (u,v) is an edge
in DAG, then u appears before v in this linear ordering

• for course dependency graph, a topological order gives in which
order the courses should be taken

b

a

c

d

e

f

g

h

k

m

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• a topological sort of a graph is a linear ordering of the vertices
of a directed acyclic graph (DAG) such that if (u,v) is an edge
in DAG, then u appears before v in this linear ordering

• for course dependency graph, a topological order gives in which
order the courses should be taken

b

a

c

d

e

f

g

h

k

m

a, b, c, d, e, f, g, h, k, m
b, c, a, e, d, f, g, k, h, m
c, b, d, f, a, g, h, m, k, e 

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• a topological sort of a graph is a linear ordering of the vertices
of a directed acyclic graph (DAG) such that if (u,v) is an edge
in DAG, then u appears before v in this linear ordering

• for course dependency graph, a topological order gives in which
order the courses should be taken

b

a

c

d

e

f

g

h

k

m

a, b, c, d, e, f, g, h, k, m
b, c, a, e, d, f, g, k, h, m
c, b, d, f, a, g, h, m, k, e 

• there is an edge (e,m) in the graph, but 
e comes after m in the ordering

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• a topological sort of a graph is a linear ordering of the vertices
of a directed acyclic graph (DAG) such that if (u,v) is an edge
in DAG, then u appears before v in this linear ordering

• for course dependency graph, a topological order gives in which
order the courses should be taken

b

a

c

d

e

f

g

h

k

m

a, b, c, d, e, f, g, h, k, m
b, c, a, e, d, f, g, k, h, m
c, b, d, f, a, g, h, m, k, e 

• there is an edge (e,m) in the graph, but 
e comes after m in the ordering

• swap e and m 

c, b, d, f, a, g, h, e, k, m 

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• output a vertex u with degin(u)=0 from the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges
• repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



a

c

e

f h

k

mg
d

b

• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges
• repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



a

c

e

f h

k

mg
d

b

O(lVl + Σ degout(v)) = O(lVl+lEl)

• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges
• repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



c

e

f h

k

mg
d

b

O(lVl + Σ degout(v)) = O(lVl+lEl)

a

• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges
• repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



c

e

f h

k

mg
d

O(lVl + Σ degout(v)) = O(lVl+lEl)

a, b

• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges
• repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



c f h

k

mg
d

O(lVl + Σ degout(v)) = O(lVl+lEl)

a, b, e

• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges
• repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



f h

k

mg
d

O(lVl + Σ degout(v)) = O(lVl+lEl)

a, b, e, c

• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges
• repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



f h

k

mg

O(lVl + Σ degout(v)) = O(lVl+lEl)

a, b, e, c, d

• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges
• repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



h

k

mg

O(lVl + Σ degout(v)) = O(lVl+lEl)

a, b, e, c, d, f

• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges
• repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



h

k

m

O(lVl + Σ degout(v)) = O(lVl+lEl)

a, b, e, c, d, f, g

• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges
• repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



h

m

O(lVl + Σ degout(v)) = O(lVl+lEl)

a, b, e, c, d, f, g, k

• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges
• repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



m

O(lVl + Σ degout(v)) = O(lVl+lEl)

a, b, e, c, d, f, g, k, h

• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges
• repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



O(lVl + Σ degout(v)) = O(lVl+lEl)

a, b, e, c, d, f, g, k, h, m

• output a vertex u with degin(u)=0 from the graph
• remove all outgoing edges
• repeat the procedure until no more vertices in the graph

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1 2

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1 2

3

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1 2

3/4

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1 2/5

3/4

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1 2/5

3/4
6

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1 2/5

3/4
6/7

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/7

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/79

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/79

10

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/79

10

11

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/79

10

11/12

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/79

10

11/12

13

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/79

10

11/12

13/14

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/79

10/15

11/12

13/14

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/79/16

10/15

11/12

13/14

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/79/16

10/15

11/12

13/14
17

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/79/16

10/15

11/12

13/14
17 18

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/79/16

10/15

11/12

13/14
17 18/19

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/79/16

10/15

11/12

13/14
17/20 18/19

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



b

a

c

d

f

g

e

h

k

m

1/8 2/5

3/4
6/79/16

10/15

11/12

13/14
17/20 18/19

c, f, a, g, h, k, b, d, e, m

• run DFS on the given graph, and sort the vertices according to
their finishing time

Decrease-by-a-Constant
Topological Sort
(Decrease-by-One)



• Given a sorted sequence of n items [𝑎1, 𝑎2, … , 𝑎𝑛] and a search key K,
determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search



• Given a sorted sequence of n items [𝑎1, 𝑎2, … , 𝑎𝑛] and a search key K,
determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

while i ≤ j
if 𝑥 = 𝑎 (𝑖+𝑗)/2

return ‘yes’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)



• Given a sorted sequence of n items [𝑎1, 𝑎2, … , 𝑎𝑛] and a search key K,
determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

while i ≤ j
if 𝑥 = 𝑎 (𝑖+𝑗)/2

return ‘yes’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

3 14 27 31 39 42 55 70 74 81 85 93 98

𝑥 = 70



• Given a sorted sequence of n items [𝑎1, 𝑎2, … , 𝑎𝑛] and a search key K,
determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

while i ≤ j
if 𝑥 = 𝑎 (𝑖+𝑗)/2

return ‘yes’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

3 14 27 31 39 42 55 70 74 81 85 93 98

𝑥 = 70

𝑖 = 1 𝑗 = 13



• Given a sorted sequence of n items [𝑎1, 𝑎2, … , 𝑎𝑛] and a search key K,
determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

while i ≤ j
if 𝑥 = 𝑎 (𝑖+𝑗)/2

return ‘yes’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

3 14 27 31 39 42 55 70 74 81 85 93 98

𝑥 = 70

(𝑖 + 𝑗)/2 = 7

𝑖 = 1 𝑗 = 13



• Given a sorted sequence of n items [𝑎1, 𝑎2, … , 𝑎𝑛] and a search key K,
determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

while i ≤ j
if 𝑥 = 𝑎 (𝑖+𝑗)/2

return ‘yes’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

3 14 27 31 39 42 55 70 74 81 85 93 98

𝑥 = 70

(𝑖 + 𝑗)/2 = 7

𝑖 = 1 𝑗 = 13

𝒙 > 𝒂𝟕 = 𝟓𝟓



• Given a sorted sequence of n items [𝑎1, 𝑎2, … , 𝑎𝑛] and a search key K,
determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

while i ≤ j
if 𝑥 = 𝑎 (𝑖+𝑗)/2

return ‘yes’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

3 14 27 31 39 42 55 70 74 81 85 93 98

𝑥 = 70

𝑖 = 8 𝑗 = 13



• Given a sorted sequence of n items [𝑎1, 𝑎2, … , 𝑎𝑛] and a search key K,
determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

while i ≤ j
if 𝑥 = 𝑎 (𝑖+𝑗)/2

return ‘yes’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

3 14 27 31 39 42 55 70 74 81 85 93 98

𝑥 = 70

𝑖 = 8 𝑗 = 13

(𝑖 + 𝑗)/2 = 10



• Given a sorted sequence of n items [𝑎1, 𝑎2, … , 𝑎𝑛] and a search key K,
determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

while i ≤ j
if 𝑥 = 𝑎 (𝑖+𝑗)/2

return ‘yes’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

3 14 27 31 39 42 55 70 74 81 85 93 98

𝑥 = 70

𝑖 = 8 𝑗 = 13

(𝑖 + 𝑗)/2 = 10

𝒙 < 𝒂𝟏𝟎 = 𝟖𝟏



• Given a sorted sequence of n items [𝑎1, 𝑎2, … , 𝑎𝑛] and a search key K,
determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

while i ≤ j
if 𝑥 = 𝑎 (𝑖+𝑗)/2

return ‘yes’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

3 14 27 31 39 42 55 70 74 81 85 93 98

𝑥 = 70

𝑖 = 8 𝑗 = 9



• Given a sorted sequence of n items [𝑎1, 𝑎2, … , 𝑎𝑛] and a search key K,
determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

while i ≤ j
if 𝑥 = 𝑎 (𝑖+𝑗)/2

return ‘yes’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

3 14 27 31 39 42 55 70 74 81 85 93 98

𝑥 = 70

𝑖 = 8 𝑗 = 9

(𝑖 + 𝑗)/2 = 8



• Given a sorted sequence of n items [𝑎1, 𝑎2, … , 𝑎𝑛] and a search key K,
determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

while i ≤ j
if 𝑥 = 𝑎 (𝑖+𝑗)/2

return ‘yes’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

3 14 27 31 39 42 55 70 74 81 85 93 98

𝑥 = 70

𝑖 = 8 𝑗 = 9

(𝑖 + 𝑗)/2 = 8

𝒙 = 𝒂𝟖 = 𝟕𝟎



• Given a sorted sequence of n items [𝑎1, 𝑎2, … , 𝑎𝑛] and a search key K,
determine whether the sorted sequence contains the key or not

Decrease-by-a-Constant-Factor

Binary Search

BinarySearch(X,i,j;x)

input : {𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}; 𝑥}
output: ‘yes’ if 𝑥 ∈ 𝑋, ‘no’ otherwise

while i ≤ j
if 𝑥 = 𝑎 (𝑖+𝑗)/2

return ‘yes’
elseif 𝑥 < 𝑎 (𝑖+𝑗)/2

BinarySearch(X,i, (𝑖 + 𝑗)/2 -1;x)
else BinarySearch(X, (𝑖 + 𝑗)/2 +1,j;x)

3 14 27 31 39 42 55 70 74 81 85 93 98

𝑥 = 70

𝑖 = 8 𝑗 = 9

(𝑖 + 𝑗)/2 = 8

𝒙 = 𝒂𝟖 = 𝟕𝟎

𝑇 𝑛 = 𝑇 Τ𝑛 2 + 1,  and 𝑇 𝑛 = 1 for n = 1

𝑇 𝑛 = log𝑛 + 1 ∈ Θ(𝑛2)



• Given a sequence of n numbers [𝑎1, 𝑎2, … , 𝑎𝑛], determine the
k-th smallest element of the sequence

Decrease-by-Variable-Size

Selection Problem



• Given a sequence of n numbers [𝑎1, 𝑎2, … , 𝑎𝑛], determine the
k-th smallest element of the sequence

• for k = 1 or k = n, find the smallest or largest element by
scanning the sequence

Decrease-by-Variable-Size

Selection Problem



• Given a sequence of n numbers [𝑎1, 𝑎2, … , 𝑎𝑛], determine the
k-th smallest element of the sequence

• for k = 1 or k = n, find the smallest or largest element by
scanning the sequence

• for 𝑘 = 𝑛/2 , it’s finding the median (the middle value) of the
sequence

Decrease-by-Variable-Size

Selection Problem



• Given a sequence of n numbers [𝑎1, 𝑎2, … , 𝑎𝑛], determine the
k-th smallest element of the sequence

• for k = 1 or k = n, find the smallest or largest element by
scanning the sequence

• for 𝑘 = 𝑛/2 , it’s finding the median (the middle value) of the
sequence

• Brute-force approach; first sort the given sequence, then
output the k-th element of the sorted sequence

Decrease-by-Variable-Size

Selection Problem



• Given a sequence of n numbers [𝑎1, 𝑎2, … , 𝑎𝑛], determine the
k-th smallest element of the sequence

• for k = 1 or k = n, find the smallest or largest element by
scanning the sequence

• for 𝑘 = 𝑛/2 , it’s finding the median (the middle value) of the
sequence

• Brute-force approach; first sort the given sequence, then
output the k-th element of the sorted sequence

since the problem is to just find the k-th smallest element,
sorting the entire sequence would be unnecessary

Decrease-by-Variable-Size

Selection Problem



• partition the given sequence around some value p (pivot), that is the
first element

Decrease-by-Variable-Size

Selection Problem



• partition the given sequence around some value p (pivot), that is the
first element

Decrease-by-Variable-Size

Selection Problem

P



• partition the given sequence around some value p (pivot), that is the
first element

Decrease-by-Variable-Size

Selection Problem

P

≤ P P ≥ P



• partition the given sequence around some value p (pivot), that is the
first element

Decrease-by-Variable-Size

Selection Problem

P

≤ P P ≥ P

• assume s be the index of the pivot



• partition the given sequence around some value p (pivot), that is the
first element

Decrease-by-Variable-Size

Selection Problem

P

≤ P P ≥ P

• assume s be the index of the pivot

– if s = k, then the pivot is the k-th smallest element



• partition the given sequence around some value p (pivot), that is the
first element

Decrease-by-Variable-Size

Selection Problem

P

≤ P P ≥ P

• assume s be the index of the pivot

– if s = k, then the pivot is the k-th smallest element

– if s > k, then the k-th smallest element will be the k-th smallest
of the left



• partition the given sequence around some value p (pivot), that is the
first element

Decrease-by-Variable-Size

Selection Problem

P

≤ P P ≥ P

• assume s be the index of the pivot

– if s = k, then the pivot is the k-th smallest element

– if s > k, then the k-th smallest element will be the k-th smallest
of the left

– if s < k, then the k-th smallest element will be the (k – s)-th
smallest element of the right



• partition the given sequence around some value p (pivot), that is the
first element

Decrease-by-Variable-Size

Selection Problem

P

≤ P P ≥ P

• assume s be the index of the pivot

– if s = k, then the pivot is the k-th smallest element

– if s > k, then the k-th smallest element will be the k-th smallest
of the left

– if s < k, then the k-th smallest element will be the (k – s)-th
smallest element of the right

QuickSelect( i, j, k )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗} and an integer k
output: the k-th smallest of the sequence X

s ← Partition({𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗})
if s = k 

return 𝑎𝑠
elseif s > i + k

QuickSelect( i, s - 1, k )
else QuickSelect( s + 1, j, k - s )



• partition the given sequence around some value p (pivot), that is the
first element

Decrease-by-Variable-Size

Selection Problem

P

≤ P P ≥ P

• assume s be the index of the pivot

– if s = k, then the pivot is the k-th smallest element

– if s > k, then the k-th smallest element will be the k-th smallest
of the left

– if s < k, then the k-th smallest element will be the (k – s)-th
smallest element of the right

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 21 5 14 8 10



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 21 5 14 8 10

i = 1 j = 6



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 21 5 14 8 10

i = 1 j = 6

p = 13 s = 1



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 21 5 14 8 10

i = 1 j = 6

p = 13 s = 1 k = 2



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 21 5 14 8 10

i = 1 j = 6

p = 13 s = 1 k = 2



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 21 5 14 8 10

i = 1 j = 6

p = 13 s = 1 k = 3



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 21 5 14 8 10

i = 1 j = 6

p = 13 s = 1 k = 3



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 21 5 14 8 10

i = 1 j = 6

p = 13 s = 2 k = 3



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 5 21 14 8 10

i = 1 j = 6

p = 13 s = 2 k = 3



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 5 21 14 8 10

i = 1 j = 6

p = 13 s = 2 k = 4



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 5 21 14 8 10

i = 1 j = 6

p = 13 s = 2 k = 4



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 5 21 14 8 10

i = 1 j = 6

p = 13 s = 2 k = 5



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 5 21 14 8 10

i = 1 j = 6

p = 13 s = 2 k = 5



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 5 21 14 8 10

i = 1 j = 6

p = 13 s = 3 k = 5



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 5 8 14 21 10

i = 1 j = 6

p = 13 s = 3 k = 5



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 5 8 14 21 10

i = 1 j = 6

p = 13 s = 3 k = 6



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 5 8 14 21 10

i = 1 j = 6

p = 13 s = 3 k = 6



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 5 8 14 21 10

i = 1 j = 6

p = 13 s = 4 k = 6



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

13 5 8 10 21 14

i = 1 j = 6

p = 13 s = 4 k = 6



Decrease-by-Variable-Size

Selection Problem

LomutoPartition( i, j )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗}
output: the partition of X and the new
position of the pivot

p ← 𝑎𝑖 ; s ← i 
for k = i + 1 to j

if 𝑎𝑘 < p
s ← s + 1 ; swap(𝑎𝑠, 𝑎𝑘)

swap(𝑎𝑖, 𝑎𝑠)
return s

10 5 8 13 21 14

i = 1 j = 6

p = 13 s = 4 k = 6



Decrease-by-Variable-Size

Selection Problem

QuickSelect( i, j, k )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗} and an integer k
output: the k-th smallest of the sequence X

s ← Partition({𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗})
if s = k 

return 𝑎𝑠
elseif s > i + k

QuickSelect( i, s - 1, k )
else QuickSelect( s + 1, j, k - s )

i = 1 j = 9

4 1 10 8 7 12 9 2 15

k = 5



Decrease-by-Variable-Size

Selection Problem

QuickSelect( i, j, k )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗} and an integer k
output: the k-th smallest of the sequence X

s ← Partition({𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗})
if s = k 

return 𝑎𝑠
elseif s > i + k

QuickSelect( i, s - 1, k )
else QuickSelect( s + 1, j, k - s )

i = 1 j = 9

4 1 10 8 7 12 9 2 15

k = 5

2 1 4 8 7 12 9 10 15

s = 3



Decrease-by-Variable-Size

Selection Problem

QuickSelect( i, j, k )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗} and an integer k
output: the k-th smallest of the sequence X

s ← Partition({𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗})
if s = k 

return 𝑎𝑠
elseif s > i + k

QuickSelect( i, s - 1, k )
else QuickSelect( s + 1, j, k - s )

i = 1 j = 9

4 1 10 8 7 12 9 2 15

k = 5

2 1 4 8 7 12 9 10 15

s = 3

8 7 12 9 10 15

i = 4 j = 9



Decrease-by-Variable-Size

Selection Problem

QuickSelect( i, j, k )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗} and an integer k
output: the k-th smallest of the sequence X

s ← Partition({𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗})
if s = k 

return 𝑎𝑠
elseif s > i + k

QuickSelect( i, s - 1, k )
else QuickSelect( s + 1, j, k - s )

i = 1 j = 9

4 1 10 8 7 12 9 2 15

k = 5

2 1 4 8 7 12 9 10 15

s = 3

8 7 12 9 10 15

i = 4 j = 9

7 8 12 9 10 15

s = 5



Decrease-by-Variable-Size

Selection Problem

QuickSelect( i, j, k )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗} and an integer k
output: the k-th smallest of the sequence X

s ← Partition({𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗})
if s = k 

return 𝑎𝑠
elseif s > i + k

QuickSelect( i, s - 1, k )
else QuickSelect( s + 1, j, k - s )

i = 1 j = 9

4 1 10 8 7 12 9 2 15

k = 5

2 1 4 8 7 12 9 10 15

s = 3

8 7 12 9 10 15

i = 4 j = 9

7 8 12 9 10 15

s = 5



Decrease-by-Variable-Size

Selection Problem

QuickSelect( i, j, k )

input :𝑋 = {𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗} and an integer k
output: the k-th smallest of the sequence X

s ← Partition({𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑗})
if s = k 

return 𝑎𝑠
elseif s > i + k

QuickSelect( i, s - 1, k )
else QuickSelect( s + 1, j, k - s )

i = 1 j = 9

4 1 10 8 7 12 9 2 15

k = 5

2 1 4 8 7 12 9 10 15

s = 3

8 7 12 9 10 15

i = 4 j = 9

7 8 12 9 10 15

s = 5

𝑇 𝑛 = 𝑛 − 1 + 𝑛 − 2 +⋯+ 1 = 𝑛(𝑛 − 1)/2 ∈ Θ(𝑛2)


