
Space/Time Trade-Offs

Murat Osmanoglu

Space/Time Trade-Offs
•  solve a problem in less time by using more storage space,
 or in little space by spending a long time

Space/Time Trade-Offs
•  solve a problem in less time by using more storage space,
 or in little space by spending a long time

•  you may have a large amount of space but not infinite,
 or you can wait a little more but not forever

Space/Time Trade-Offs
•  solve a problem in less time by using more storage space,
 or in little space by spending a long time

•  you may have a large amount of space but not infinite,
 or you can wait a little more but not forever

Space-for-Time Tradeoffs

•  we cover two varieties of space-for-time algorithms:

Space/Time Trade-Offs
•  solve a problem in less time by using more storage space,
 or in little space by spending a long time

•  you may have a large amount of space but not infinite,
 or you can wait a little more but not forever

Space-for-Time Tradeoffs

•  we cover two varieties of space-for-time algorithms:

-  input enhancement; preprocess the input to store the
additional information to be used later to improve the
time efficiency

Space/Time Trade-Offs
•  solve a problem in less time by using more storage space,
 or in little space by spending a long time

•  you may have a large amount of space but not infinite,
 or you can wait a little more but not forever

Space-for-Time Tradeoffs

•  we cover two varieties of space-for-time algorithms:

-  input enhancement; preprocess the input to store the
additional information to be used later to improve the
time efficiency

-  pre-structuring; preprocess the input to make accessing
its element easier

Input Enhancement
Sorting Problem

Best Case Average Case Worst Case Space

Selection Sort O(n2) O(n2) O(n2) 1

Bubble Sort O(n2) O(n2) O(n2) 1

Insertion Sort O(n) O(n2) O(n2) 1

Merge Sort O(nlogn) O(nlogn) O(nlogn) O(n)

Quicksort O(nlogn) O(nlogn) O(n2) O(logn)

Input Enhancement
Sorting Problem

•  What is common among all of these algorithms?

Best Case Average Case Worst Case Space

Selection Sort O(n2) O(n2) O(n2) 1

Bubble Sort O(n2) O(n2) O(n2) 1

Insertion Sort O(n) O(n2) O(n2) 1

Merge Sort O(nlogn) O(nlogn) O(nlogn) O(n)

Quicksort O(nlogn) O(nlogn) O(n2) O(logn)

Input Enhancement
Sorting Problem

•  What is common among all of these algorithms?

 the sorted order they determine is only based on comparisons between
 the input elements

Best Case Average Case Worst Case Space

Selection Sort O(n2) O(n2) O(n2) 1

Bubble Sort O(n2) O(n2) O(n2) 1

Insertion Sort O(n) O(n2) O(n2) 1

Merge Sort O(nlogn) O(nlogn) O(nlogn) O(n)

Quicksort O(nlogn) O(nlogn) O(n2) O(logn)

Input Enhancement
Sorting Problem

•  What is common among all of these algorithms?

 the sorted order they determine is only based on comparisons between
 the input elements

•  Can we establish a lower bound on the number of comparisons for the

worst case of comparison-based sorting algorithms ?

Best Case Average Case Worst Case Space

Selection Sort O(n2) O(n2) O(n2) 1

Bubble Sort O(n2) O(n2) O(n2) 1

Insertion Sort O(n) O(n2) O(n2) 1

Merge Sort O(nlogn) O(nlogn) O(nlogn) O(n)

Quicksort O(nlogn) O(nlogn) O(n2) O(logn)

Input Enhancement
Sorting Problem
•  Let’s use a decision tree to get the intuition

a full binary tree that represents the comparisons between elements
that are performed by the algorithm	

Input Enhancement
Sorting Problem
•  Let’s use a decision tree to get the intuition

a full binary tree that represents the comparisons between elements
that are performed by the algorithm	

1:2	

2:3	 1:3	

>	≤	

Input Enhancement
Sorting Problem
•  Let’s use a decision tree to get the intuition

a full binary tree that represents the comparisons between elements
that are performed by the algorithm	

1:2	

2:3	 1:3	

1:3	[1,2,3]	

>	≤	

≤	 >	

Input Enhancement
Sorting Problem
•  Let’s use a decision tree to get the intuition

a full binary tree that represents the comparisons between elements
that are performed by the algorithm	

1:2	

2:3	 1:3	

1:3	[1,2,3]	

[1,3,2]	 [3,1,2]	

>	≤	

≤	

≤	

>	

>	

Input Enhancement
Sorting Problem
•  Let’s use a decision tree to get the intuition

a full binary tree that represents the comparisons between elements
that are performed by the algorithm	

1:2	

2:3	 1:3	

1:3	 2:3	[1,2,3]	 [2,1,3]	

[1,3,2]	 [3,1,2]	 [2,3,1]	 [3,2,1]	

>	≤	

≤	

≤	

≤	

≤	

>	

>	

>	

>	

Input Enhancement
Sorting Problem
•  Let’s use a decision tree to get the intuition

a full binary tree that represents the comparisons between elements
that are performed by the algorithm	

1:2	

2:3	 1:3	

1:3	 2:3	[1,2,3]	 [2,1,3]	

[1,3,2]	 [3,1,2]	 [2,3,1]	 [3,2,1]	

>	≤	

≤	

≤	

≤	

≤	

>	

>	

>	

>	

•  for the input (4, 9, 6), the red path indicates the decision made 	

Input Enhancement
Sorting Problem
•  Let’s use a decision tree to get the intuition

a full binary tree that represents the comparisons between elements
that are performed by the algorithm	

1:2	

2:3	 1:3	

1:3	 2:3	[1,2,3]	 [2,1,3]	

[1,3,2]	 [3,1,2]	 [2,3,1]	 [3,2,1]	

>	≤	

≤	

≤	

≤	

≤	

>	

>	

>	

>	

•  for the input (4, 9, 6), the red path indicates the decision made 	

•  each permutation appears as one of the leaves in the tree

Input Enhancement
Sorting Problem
•  Let’s use a decision tree to get the intuition

a full binary tree that represents the comparisons between elements
that are performed by the algorithm	

1:2	

2:3	 1:3	

1:3	 2:3	[1,2,3]	 [2,1,3]	

[1,3,2]	 [3,1,2]	 [2,3,1]	 [3,2,1]	

>	≤	

≤	

≤	

≤	

≤	

>	

>	

>	

>	

•  for the input (4, 9, 6), the red path indicates the decision made 	

•  each permutation appears as one of the leaves in the tree

•  the depth of a particular node will be the number of comparisons
the comparison-based sorting algorithm performs

Input Enhancement
Sorting Problem
•  Let’s use a decision tree to get the intuition

a full binary tree that represents the comparisons between elements
that are performed by the algorithm	

1:2	

2:3	 1:3	

1:3	 2:3	[1,2,3]	 [2,1,3]	

[1,3,2]	 [3,1,2]	 [2,3,1]	 [3,2,1]	

>	≤	

≤	

≤	

≤	

≤	

>	

>	

>	

>	

•  for the input (4, 9, 6), the red path indicates the decision made 	

•  each permutation appears as one of the leaves in the tree

•  the depth of a particular node will be the number of comparisons
the comparison-based sorting algorithm performs

•  the height of the tree then will equal to the worst-case number of
comparisons

Input Enhancement
Sorting Problem
•  Let’s use a decision tree to get the intuition

a full binary tree that represents the comparisons between elements
that are performed by the algorithm	

1:2	

2:3	 1:3	

1:3	 2:3	[1,2,3]	 [2,1,3]	

[1,3,2]	 [3,1,2]	 [2,3,1]	 [3,2,1]	

>	≤	

≤	

≤	

≤	

≤	

>	

>	

>	

>	

•  for the input (4, 9, 6), the red path indicates the decision made 	

•  each permutation appears as one of the leaves in the tree

•  the depth of a particular node will be the number of comparisons
the comparison-based sorting algorithm performs

•  the height of the tree then will equal to the worst-case number of
comparisons

•  let L be the number of leaves, h be the height of the decision tree,
and n be the size of the input

Input Enhancement
Sorting Problem
•  Let’s use a decision tree to get the intuition

a full binary tree that represents the comparisons between elements
that are performed by the algorithm	

1:2	

2:3	 1:3	

1:3	 2:3	[1,2,3]	 [2,1,3]	

[1,3,2]	 [3,1,2]	 [2,3,1]	 [3,2,1]	

>	≤	

≤	

≤	

≤	

≤	

>	

>	

>	

>	

•  for the input (4, 9, 6), the red path indicates the decision made 	

•  each permutation appears as one of the leaves in the tree

•  the depth of a particular node will be the number of comparisons
the comparison-based sorting algorithm performs

•  the height of the tree then will equal to the worst-case number of
comparisons

•  let L be the number of leaves, h be the height of the decision tree,
and n be the size of the input

 L = n!, L ≤ 2h

Input Enhancement
Sorting Problem
•  Let’s use a decision tree to get the intuition

a full binary tree that represents the comparisons between elements
that are performed by the algorithm	

1:2	

2:3	 1:3	

1:3	 2:3	[1,2,3]	 [2,1,3]	

[1,3,2]	 [3,1,2]	 [2,3,1]	 [3,2,1]	

>	≤	

≤	

≤	

≤	

≤	

>	

>	

>	

>	

•  for the input (4, 9, 6), the red path indicates the decision made 	

•  each permutation appears as one of the leaves in the tree

•  the depth of a particular node will be the number of comparisons
the comparison-based sorting algorithm performs

•  the height of the tree then will equal to the worst-case number of
comparisons

•  let L be the number of leaves, h be the height of the decision tree,
and n be the size of the input

 L = n!, L ≤ 2h, thus h ≥ log (n!)

Input Enhancement
Sorting Problem
•  Let’s use a decision tree to get the intuition

a full binary tree that represents the comparisons between elements
that are performed by the algorithm	

1:2	

2:3	 1:3	

1:3	 2:3	[1,2,3]	 [2,1,3]	

[1,3,2]	 [3,1,2]	 [2,3,1]	 [3,2,1]	

>	≤	

≤	

≤	

≤	

≤	

>	

>	

>	

>	

•  for the input (4, 9, 6), the red path indicates the decision made 	

•  each permutation appears as one of the leaves in the tree

•  the depth of a particular node will be the number of comparisons
the comparison-based sorting algorithm performs

•  the height of the tree then will equal to the worst-case number of
comparisons

•  let L be the number of leaves, h be the height of the decision tree,
and n be the size of the input

 L = n!, L ≤ 2h, thus h ≥ log (n!), h = Ω(nlogn)

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10 X	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10 X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

0 0 0 0 0 0

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

0 0 0 0 0 0

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 0 0 1 0 0

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 0 0 1 0 0

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 1 2 0 1

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 1 2 0 1

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 2 3 0 2

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 2 3 0 2

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 2 5 0 2

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 2 5 0 2

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 2 5 0 3

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 2 5 0 3

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 2 5 0 3

12

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 2 5 0 3

8 12

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 2 5 0 3

8 9 12

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 2 5 0 3

8 9 12 17

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 2 5 0 3

5 8 9 12 17

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

12 8 9 17 5 10

4 1 2 5 0 3

5 8 9 10 12 17

X	

B	

C	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

O(n2)	

O(n)	

O(n)	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

O(n2)	

O(n)	

O(n)	

time complexity : O(n2)	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

O(n2)	

O(n)	

O(n)	

time complexity : O(n2)	

space complexity : O(n)	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

•  for each element of the array, count the total number of elements smaller
than this number, and record the results in a table

•  this count determines the position of the element in the final sorted array

 if the count is 5 for some element, then the element should be placed in
 the sixth position in the sorted array

CountingSort-1(X[1,n])

let C[1, n] and B[1, n] be new arrays
for i = 1 to n
 C[i] ç 0
for i = 1 to n – 1
 for j = i+1 to n
 if X[i] < X[j]
 C[j] ç C[j] + 1
 else
 C[i] ç C[i] + 1
for i = 1 to n
 B[C[i]+1] ç X[i]
return B

O(n2)	

O(n)	

O(n)	

time complexity : O(n2)	

space complexity : O(n)	

we can achieve a Counting Sort algorithm with O(n)
running time if each of the input elements is an integer

in the range [0,k] where k = O(n)

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	 4 2 0 6 2 0 3 2

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
0 0 0 0 0 0 0

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
0 0 0 0 0 0 0

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
0 0 0 0 1 0 0

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
0 0 0 0 1 0 0

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
0 0 1 0 1 0 0

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
0 0 1 0 1 0 0

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
1 0 1 0 1 0 0

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
2 0 3 1 1 0 1

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
2 0 3 1 1 0 1

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
2 2 3 1 1 0 1

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
2 2 5 1 1 0 1

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
2 2 5 6 1 0 1

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
2 2 5 6 7 0 1

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
2 2 5 6 7 7 1

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
2 2 5 6 7 7 8

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
2 2 5 6 7 7 8

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
2 2 4 6 7 7 8

2

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
2 2 4 6 7 7 8

2

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
2 2 4 5 7 7 8

2 3

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
2 2 4 5 7 7 8

2 3

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
1 2 4 5 7 7 8

0 2 3

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
1 2 4 5 7 7 8

0 2 3

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
1 2 3 5 7 7 8

0 2 2 3

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
1 2 3 5 7 7 8

0 2 2 3

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
1 2 3 5 7 7 7

0 2 2 3 6

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
1 2 3 5 7 7 7

0 2 2 3 6

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
0 2 3 5 7 7 7

0 0 2 2 3 6

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
0 2 3 5 7 7 7

0 0 2 2 3 6

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
0 2 2 5 7 7 7

0 0 2 2 2 3 6

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
0 2 2 5 7 7 7

0 0 2 2 2 3 6

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

X	

B	

C	

4 2 0 6 2 0 3 2

0 1 2 3 4 5 6
0 2 2 5 6 7 7

0 0 2 2 2 3 4 6

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

O(n)	

O(n)	

O(k)	

O(k)	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

O(n)	

O(n)	

O(k)	

O(k)	

time complexity : O(k + n)	

Input Enhancement
Sorting by Counting
•  given an array of n orderable items [a1, a2,…, an], reorder the items as [a1’,

a2’,…, an’] such that a1’ ≤ a2’ ≤ … ≤ an’

CountingSort-2(X[1,n],k)

let C[1, k] and B[1, n] be new arrays

for i = 0 to k
 C[i] ç 0

for j = 1 to n
 C[X[j]] ç C[X[j]] + 1

for i = 1 to k
 C[i] ç C[i] + C[i-1]

for j = n to 1
 B[C[X[j]]] ç X[j]
 C[X[j]] ç C[X[j]] – 1

return B

O(n)	

O(n)	

O(k)	

O(k)	

time complexity : O(k + n)	

space complexity : O(k + n)	

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
E R I C 	

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
E R I C 	

•  when a mismatch occurs, shift the
pattern one position to right	

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
E R I C 	

•  when a mismatch occurs, shift the
pattern one position to right	

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
 E R I C 	

•  when a mismatch occurs, shift the
pattern one position to right	

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
 E R I C 	

•  when a mismatch occurs, shift the
pattern one position to right	

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
 E R I C 	

•  when a mismatch occurs, shift the
pattern one position to right	

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
 E R I C 	

•  when a mismatch occurs, shift the
pattern one position to right	

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
 E R I C 	

•  when a mismatch occurs, shift the
pattern one position to right	

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
 E R I C 	

•  when a mismatch occurs, shift the
pattern one position to right	

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
 E R I C 	

•  when a mismatch occurs, shift the
pattern one position to right	

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
 E R I C 	

•  when a mismatch occurs, shift the
pattern one position to right	

•  worst-case : O(nm)

•  average-case : O(n + m)
 (for random natural-language texts, just a
 few comparisons expected before a shift)	

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
 E R I C 	

•  when a mismatch occurs, shift the
pattern one position to right	

•  worst-case : O(nm)

•  average-case : O(n + m)
 (for random natural-language texts, just a
 few comparisons expected before a shift)	

•  if a mismatch occurs, make a shift to right as large
as possible

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
 E R I C 	

•  when a mismatch occurs, shift the
pattern one position to right	

•  worst-case : O(nm)

•  average-case : O(n + m)
 (for random natural-language texts, just a
 few comparisons expected before a shift)	

•  if a mismatch occurs, make a shift to right as large
as possible

•  there is a risk that you can miss a matching substring
when you shift too much

Input Enhancement
String Matching
•  given a string of n characters (text) and a string of m characters

(pattern), determine whether the text has a substring that matches the
pattern

StringMatching(T = t1t2…tn, P = p1p2…pm)

for i = 1 to n – m + 1
 j ç 1
 while j < m and pj = ti+j
 j ç j+1
 if j = m
 return i
return 0

text : F E D E R I C O F E L L I N I	
 E R I C 	

•  when a mismatch occurs, shift the
pattern one position to right	

•  worst-case : O(nm)

•  average-case : O(n + m)
 (for random natural-language texts, just a
 few comparisons expected before a shift)	

•  if a mismatch occurs, make a shift to right as large
as possible

•  there is a risk that you can miss a matching substring
when you shift too much

•  How do we determine the size of such shift?

Input Enhancement
Horspool’s Algorithm
•  use the pattern to make a ‘Bad Match Table’ that stores shift sizes of all

possible characters that can be encountered in the text

Input Enhancement
Horspool’s Algorithm
•  use the pattern to make a ‘Bad Match Table’ that stores shift sizes of all

possible characters that can be encountered in the text
•  compare pattern with text, starting from the rightmost character in the

pattern

Input Enhancement
Horspool’s Algorithm
•  use the pattern to make a ‘Bad Match Table’ that stores shift sizes of all

possible characters that can be encountered in the text
•  compare pattern with text, starting from the rightmost character in the

pattern
•  if a mismatch occurs, shift the pattern to right corresponding to the value in

the table

Input Enhancement
Horspool’s Algorithm
•  use the pattern to make a ‘Bad Match Table’ that stores shift sizes of all

possible characters that can be encountered in the text
•  compare pattern with text, starting from the rightmost character in the

pattern
•  if a mismatch occurs, shift the pattern to right corresponding to the value in

the table
•  first, let’s analyze the following cases (to determine the shift size, we look at

the character that is aligned against the last character of the pattern) :

Input Enhancement
Horspool’s Algorithm
•  use the pattern to make a ‘Bad Match Table’ that stores shift sizes of all

possible characters that can be encountered in the text
•  compare pattern with text, starting from the rightmost character in the

pattern
•  if a mismatch occurs, shift the pattern to right corresponding to the value in

the table
•  first, let’s analyze the following cases (to determine the shift size, we look at

the character that is aligned against the last character of the pattern) :
-  if there is no such character in the pattern, we can safely shift the

pattern by its entire length

c0 . . . S . . . cn-1

 B A R B E R

Input Enhancement
Horspool’s Algorithm
•  use the pattern to make a ‘Bad Match Table’ that stores shift sizes of all

possible characters that can be encountered in the text
•  compare pattern with text, starting from the rightmost character in the

pattern
•  if a mismatch occurs, shift the pattern to right corresponding to the value in

the table
•  first, let’s analyze the following cases (to determine the shift size, we look at

the character that is aligned against the last character of the pattern) :
-  if there is no such character in the pattern, we can safely shift the

pattern by its entire length

c0 . . . S . . . cn-1

 B A R B E R

 B A R B E R

Input Enhancement
Horspool’s Algorithm
•  use the pattern to make a ‘Bad Match Table’ that stores shift sizes of all

possible characters that can be encountered in the text
•  compare pattern with text, starting from the rightmost character in the

pattern
•  if a mismatch occurs, shift the pattern to right corresponding to the value in

the table
•  first, let’s analyze the following cases (to determine the shift size, we look at

the character that is aligned against the last character of the pattern) :
-  if there is no such character in the pattern, we can safely shift the

pattern by its entire length
-  if the character contained in the pattern but it is not the last one, the

shift should align the rightmost occurrence of the character in the
pattern with the character in the text

c0 . . . B . . . cn-1

 B A R B E R

Input Enhancement
Horspool’s Algorithm
•  use the pattern to make a ‘Bad Match Table’ that stores shift sizes of all

possible characters that can be encountered in the text
•  compare pattern with text, starting from the rightmost character in the

pattern
•  if a mismatch occurs, shift the pattern to right corresponding to the value in

the table
•  first, let’s analyze the following cases (to determine the shift size, we look at

the character that is aligned against the last character of the pattern) :
-  if there is no such character in the pattern, we can safely shift the

pattern by its entire length
-  if the character contained in the pattern but it is not the last one, the

shift should align the rightmost occurrence of the character in the
pattern with the character in the text

c0 . . . B . . . cn-1

 B A R B E R

 B A R B E R

Input Enhancement
Horspool’s Algorithm
•  use the pattern to make a ‘Bad Match Table’ that stores shift sizes of all

possible characters that can be encountered in the text
•  compare pattern with text, starting from the rightmost character in the

pattern
•  if a mismatch occurs, shift the pattern to right corresponding to the value in

the table
•  first, let’s analyze the following cases (to determine the shift size, we look at

the character that is aligned against the last character of the pattern) :
-  if there is no such character in the pattern, we can safely shift the

pattern by its entire length
-  if the character contained in the pattern but it is not the last one, the

shift should align the rightmost occurrence of the character in the
pattern with the character in the text

-  if the character equals to the last one in the pattern but there is no same
character among others, we can safely shift the pattern by its entire
length

c0 . . . K E R . . . cn-1

 L E A D E R

Input Enhancement
Horspool’s Algorithm
•  use the pattern to make a ‘Bad Match Table’ that stores shift sizes of all

possible characters that can be encountered in the text
•  compare pattern with text, starting from the rightmost character in the

pattern
•  if a mismatch occurs, shift the pattern to right corresponding to the value in

the table
•  first, let’s analyze the following cases (to determine the shift size, we look at

the character that is aligned against the last character of the pattern) :
-  if there is no such character in the pattern, we can safely shift the

pattern by its entire length
-  if the character contained in the pattern but it is not the last one, the

shift should align the rightmost occurrence of the character in the
pattern with the character in the text

-  if the character equals to the last one in the pattern but there is no same
character among others, we can safely shift the pattern by its entire
length

c0 . . . K E R . . . cn-1

 L E A D E R

 L E A D E R

Input Enhancement
Horspool’s Algorithm
•  use the pattern to make a ‘Bad Match Table’ that stores shift sizes of all

possible characters that can be encountered in the text
•  compare pattern with text, starting from the rightmost character in the

pattern
•  if a mismatch occurs, shift the pattern to right corresponding to the value in

the table
•  first, let’s analyze the following cases (to determine the shift size, we look at

the character that is aligned against the last character of the pattern) :
-  if there is no such character in the pattern, we can safely shift the

pattern by its entire length
-  if the character contained in the pattern but it is not the last one, the

shift should align the rightmost occurrence of the character in the
pattern with the character in the text

-  if the character equals to the last one in the pattern but there is no same
character among others, we can safely shift the pattern by its entire
length

-  if the character is the last one in the pattern and the character also
equals some other character in the pattern, the shift should align the
rightmost occurrence of the character in the pattern with the character
in the text

c0 . . . A R . . . cn-1

 B A R B E R

Input Enhancement
Horspool’s Algorithm
•  use the pattern to make a ‘Bad Match Table’ that stores shift sizes of all

possible characters that can be encountered in the text
•  compare pattern with text, starting from the rightmost character in the

pattern
•  if a mismatch occurs, shift the pattern to right corresponding to the value in

the table
•  first, let’s analyze the following cases (to determine the shift size, we look at

the character that is aligned against the last character of the pattern) :
-  if there is no such character in the pattern, we can safely shift the

pattern by its entire length
-  if the character contained in the pattern but it is not the last one, the

shift should align the rightmost occurrence of the character in the
pattern with the character in the text

-  if the character equals to the last one in the pattern but there is no same
character among others, we can safely shift the pattern by its entire
length

-  if the character is the last one in the pattern and the character also
equals some other character in the pattern, the shift should align the
rightmost occurrence of the character in the pattern with the character
in the text

c0 . . . A R . . . cn-1

 B A R B E R

 B A R B E R

Input Enhancement
Horspool’s Algorithm

Table(C) = 	

if C is not among the first m – 1 characters of the pattern,
return m

otherwise, return the distance from the rightmost C among
the first m – 1 characters of the pattern to its last character 	

Input Enhancement
Horspool’s Algorithm

Table(C) = 	

if C is not among the first m – 1 characters of the pattern,
return m

otherwise, return the distance from the rightmost C among
the first m – 1 characters of the pattern to its last character 	

BadMatchTable(P[0,m-1])

input : a pattern and an alphabet of
possible characters
output : a bad match table whose
equals to the size of the alphabet

for i = 0 to s – 1
 Table[i] ç m
for j = 0 to m – 2

 Table[P[j]] ç m – 1 – j
return Table

Input Enhancement
Horspool’s Algorithm

Table(C) = 	

if C is not among the first m – 1 characters of the pattern,
return m

otherwise, return the distance from the rightmost C among
the first m – 1 characters of the pattern to its last character 	

BadMatchTable(P[0,m-1])

input : a pattern and an alphabet of
possible characters
output : a bad match table whose
equals to the size of the alphabet

for i = 0 to s – 1
 Table[i] ç m
for j = 0 to m – 2

 Table[P[j]] ç m – 1 – j
return Table

•  assume the pattern is BARBER
 and the alphabet is
 Σ = { A, B, …, Z, _ } 	

Input Enhancement
Horspool’s Algorithm

Table(C) = 	

if C is not among the first m – 1 characters of the pattern,
return m

otherwise, return the distance from the rightmost C among
the first m – 1 characters of the pattern to its last character 	

BadMatchTable(P[0,m-1])

input : a pattern and an alphabet of
possible characters
output : a bad match table whose
equals to the size of the alphabet

for i = 0 to s – 1
 Table[i] ç m
for j = 0 to m – 2

 Table[P[j]] ç m – 1 – j
return Table

•  assume the pattern is BARBER
 and the alphabet is
 Σ = { A, B, …, Z, _ } 	

A B E R *
Table(C)

Input Enhancement
Horspool’s Algorithm

Table(C) = 	

if C is not among the first m – 1 characters of the pattern,
return m

otherwise, return the distance from the rightmost C among
the first m – 1 characters of the pattern to its last character 	

BadMatchTable(P[0,m-1])

input : a pattern and an alphabet of
possible characters
output : a bad match table whose
equals to the size of the alphabet

for i = 0 to s – 1
 Table[i] ç m
for j = 0 to m – 2

 Table[P[j]] ç m – 1 – j
return Table

•  assume the pattern is BARBER
 and the alphabet is
 Σ = { A, B, …, Z, _ } 	

A B E R *
Table(C) 6 6 6 6 6

Input Enhancement
Horspool’s Algorithm

Table(C) = 	

if C is not among the first m – 1 characters of the pattern,
return m

otherwise, return the distance from the rightmost C among
the first m – 1 characters of the pattern to its last character 	

BadMatchTable(P[0,m-1])

input : a pattern and an alphabet of
possible characters
output : a bad match table whose
equals to the size of the alphabet

for i = 0 to s – 1
 Table[i] ç m
for j = 0 to m – 2

 Table[P[j]] ç m – 1 – j
return Table

•  assume the pattern is BARBER
 and the alphabet is
 Σ = { A, B, …, Z, _ } 	

A B E R *
Table(C) 6 5 6 6 6

Input Enhancement
Horspool’s Algorithm

Table(C) = 	

if C is not among the first m – 1 characters of the pattern,
return m

otherwise, return the distance from the rightmost C among
the first m – 1 characters of the pattern to its last character 	

BadMatchTable(P[0,m-1])

input : a pattern and an alphabet of
possible characters
output : a bad match table whose
equals to the size of the alphabet

for i = 0 to s – 1
 Table[i] ç m
for j = 0 to m – 2

 Table[P[j]] ç m – 1 – j
return Table

•  assume the pattern is BARBER
 and the alphabet is
 Σ = { A, B, …, Z, _ } 	

A B E R *
Table(C) 4 5 6 6 6

Input Enhancement
Horspool’s Algorithm

Table(C) = 	

if C is not among the first m – 1 characters of the pattern,
return m

otherwise, return the distance from the rightmost C among
the first m – 1 characters of the pattern to its last character 	

BadMatchTable(P[0,m-1])

input : a pattern and an alphabet of
possible characters
output : a bad match table whose
equals to the size of the alphabet

for i = 0 to s – 1
 Table[i] ç m
for j = 0 to m – 2

 Table[P[j]] ç m – 1 – j
return Table

•  assume the pattern is BARBER
 and the alphabet is
 Σ = { A, B, …, Z, _ } 	

A B E R *
Table(C) 4 5 6 3 6

Input Enhancement
Horspool’s Algorithm

Table(C) = 	

if C is not among the first m – 1 characters of the pattern,
return m

otherwise, return the distance from the rightmost C among
the first m – 1 characters of the pattern to its last character 	

BadMatchTable(P[0,m-1])

input : a pattern and an alphabet of
possible characters
output : a bad match table whose
equals to the size of the alphabet

for i = 0 to s – 1
 Table[i] ç m
for j = 0 to m – 2

 Table[P[j]] ç m – 1 – j
return Table

•  assume the pattern is BARBER
 and the alphabet is
 Σ = { A, B, …, Z, _ } 	

A B E R *
Table(C) 4 2 6 3 6

Input Enhancement
Horspool’s Algorithm

Table(C) = 	

if C is not among the first m – 1 characters of the pattern,
return m

otherwise, return the distance from the rightmost C among
the first m – 1 characters of the pattern to its last character 	

BadMatchTable(P[0,m-1])

input : a pattern and an alphabet of
possible characters
output : a bad match table whose
equals to the size of the alphabet

for i = 0 to s – 1
 Table[i] ç m
for j = 0 to m – 2

 Table[P[j]] ç m – 1 – j
return Table

•  assume the pattern is BARBER
 and the alphabet is
 Σ = { A, B, …, Z, _ } 	

A B E R *
Table(C) 4 2 1 3 6

Input Enhancement
Horspool’s Algorithm
HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

Input Enhancement
Horspool’s Algorithm
HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P

B A R B E R	

Input Enhancement
Horspool’s Algorithm
HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

Input Enhancement
Horspool’s Algorithm
HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

Input Enhancement
Horspool’s Algorithm
HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	
i = 5 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 5 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 5 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 9 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 9 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 9 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 10 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 10 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 10 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 16 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 16 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 16 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 18 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 18 k = 1

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 18 k = 1

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 18 k = 1

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R 	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 21 k = 0

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R 	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 21 k = 1

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R 	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 21 k = 2

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R 	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 21 k = 3

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R 	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 21 k = 4

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R 	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 21 k = 5

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R 	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 21 k = 6

Input Enhancement
Horspool’s Algorithm

A B E R *
Table(C) 4 2 1 3 6

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P n = 26

m = 6 B A R B E R 	

HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

i = 21 k = 6 index 19

Input Enhancement
Horspool’s Algorithm
HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

•  worst-case time complexity :

Input Enhancement
Horspool’s Algorithm
HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

•  worst-case time complexity :

 text : AAA…AAA (length n)
 pattern : BAA…AAA (length m)

Input Enhancement
Horspool’s Algorithm
HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

•  worst-case time complexity : O(nm)

 text : AAA…AAA (length n)
 pattern : BAA…AAA (length m)

Input Enhancement
Horspool’s Algorithm
HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

•  worst-case time complexity : O(nm)

 text : AAA…AAA (length n)
 pattern : BAA…AAA (length m)

•  average-case time complexity :

 O(n/min(m,lΣl)) ≈ O(n)

Input Enhancement
Horspool’s Algorithm
HorspoolMatching(P[0,m-1], T[0,n-1])

Table[0,s-1] ç BadMatchTable(P[0,m-1])
i ç m – 1
while i ≤ n – 1
 kç 0
 while k ≤ m-1 and P[m-1-k]=T[i-k]
 k ç k + 1
 if k = m
 return i – m + 1
 else
 i ç i + Table[T[i]]
return -1

•  worst-case time complexity : O(nm)

 text : AAA…AAA (length n)
 pattern : BAA…AAA (length m)

•  average-case time complexity :

 O(n/min(m,lΣl)) ≈ O(n)

•  space complexity : O(lΣl)

Pre-Structuring
Hashing
•  a very efficient way of implementing dictionaries,

Pre-Structuring
Hashing
•  a very efficient way of implementing dictionaries,

•  a dictionary is an abstract data type supporting
three operations : searching, insertion, and deletion.

•  elements in a dictionary can be of an arbitrary
nature: numbers, characters strings of some
alphabet, etc.

•  each element consists of a number of fields so that
each of them keeps a particular type of information

•  at least one of fields corresponds to ‘key’, used to
identify the elements dictionaries

Pre-Structuring
Hashing

•  a very efficient way of implementing dictionaries

•  distributes the elements based their keys among a one-
dimensional array H[0,m-1], called Hash Table

Pre-Structuring
Hashing

•  a very efficient way of implementing dictionaries

•  distributes the elements based their keys among a one-
dimensional array H[0,m-1], called Hash Table

•  distribution performed through a function, called hash
function,

Pre-Structuring
Hashing

•  a very efficient way of implementing dictionaries

•  distributes the elements based their keys among a one-
dimensional array H[0,m-1], called Hash Table

•  distribution performed through a function, called hash
function, that maps keys of the elements (large data sets)
to some value (smaller data set) in [0,m-1], called hash
address

Pre-Structuring
Hashing

•  a very efficient way of implementing dictionaries

•  distributes the elements based their keys among a one-
dimensional array H[0,m-1], called Hash Table

•  distribution performed through a function, called hash
function, that maps keys of the elements (large data sets)
to some value (smaller data set) in [0,m-1], called hash
address

•  the operations ‘searching, insertion, and deletion’ take
constant time in average (when hash table properly
implemented)

Pre-Structuring
Hash Function

•  A hash table is an array H[0,m-1]

Pre-Structuring
Hash Function

•  A hash table is an array H[0,m-1]

•  A hash function h then

 h : U è{0, 1, …, m-1}
(an item x hashes to the slot H[h(x)])

Pre-Structuring
Hash Function

•  A hash table is an array H[0,m-1]

•  A hash function h then

 h : U è{0, 1, …, m-1}
(an item x hashes to the slot H[h(x)])

0

m-1

U K

k2
k1

k3

k4

k5

Pre-Structuring
Hash Function

•  A hash table is an array H[0,m-1]

•  A hash function h then

 h : U è{0, 1, …, m-1}
(an item x hashes to the slot H[h(x)])

h(k2)
0

m-1

h(k1)

h(k3)

h(k4)

U K

k2
k1

k3

k4

k5

Pre-Structuring
Hash Function

•  A hash table is an array H[0,m-1]

•  A hash function h then

 h : U è{0, 1, …, m-1}
(an item x hashes to the slot H[h(x)])

h(k2)
0

m-1

h(k1)

h(k3)=h(k5)

h(k4)

U K

k2
k1

k3

k4

k5

•  Collusion : a hash function may map different
keys to same slot (many-to-one mapping)

Pre-Structuring
Hash Function

•  A hash table is an array H[0,m-1]

•  A hash function h then

 h : U è{0, 1, …, m-1}
(an item x hashes to the slot H[h(x)])

Pre-Structuring
Hash Function

•  A hash table is an array H[0,m-1]

•  A hash function h then

 h : U è{0, 1, …, m-1}
(an item x hashes to the slot H[h(x)])

•  A good hash function should :

•  be a easy to compute

•  distribute the keys evenly through the
hash table

•  avoid collisions as much as possible

•  use less space (or slots)

	

U

K

k2
k1

k3

k4

0

m-1

k5

k6

h(k2) h(k1)

h(k5) h(k4)

h(k3)

h(k6)

Pre-Structuring
Open Hashing (Separate Chaining)

	

U

K

k2
k1

k3

k4

0

m-1

each hash-table slot H[i] contains
a linked list of all the keys whose
hash value is i

k5

k6

h(k2) h(k1)

h(k5) h(k4)

h(k3)

h(k6)

Pre-Structuring
Open Hashing (Separate Chaining)

	

U

K

k2
k1

k3

k4

0

m-1

each hash-table slot H[i] contains
a linked list of all the keys whose
hash value is i

k5

k6

h(k2) h(k1)

h(k5) h(k4)

h(k3)

h(k6)

N keys to be stored and m slots in hash
table; average list length is N/m (this
fraction is called load factor)

Pre-Structuring
Open Hashing (Separate Chaining)

	

U

K

k2
k1

k3

k4

0

m-1

each hash-table slot H[i] contains
a linked list of all the keys whose
hash value is i

k5

k6

h(k2) h(k1)

h(k5) h(k4)

h(k3)

h(k6)

N keys to be stored and m slots in hash
table; average list length is N/m (this
fraction is called load factor)
 worst case?

Pre-Structuring
Open Hashing (Separate Chaining)

	

U

K

k2
k1

k3

k4

0

m-1

each hash-table slot H[i] contains
a linked list of all the keys whose
hash value is i

k5

k6

h(k2) h(k1)

h(k5) h(k4)

h(k3)

h(k6)

N keys to be stored and m slots in hash
table; average list length is N/m (this
fraction is called load factor)

m is too large è too many empty arrays entry

Pre-Structuring
Open Hashing (Separate Chaining)

	

U

K

k2
k1

k3

k4

0

m-1

each hash-table slot H[i] contains
a linked list of all the keys whose
hash value is i

k5

k6

h(k2) h(k1)

h(k5) h(k4)

h(k3)

h(k6)

N keys to be stored and m slots in hash
table; average list length is N/m (this
fraction is called load factor)

m is too large è too many empty arrays entry
m is too small è list will be too long

Pre-Structuring
Open Hashing (Separate Chaining)

	
Consider the following example :

 A FOOL ARE SOON

Pre-Structuring
Open Hashing (Separate Chaining)

	
Consider the following example :

 A FOOL ARE SOON

•  Let’s define a hash function as : add the positions of the letters in the
alphabet and compute the remainder of the division of the sum by 13

Pre-Structuring
Open Hashing (Separate Chaining)

	
Consider the following example :

 A FOOL ARE SOON

•  Let’s define a hash function as : add the positions of the letters in the
alphabet and compute the remainder of the division of the sum by 13

•  h(A) = 1 mod 13 = 1
 h(FOOL) = (6 + 15 + 15 + 12) mod 13 = 9
 h(ARE) = (1 + 18 + 5) mod 13 = 11
 h(SOON) = (19 + 15 + 15 + 14) mod 13 = 11

Pre-Structuring
Open Hashing (Separate Chaining)

	
Consider the following example :

 A FOOL ARE SOON

•  Let’s define a hash function as : add the positions of the letters in the
alphabet and compute the remainder of the division of the sum by 13

•  h(A) = 1 mod 13 = 1
 h(FOOL) = (6 + 15 + 15 + 12) mod 13 = 9
 h(ARE) = (1 + 18 + 5) mod 13 = 11
 h(SOON) = (19 + 15 + 15 + 14) mod 13 = 11

•  ARE and SOON are stored in same linked list

Pre-Structuring
Open Hashing (Separate Chaining)

	
Consider the following example :

 A FOOL ARE SOON

•  Let’s define a hash function as : add the positions of the letters in the
alphabet and compute the remainder of the division of the sum by 13

•  h(A) = 1 mod 13 = 1
 h(FOOL) = (6 + 15 + 15 + 12) mod 13 = 9
 h(ARE) = (1 + 18 + 5) mod 13 = 11
 h(SOON) = (19 + 15 + 15 + 14) mod 13 = 11

•  ARE and SOON are stored in same linked list

•  How do we search in the hash table?

Pre-Structuring
Open Hashing (Separate Chaining)

	
Consider the following example :

 A FOOL ARE SOON

•  Let’s define a hash function as : add the positions of the letters in the
alphabet and compute the remainder of the division of the sum by 13

•  h(A) = 1 mod 13 = 1
 h(FOOL) = (6 + 15 + 15 + 12) mod 13 = 9
 h(ARE) = (1 + 18 + 5) mod 13 = 11
 h(SOON) = (19 + 15 + 15 + 14) mod 13 = 11

•  ARE and SOON are stored in same linked list

•  How do we search in the hash table?
 -- search whether the table contains KID or not
 -- compute h(KID) = 11
 -- search corresponding linked-list which includes ARE and SOON

Pre-Structuring
Open Hashing (Separate Chaining)

	
Consider the following example :

 A FOOL ARE SOON

•  Let’s define a hash function as : add the positions of the letters in the
alphabet and compute the remainder of the division of the sum by 13

•  h(A) = 1 mod 13 = 1
 h(FOOL) = (6 + 15 + 15 + 12) mod 13 = 9
 h(ARE) = (1 + 18 + 5) mod 13 = 11
 h(SOON) = (19 + 15 + 15 + 14) mod 13 = 11

•  ARE and SOON are stored in same linked list

•  How do we search in the hash table?
 -- search whether the table contains KID or not
 -- compute h(KID) = 11
 -- search corresponding linked-list which includes ARE and SOON
•  In Separate Chaining, a search takes O(1+π) time in average π = N/m

Pre-Structuring
Open Hashing (Separate Chaining)

	
Consider the following example :

 A FOOL ARE SOON

•  Let’s define a hash function as : add the positions of the letters in the
alphabet and compute the remainder of the division of the sum by 13

•  h(A) = 1 mod 13 = 1
 h(FOOL) = (6 + 15 + 15 + 12) mod 13 = 9
 h(ARE) = (1 + 18 + 5) mod 13 = 11
 h(SOON) = (19 + 15 + 15 + 14) mod 13 = 11

•  ARE and SOON are stored in same linked list

•  How do we search in the hash table?
 -- search whether the table contains KID or not
 -- compute h(KID) = 11
 -- search corresponding linked-list which includes ARE and SOON
•  In Separate Chaining, a search takes O(1+π) time in average π = N/m
•  the average number of cells examined in a successful search, S (U for

unseccessful) : S ≈ 1 + π/2 and U ≈ π

Pre-Structuring
Open Hashing (Separate Chaining)

	

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

insert(18)

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

insert(14)
h(14) = 14 mod 7
h(14) = 0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

insert(14)
h(14) = 14 mod 7
h(14) = 0

insert(21)
h(21) = 21 mod 7
h(21) = 0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

insert(14)
h(14) = 14 mod 7
h(14) = 0

insert(21)
h(21) = 21 mod 7
h(21) = 0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

insert(14)
h(14) = 14 mod 7
h(14) = 0

insert(21)
h(21) = 21 mod 7
h(21) = 0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

insert(14)
h(14) = 14 mod 7
h(14) = 0

insert(21)
h(21) = 21 mod 7
h(21) = 0

insert(35)
h(35) = 35 mod 7
h(35) = 0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

insert(14)
h(14) = 14 mod 7
h(14) = 0

insert(21)
h(21) = 21 mod 7
h(21) = 0

insert(35)
h(35) = 35 mod 7
h(35) = 0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

insert(14)
h(14) = 14 mod 7
h(14) = 0

insert(21)
h(21) = 21 mod 7
h(21) = 0

insert(35)
h(35) = 35 mod 7
h(35) = 0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

insert(14)
h(14) = 14 mod 7
h(14) = 0

insert(21)
h(21) = 21 mod 7
h(21) = 0

insert(35)
h(35) = 35 mod 7
h(35) = 0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

insert(14)
h(14) = 14 mod 7
h(14) = 0

insert(8)
h(8) = 8 mod 7
h(8) = 1

insert(21)
h(21) = 21 mod 7
h(21) = 0

insert(35)
h(35) = 35 mod 7
h(35) = 0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

insert(14)
h(14) = 14 mod 7
h(14) = 0

insert(8)
h(8) = 8 mod 7
h(8) = 1

insert(21)
h(21) = 21 mod 7
h(21) = 0

insert(35)
h(35) = 35 mod 7
h(35) = 0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

insert(14)
h(14) = 14 mod 7
h(14) = 0

insert(8)
h(8) = 8 mod 7
h(8) = 1

insert(21)
h(21) = 21 mod 7
h(21) = 0

insert(35)
h(35) = 35 mod 7
h(35) = 0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

insert(14)
h(14) = 14 mod 7
h(14) = 0

insert(8)
h(8) = 8 mod 7
h(8) = 1

insert(21)
h(21) = 21 mod 7
h(21) = 0

insert(35)
h(35) = 35 mod 7
h(35) = 0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

8	

18	

insert(18)
h(18) = 18 mod 7
h(18) = 4

insert(14)
h(14) = 14 mod 7
h(14) = 0

insert(8)
h(8) = 8 mod 7
h(8) = 1

insert(21)
h(21) = 21 mod 7
h(21) = 0

insert(35)
h(35) = 35 mod 7
h(35) = 0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

8	

18	

find(8)

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

8	

18	

find(8)
h(8)=1

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

8	

18	

find(8)
h(8)=1

after two probes

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

8	

18	

delete(21)

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

8	

18	

delete(21)
h(21)=0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

35	

8	

18	

delete(21)
h(21)=0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

35	

8	

18	

find(35)
h(35)=0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

35	

8	

18	

find(35)
h(35)=0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

35	

8	

18	

find(35)
h(35)=0

put some indicator
when you delete

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

8	

18	

delete(21)
h(21)=0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

X	

35	

8	

18	

delete(21)
h(21)=0

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

8	

18	

A cluster is collection of consecutive occupied slots

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

8	

18	

A cluster is collection of consecutive occupied slots

Linear Probing can create large clusters that increases
the running time of find-insert-delete operations

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

	

0
1

2
3
4

5
6

14	

21	

35	

8	

18	

A cluster is collection of consecutive occupied slots

Linear Probing can create large clusters that increases
the running time of find-insert-delete operations

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) + i) mod m where h’ : U {0,1,…,m-1} is an ordinary
 hash function

Pre-Structuring
Linear Probing

the average number of cells examined in a successful
search, S (U for unseccessful) :

 S ≈ 1/2 (1 + 1/(1-π)) and U ≈ 1/2 (1 + 1/(1-π)2)

	

Pre-Structuring
Quadratic Probing

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary

hash function

	

0
1

2
3
4

5
6

simply use the
following form

(h’(k) +1) mod m
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

Pre-Structuring
Quadratic Probing

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary

hash function

	

insert(8) 0
1

2
3
4

5
6

simply use the
following form

(h’(k) +1) mod m
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

Pre-Structuring
Quadratic Probing

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary

hash function

	

8	

insert(8)
h(8)=8 mod 7
h(8)=1

0
1

2
3
4

5
6

simply use the
following form

(h’(k) +1) mod m
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

Pre-Structuring
Quadratic Probing

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary

hash function

	

8	

12	

insert(8)
h(8)=8 mod 7
h(8)=1

insert(12)
h(12)=12 mod 7
h(12)=5

0
1

2
3
4

5
6

simply use the
following form

(h’(k) +1) mod m
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

Pre-Structuring
Quadratic Probing

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary

hash function

	

14	

8	

12	

insert(8)
h(8)=8 mod 7
h(8)=1

insert(12)
h(12)=12 mod 7
h(12)=5

0
1

2
3
4

5
6

simply use the
following form

(h’(k) +1) mod m
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

insert(14)
h(14)=14 mod 7
h(14)=0

Pre-Structuring
Quadratic Probing

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary

hash function

	

14	

8	

12	

insert(8)
h(8)=8 mod 7
h(8)=1

insert(12)
h(12)=12 mod 7
h(12)=5

0
1

2
3
4

5
6

simply use the
following form

(h’(k) +1) mod m
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

insert(14)
h(14)=14 mod 7
h(14)=0

insert(21)
h(21)=21 mod 7
h(21)=0

Pre-Structuring
Quadratic Probing

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary

hash function

	

14	

8	

12	

insert(8)
h(8)=8 mod 7
h(8)=1

insert(12)
h(12)=12 mod 7
h(12)=5

0
1

2
3
4

5
6

simply use the
following form

(h’(k) +1) mod m
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

insert(14)
h(14)=14 mod 7
h(14)=0

insert(21)
h(21)=21 mod 7
h(21)=0

Pre-Structuring
Quadratic Probing

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary

hash function

	

14	

8	

12	

insert(8)
h(8)=8 mod 7
h(8)=1

insert(12)
h(12)=12 mod 7
h(12)=5

0
1

2
3
4

5
6

simply use the
following form

(h’(k) +1) mod m
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

insert(14)
h(14)=14 mod 7
h(14)=0

insert(21)
h(21)=21 mod 7
h(21)=0

Pre-Structuring
Quadratic Probing

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary

hash function

	

14	

8	

12	

insert(8)
h(8)=8 mod 7
h(8)=1

insert(12)
h(12)=12 mod 7
h(12)=5

0
1

2
3
4

5
6

simply use the
following form

(h’(k) +1) mod m
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

insert(14)
h(14)=14 mod 7
h(14)=0

insert(21)
h(21)=21 mod 7
h(21)=0

Pre-Structuring
Quadratic Probing

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary

hash function

	

14	

8	

21	

12	

insert(8)
h(8)=8 mod 7
h(8)=1

insert(12)
h(12)=12 mod 7
h(12)=5

0
1

2
3
4

5
6

simply use the
following form

(h’(k) +1) mod m
(h’(k) +4) mod m	
(h’(k) +9) mod m	

			…	

insert(14)
h(14)=14 mod 7
h(14)=0

insert(21)
h(21)=21 mod 7
h(21)=0

Pre-Structuring
Quadratic Probing

Closed Hashing (Open Addressing)

•  h(k,i) = (h’(k) +ci+ci2) mod m where h’ : U è {0,1,…,m-1} is an ordinary

hash function

