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Space-for-Time Tradeoffs 
 

•  we cover two varieties of space-for-time algorithms: 

-  input enhancement; preprocess the input to store the 
additional information to be used later to improve the 
time efficiency 

-  pre-structuring; preprocess the input to make accessing 
its element easier  
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•  Can we establish a lower bound on the number of comparisons for the 

worst case of comparison-based sorting algorithms ?  
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than this number, and record the results in a table 

•  this count determines the position of the element in the final sorted array 
 

    if the count is 5 for some element, then the element should be placed in 
    the sixth position in the sorted array   

CountingSort-1(X[1,n]) 
 

let C[1, n] and B[1, n] be new arrays 
for i = 1 to n 
      C[i] ç 0 
for i = 1 to n – 1  
      for j = i+1 to n  
            if X[i] < X[j] 
                 C[j] ç C[j] + 1 
            else  
                 C[i] ç C[i] + 1 
for i = 1 to n  
      B[C[i]+1] ç X[i] 
return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

•  for each element of the array, count the total number of elements smaller 
than this number, and record the results in a table 

•  this count determines the position of the element in the final sorted array 
 

    if the count is 5 for some element, then the element should be placed in 
    the sixth position in the sorted array   

CountingSort-1(X[1,n]) 
 

let C[1, n] and B[1, n] be new arrays 
for i = 1 to n 
      C[i] ç 0 
for i = 1 to n – 1  
      for j = i+1 to n  
            if X[i] < X[j] 
                 C[j] ç C[j] + 1 
            else  
                 C[i] ç C[i] + 1 
for i = 1 to n  
      B[C[i]+1] ç X[i] 
return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

•  for each element of the array, count the total number of elements smaller 
than this number, and record the results in a table 

•  this count determines the position of the element in the final sorted array 
 

    if the count is 5 for some element, then the element should be placed in 
    the sixth position in the sorted array   

CountingSort-1(X[1,n]) 
 

let C[1, n] and B[1, n] be new arrays 
for i = 1 to n 
      C[i] ç 0 
for i = 1 to n – 1  
      for j = i+1 to n  
            if X[i] < X[j] 
                 C[j] ç C[j] + 1 
            else  
                 C[i] ç C[i] + 1 
for i = 1 to n  
      B[C[i]+1] ç X[i] 
return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

•  for each element of the array, count the total number of elements smaller 
than this number, and record the results in a table 

•  this count determines the position of the element in the final sorted array 
 

    if the count is 5 for some element, then the element should be placed in 
    the sixth position in the sorted array   

CountingSort-1(X[1,n]) 
 

let C[1, n] and B[1, n] be new arrays 
for i = 1 to n 
      C[i] ç 0 
for i = 1 to n – 1  
      for j = i+1 to n  
            if X[i] < X[j] 
                 C[j] ç C[j] + 1 
            else  
                 C[i] ç C[i] + 1 
for i = 1 to n  
      B[C[i]+1] ç X[i] 
return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

•  for each element of the array, count the total number of elements smaller 
than this number, and record the results in a table 

•  this count determines the position of the element in the final sorted array 
 

    if the count is 5 for some element, then the element should be placed in 
    the sixth position in the sorted array   

CountingSort-1(X[1,n]) 
 

let C[1, n] and B[1, n] be new arrays 
for i = 1 to n 
      C[i] ç 0 
for i = 1 to n – 1  
      for j = i+1 to n  
            if X[i] < X[j] 
                 C[j] ç C[j] + 1 
            else  
                 C[i] ç C[i] + 1 
for i = 1 to n  
      B[C[i]+1] ç X[i] 
return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

•  for each element of the array, count the total number of elements smaller 
than this number, and record the results in a table 

•  this count determines the position of the element in the final sorted array 
 

    if the count is 5 for some element, then the element should be placed in 
    the sixth position in the sorted array   

CountingSort-1(X[1,n]) 
 

let C[1, n] and B[1, n] be new arrays 
for i = 1 to n 
      C[i] ç 0 
for i = 1 to n – 1  
      for j = i+1 to n  
            if X[i] < X[j] 
                 C[j] ç C[j] + 1 
            else  
                 C[i] ç C[i] + 1 
for i = 1 to n  
      B[C[i]+1] ç X[i] 
return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

•  for each element of the array, count the total number of elements smaller 
than this number, and record the results in a table 

•  this count determines the position of the element in the final sorted array 
 

    if the count is 5 for some element, then the element should be placed in 
    the sixth position in the sorted array   

CountingSort-1(X[1,n]) 
 

let C[1, n] and B[1, n] be new arrays 
for i = 1 to n 
      C[i] ç 0 
for i = 1 to n – 1  
      for j = i+1 to n  
            if X[i] < X[j] 
                 C[j] ç C[j] + 1 
            else  
                 C[i] ç C[i] + 1 
for i = 1 to n  
      B[C[i]+1] ç X[i] 
return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

•  for each element of the array, count the total number of elements smaller 
than this number, and record the results in a table 

•  this count determines the position of the element in the final sorted array 
 

    if the count is 5 for some element, then the element should be placed in 
    the sixth position in the sorted array   

CountingSort-1(X[1,n]) 
 

let C[1, n] and B[1, n] be new arrays 
for i = 1 to n 
      C[i] ç 0 
for i = 1 to n – 1  
      for j = i+1 to n  
            if X[i] < X[j] 
                 C[j] ç C[j] + 1 
            else  
                 C[i] ç C[i] + 1 
for i = 1 to n  
      B[C[i]+1] ç X[i] 
return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

•  for each element of the array, count the total number of elements smaller 
than this number, and record the results in a table 

•  this count determines the position of the element in the final sorted array 
 

    if the count is 5 for some element, then the element should be placed in 
    the sixth position in the sorted array   

CountingSort-1(X[1,n]) 
 

let C[1, n] and B[1, n] be new arrays 
for i = 1 to n 
      C[i] ç 0 
for i = 1 to n – 1  
      for j = i+1 to n  
            if X[i] < X[j] 
                 C[j] ç C[j] + 1 
            else  
                 C[i] ç C[i] + 1 
for i = 1 to n  
      B[C[i]+1] ç X[i] 
return B  



Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

•  for each element of the array, count the total number of elements smaller 
than this number, and record the results in a table 

•  this count determines the position of the element in the final sorted array 
 

    if the count is 5 for some element, then the element should be placed in 
    the sixth position in the sorted array   

CountingSort-1(X[1,n]) 
 

let C[1, n] and B[1, n] be new arrays 
for i = 1 to n 
      C[i] ç 0 
for i = 1 to n – 1  
      for j = i+1 to n  
            if X[i] < X[j] 
                 C[j] ç C[j] + 1 
            else  
                 C[i] ç C[i] + 1 
for i = 1 to n  
      B[C[i]+1] ç X[i] 
return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

•  for each element of the array, count the total number of elements smaller 
than this number, and record the results in a table 

•  this count determines the position of the element in the final sorted array 
 

    if the count is 5 for some element, then the element should be placed in 
    the sixth position in the sorted array   

CountingSort-1(X[1,n]) 
 

let C[1, n] and B[1, n] be new arrays 
for i = 1 to n 
      C[i] ç 0 
for i = 1 to n – 1  
      for j = i+1 to n  
            if X[i] < X[j] 
                 C[j] ç C[j] + 1 
            else  
                 C[i] ç C[i] + 1 
for i = 1 to n  
      B[C[i]+1] ç X[i] 
return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

•  for each element of the array, count the total number of elements smaller 
than this number, and record the results in a table 

•  this count determines the position of the element in the final sorted array 
 

    if the count is 5 for some element, then the element should be placed in 
    the sixth position in the sorted array   

CountingSort-1(X[1,n]) 
 

let C[1, n] and B[1, n] be new arrays 
for i = 1 to n 
      C[i] ç 0 
for i = 1 to n – 1  
      for j = i+1 to n  
            if X[i] < X[j] 
                 C[j] ç C[j] + 1 
            else  
                 C[i] ç C[i] + 1 
for i = 1 to n  
      B[C[i]+1] ç X[i] 
return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

•  for each element of the array, count the total number of elements smaller 
than this number, and record the results in a table 

•  this count determines the position of the element in the final sorted array 
 

    if the count is 5 for some element, then the element should be placed in 
    the sixth position in the sorted array   

CountingSort-1(X[1,n]) 
 

let C[1, n] and B[1, n] be new arrays 
for i = 1 to n 
      C[i] ç 0 
for i = 1 to n – 1  
      for j = i+1 to n  
            if X[i] < X[j] 
                 C[j] ç C[j] + 1 
            else  
                 C[i] ç C[i] + 1 
for i = 1 to n  
      B[C[i]+1] ç X[i] 
return B  

O(n2)	

O(n)	

O(n)	

time complexity : O(n2)	

space complexity : O(n)	

 

we can achieve a Counting Sort algorithm with O(n) 
running time if each of the input elements is an integer 

in the range [0,k] where k = O(n)  
 



Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
 

return B  



Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
 

return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
 

return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
 

return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
 

return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
 

return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
 

return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
 

return B  

X	

B	

C	

4 2 0 6 2 0 3 2 

0 1 2 3 4 5 6 
1 0 1 0 1 0 0 



Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
 

return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
 

return B  
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
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Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
      C[X[j]] ç C[X[j]] + 1 
 

for i = 1 to k  
      C[i] ç C[i] + C[i-1] 
 

for j = n to 1  
      B[C[X[j]]] ç X[j] 
      C[X[j]] ç C[X[j]] – 1 
 

return B  

X	

B	

C	

4 2 0 6 2 0 3 2 

0 1 2 3 4 5 6 
2 2 5 1 1 0 1 



Input Enhancement 
Sorting by Counting 
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’, 

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’  

CountingSort-2(X[1,n],k) 
 

let C[1, k] and B[1, n] be new arrays 
 

for i = 0 to k 
      C[i] ç 0  
 

for j = 1 to n   
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String Matching 
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Pre-Structuring 
Hashing 
•  a very efficient way of implementing dictionaries,   

•  a dictionary is an abstract data type supporting 
three operations : searching, insertion, and deletion.  

•  elements in a dictionary can be of an arbitrary 
nature: numbers, characters strings of some 
alphabet, etc.  

•  each element consists of a number of fields so that 
each of them keeps a particular type of information 

•  at least one of fields corresponds to ‘key’, used to 
identify the elements dictionaries     
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•  distributes the elements based their keys among a one-
dimensional array H[0,m-1], called Hash Table 

•  distribution performed through a function, called hash 
function, that maps keys of the elements (large data sets) 
to some value (smaller data set) in [0,m-1], called hash 
address  

•  the operations ‘searching, insertion, and deletion’ take 
constant time in average (when hash table properly 
implemented)       
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•  Collusion : a hash function may map different 
keys to same slot (many-to-one mapping) 
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•  A hash function h then 

 

 h : U è{0, 1, …, m-1}  
( an item x hashes to the slot H[h(x)] ) 

•  A good hash function should : 
 

•  be a easy to compute 

•  distribute the keys evenly through the 
hash table 

•  avoid collisions as much as possible 

•  use less space (or slots)  
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m is too large  è   too many empty  arrays entry 
m is too small  è list will be too long      
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•  Let’s define a hash function as : add the positions of the letters in the 
alphabet and compute the remainder of the division of the sum by 13 

 

•  h(A) = 1 mod 13 = 1 
     h(FOOL) = (6 + 15 + 15 + 12) mod 13 = 9 
     h(ARE) = (1 + 18 + 5) mod 13 = 11 
     h(SOON) = (19 + 15 + 15 + 14) mod 13 = 11 
 

•  ARE and SOON are stored in same linked list 

•  How do we search in the hash table? 
              -- search whether the table contains KID or not 
              -- compute h(KID) = 11 
              -- search corresponding linked-list which includes ARE and SOON 
•  In Separate Chaining, a search takes O(1+π) time in average π = N/m  
•  the average number of cells examined in a successful search, S (U for 

unseccessful) : S ≈ 1 + π/2 and U ≈ π 

Pre-Structuring 
Open Hashing (Separate Chaining) 



	

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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insert(18) 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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18	

insert(18) 
h(18) = 18 mod 7 
h(18) = 4 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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insert(18) 
h(18) = 18 mod 7 
h(18) = 4 
 
insert(14) 
h(14) = 14 mod 7 
h(14) = 0 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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insert(18) 
h(18) = 18 mod 7 
h(18) = 4 
 
insert(14) 
h(14) = 14 mod 7 
h(14) = 0 
 

insert(21) 
h(21) = 21 mod 7 
h(21) = 0 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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insert(18) 
h(18) = 18 mod 7 
h(18) = 4 
 
insert(14) 
h(14) = 14 mod 7 
h(14) = 0 
 

insert(21) 
h(21) = 21 mod 7 
h(21) = 0 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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insert(18) 
h(18) = 18 mod 7 
h(18) = 4 
 
insert(14) 
h(14) = 14 mod 7 
h(14) = 0 
 

insert(21) 
h(21) = 21 mod 7 
h(21) = 0 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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insert(18) 
h(18) = 18 mod 7 
h(18) = 4 
 
insert(14) 
h(14) = 14 mod 7 
h(14) = 0 
 

insert(21) 
h(21) = 21 mod 7 
h(21) = 0 
 
insert(35) 
h(35) = 35 mod 7 
h(35) = 0 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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insert(18) 
h(18) = 18 mod 7 
h(18) = 4 
 
insert(14) 
h(14) = 14 mod 7 
h(14) = 0 
 

insert(21) 
h(21) = 21 mod 7 
h(21) = 0 
 
insert(35) 
h(35) = 35 mod 7 
h(35) = 0 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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insert(18) 
h(18) = 18 mod 7 
h(18) = 4 
 
insert(14) 
h(14) = 14 mod 7 
h(14) = 0 
 

insert(21) 
h(21) = 21 mod 7 
h(21) = 0 
 
insert(35) 
h(35) = 35 mod 7 
h(35) = 0 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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insert(18) 
h(18) = 18 mod 7 
h(18) = 4 
 
insert(14) 
h(14) = 14 mod 7 
h(14) = 0 
 

insert(21) 
h(21) = 21 mod 7 
h(21) = 0 
 
insert(35) 
h(35) = 35 mod 7 
h(35) = 0 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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insert(18) 
h(18) = 18 mod 7 
h(18) = 4 
 
insert(14) 
h(14) = 14 mod 7 
h(14) = 0 
 
insert(8) 
h(8) = 8 mod 7 
h(8) = 1 

insert(21) 
h(21) = 21 mod 7 
h(21) = 0 
 
insert(35) 
h(35) = 35 mod 7 
h(35) = 0 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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35	

18	

insert(18) 
h(18) = 18 mod 7 
h(18) = 4 
 
insert(14) 
h(14) = 14 mod 7 
h(14) = 0 
 
insert(8) 
h(8) = 8 mod 7 
h(8) = 1 

insert(21) 
h(21) = 21 mod 7 
h(21) = 0 
 
insert(35) 
h(35) = 35 mod 7 
h(35) = 0 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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18	

insert(18) 
h(18) = 18 mod 7 
h(18) = 4 
 
insert(14) 
h(14) = 14 mod 7 
h(14) = 0 
 
insert(8) 
h(8) = 8 mod 7 
h(8) = 1 

insert(21) 
h(21) = 21 mod 7 
h(21) = 0 
 
insert(35) 
h(35) = 35 mod 7 
h(35) = 0 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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insert(18) 
h(18) = 18 mod 7 
h(18) = 4 
 
insert(14) 
h(14) = 14 mod 7 
h(14) = 0 
 
insert(8) 
h(8) = 8 mod 7 
h(8) = 1 

insert(21) 
h(21) = 21 mod 7 
h(21) = 0 
 
insert(35) 
h(35) = 35 mod 7 
h(35) = 0 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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insert(18) 
h(18) = 18 mod 7 
h(18) = 4 
 
insert(14) 
h(14) = 14 mod 7 
h(14) = 0 
 
insert(8) 
h(8) = 8 mod 7 
h(8) = 1 

insert(21) 
h(21) = 21 mod 7 
h(21) = 0 
 
insert(35) 
h(35) = 35 mod 7 
h(35) = 0 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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find(8) 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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find(8) 
h(8)=1 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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find(8) 
h(8)=1 
 
after two probes  

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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delete(21) 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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delete(21) 
h(21)=0 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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delete(21) 
h(21)=0 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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find(35) 
h(35)=0 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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find(35) 
h(35)=0 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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find(35) 
h(35)=0 
 
put some indicator  
when you delete 
 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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delete(21) 
h(21)=0 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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delete(21) 
h(21)=0 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 



	

0 
1 

2 
3 
4 

5 
6 

14	

21	

35	

8	

18	

A cluster is collection of consecutive occupied slots 
 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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A cluster is collection of consecutive occupied slots 
 
Linear Probing can create large clusters that increases 
the running time of find-insert-delete operations 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 
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A cluster is collection of consecutive occupied slots 
 
Linear Probing can create large clusters that increases 
the running time of find-insert-delete operations 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) + i) mod m  where h’ : U {0,1,…,m-1} is an ordinary 
                                                      hash function 

Pre-Structuring 
Linear Probing 

the average number of cells examined in a successful 
search, S (U for unseccessful) :  
     
      S ≈ 1/2 (1 + 1/(1-π)) and U ≈ 1/2 (1 + 1/(1-π)2) 



	

Pre-Structuring 
Quadratic Probing 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary 

hash function 
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simply use the  
following form 

 
(h’(k) +1) mod m 
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

Pre-Structuring 
Quadratic Probing 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary 

hash function 



	

insert(8) 0 
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2 
3 
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5 
6 

simply use the  
following form 

 
(h’(k) +1) mod m 
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

Pre-Structuring 
Quadratic Probing 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary 

hash function 



	

8	

insert(8) 
h(8)=8 mod 7 
h(8)=1 

0 
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6 

simply use the  
following form 

 
(h’(k) +1) mod m 
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

Pre-Structuring 
Quadratic Probing 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary 

hash function 
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12	

insert(8) 
h(8)=8 mod 7 
h(8)=1 
 
insert(12) 
h(12)=12 mod 7 
h(12)=5 
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5 
6 

simply use the  
following form 

 
(h’(k) +1) mod m 
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

Pre-Structuring 
Quadratic Probing 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary 

hash function 
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insert(8) 
h(8)=8 mod 7 
h(8)=1 
 
insert(12) 
h(12)=12 mod 7 
h(12)=5 
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5 
6 

simply use the  
following form 

 
(h’(k) +1) mod m 
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

insert(14) 
h(14)=14 mod 7 
h(14)=0 
 
 

Pre-Structuring 
Quadratic Probing 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary 

hash function 
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insert(8) 
h(8)=8 mod 7 
h(8)=1 
 
insert(12) 
h(12)=12 mod 7 
h(12)=5 
 

0 
1 

2 
3 
4 

5 
6 

simply use the  
following form 

 
(h’(k) +1) mod m 
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

insert(14) 
h(14)=14 mod 7 
h(14)=0 
 
insert(21) 
h(21)=21 mod 7 
h(21)=0 
 

Pre-Structuring 
Quadratic Probing 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary 

hash function 



	

14	
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insert(8) 
h(8)=8 mod 7 
h(8)=1 
 
insert(12) 
h(12)=12 mod 7 
h(12)=5 
 

0 
1 

2 
3 
4 

5 
6 

simply use the  
following form 

 
(h’(k) +1) mod m 
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

insert(14) 
h(14)=14 mod 7 
h(14)=0 
 
insert(21) 
h(21)=21 mod 7 
h(21)=0 
 

Pre-Structuring 
Quadratic Probing 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary 

hash function 



	

14	
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12	

insert(8) 
h(8)=8 mod 7 
h(8)=1 
 
insert(12) 
h(12)=12 mod 7 
h(12)=5 
 

0 
1 

2 
3 
4 

5 
6 

simply use the  
following form 

 
(h’(k) +1) mod m 
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

insert(14) 
h(14)=14 mod 7 
h(14)=0 
 
insert(21) 
h(21)=21 mod 7 
h(21)=0 
 

Pre-Structuring 
Quadratic Probing 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary 

hash function 



	

14	
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insert(8) 
h(8)=8 mod 7 
h(8)=1 
 
insert(12) 
h(12)=12 mod 7 
h(12)=5 
 

0 
1 

2 
3 
4 

5 
6 

simply use the  
following form 

 
(h’(k) +1) mod m 
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

insert(14) 
h(14)=14 mod 7 
h(14)=0 
 
insert(21) 
h(21)=21 mod 7 
h(21)=0 
 

Pre-Structuring 
Quadratic Probing 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary 

hash function 



	

14	

8	

21	

12	

insert(8) 
h(8)=8 mod 7 
h(8)=1 
 
insert(12) 
h(12)=12 mod 7 
h(12)=5 
 

0 
1 

2 
3 
4 

5 
6 

simply use the  
following form 

 
(h’(k) +1) mod m 
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

insert(14) 
h(14)=14 mod 7 
h(14)=0 
 
insert(21) 
h(21)=21 mod 7 
h(21)=0 
 

Pre-Structuring 
Quadratic Probing 

Closed Hashing (Open Addressing) 
 
•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary 

hash function 


