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Dynamic Programming

‘programming’ here not refering software. The word
itself older than computer. ‘programming’ means any
tabular method to accomplish a task.

introduced by Richard Bellman in 1949. He developed
the method with Lester Ford to find the shortest
path in a graph.



Dynamic Programming

from "Eye of the Hurricane : an Autobiography” by
Richard Bellman

“An interesting question is, 'Where did the name, dynamic programming, come
from?* The 19505 were not good yvears for mathematical research. We had a very
interesting gentleman in Washington named Wilson. He was Secretary of Defense,
and he actually had a pathological fear and hatred of the word, research. I'm not
using the term lightly: I'm using it precisely. His face would suffuse, he would turn
red, and he would get violent if people used the term, research, in his presence.
You can imagine how he felt, then, about the term, mathematical. The RAND
Corporation was employed by the Air Force, and the Air Force had Wilson as its
boss, essentially. Hence, [ felt I had to do something to shield Wilson and the Air
Force from the fact that I was really doing mathematics inside the RAND Corpo-
ration. What title, what name, could I choose? In the first place I was interested in
planning, in decision making, in thinking. But planning, is not a good word for var-
ious reasons. 1 decided therefore to use the word, ‘programming.” 1 wanted to get
across the idea that this was dynamic, this was multistage, this was time-varying—I
thought, let’s kill two birds with one stone. Let's take a word that has an absolutely
precise meaning, namely dynamic, in the classical physical sense. It also has a very
interesting property as an ad jective, and that is it's impossible to use the word, dy-
namic, in a pejorative sense. Try thinking of some combination that will possibly
give it a pejorative meaning. It's impossible. This, I thought dynamic programming
was a good name. It was something not even a Congressman could object to. So 1
used it as an umbrella for my activities™.
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Dynamic Programming

 DP can be considered as brute force

search all posibilities but do it in a smart way to get
the optimal solution

For what type of problems DP is useful?

the problems that can be broken into
subproblems

Divide & Conquer Dynamic Programming

you deal with independent you deal with overlapping
subproblems subproblems
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Stairs Climbing

You take one step or two steps at a time.
How many possible ways to climb n stairs ?

111 11 create all possibilities

22 2 2 2 and count them

111 12 o

212...12 h stairs
121...21
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Stairs Climbing

T(n) = # of ways to climb n stairs

T(n)
T(n) = T(n-1) + T(n-2) f:
finding # of T(n-1)

- solving this
different ways recurrence relation ‘T(H-Z)

Fibonacci number

T(n) = F(n) = ¢"
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SC (4)

SC (n)
ifnel /\

return 1 SC (3) SC (2)
else

return SC (n-1) + SC (n-2) /\ /\

SC (2) SC (1) sc(1) SC (0)
SC (1) SC (0)

In order to calculate SC(4), the program makes 9 recursive calls;
5 for SC(3) + 3 for SC(2)
# of calls for SC(n) = # of calls for SC(n-1) + # of calls for SC(n-2)
# of calls for SC(n) = F(n) # ¢" ; nth Fibonacci number
So the running time will be exponential O(¢")
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SC (4)

/N

SC (3) 5C(2)

/N /N

SC (2 sC(l) sC()  SC(0)

/N

SC(1 SC (0)
« We deal with the overlapping subproblems

SC (n)

initialize a memory M
ifnel
return 1
if M contains n
return M[n]
else
A = SC(n-1) + SC(n-2)
M[n]= A
return A

« Whenever computing subproblems, keep them

in a table to avoid recomputation, and refer
them whenever they are needed

MEMOIZATION



Stairs Climbing

SC (4)
SC (n)
/\ initialize a memory M
ifne<l
SC (3) SC (2) return 1
if M contains n
/\ /\ return M[n]
else
SC (2 SC (1) sc(1) SC (0) A = SC(n-1) + SC(n-2)
M[n]= A
/\ return A

SC (1 SC (0)

Top-Down

« We deal with the overlapping subproblems

« Whenever computing subproblems, keep them
in a table to avoid recomputation, and refer
them whenever they are needed

MEMOIZATION



Stairs Climbing
sC (4)

/N

SC (3) 5C(2)

/N /N

SC (2 sC(l) sC()  SC(0)

/N

SC (1 SC (O

Can we come up with simpler program ?



Stairs Climbing
SC (4)

/N

SC (3) 5C(2)

/N /N

SC (2 sC(l) sC()  SC(0)

/N

SC (1 SC (O

Can we come up with simpler program ?

get rid of recursion
use a simple for loop



Stairs Climbing
sC (4)

SC (n)
/\ initialize a memory M
M[0]=1
SC(3) SC (2) M[1]=1

for (i=2 to n)
/\ /\ Mi] = M[i-1] + M[i-2]
return M[n]

SC (2) SC(1) sc(1) SC (0)

/N

SC (1 SC (O

Can we come up with simpler program ?

get rid of recursion
use a simple for loop



Stairs Climbing

SC (4)
SC (n)
/\ initialize a memory M
M[0]=1
SC(3) SC (2) M[1]=1

for (i=2 to n)
/\ /\ Mi] = M[i-1] + M[i-2]
return M[n]

SC (2) SC(1) sc(1) SC (0)

/\ Bottom-Up

SC (1 SC (O

Can we come up with simpler program ?

get rid of recursion
use a simple for loop
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Dynamic Programming

analyze structure of the optimal solution and define
subproblems that need to be solved in order to get the
optimal solution

establish the relationship between the optimal solution and
those subproblems (construct the recurrence relation)

compute the optimal values of subproblems, save them in a
table (memoization), then compute the optimal values of
larger subproblems, and eventually compute the optimal
value of the original problem
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Weighted Interval Scheduling

given a set of intervals (I;, I, ..., I,)

each interval I, has a starting time s;, a finishing time
f;, and a weight w;

your task is to find a subset of intervals (pairwise
nonoverlapping) such that the total weight of
intervals is maximized

|
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Weighted Interval Scheduling

first sort all the intervals according to their finishing
time : iy, i, .., i, such that fi<f,¢...<f,

define subproblems
OPT (j) : value of the optimal solution for
the first j intervals 1, ..., |

« construct the recurrence relation
|

s-l J £ Twocases:
J+ Q'
|

(1) either optimal solution does not

® PY include interval j, then continue with
OPT (j-1)

(2) or optimal solution includes interval j,
then continue with w; + OPT (p(j))

o
R

OPT (j) = max { OPT (j-1), w; + OPT (p(j)) }



Weighted Interval Scheduling
OPT (n)

sort intervals according to
finishing time
ifn=0
return O
else
find p(n)
if OPT (n-1) > w, + OPT(p(n))
return OPT (n-1)
else
return w, + OPT (p(n))
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Weighted Interval Scheduling

OPT (n) | Similar to stairs climbing,
sort intervals according to # of calls here also F(n) & ¢n
finishing time
't ?e,rgm 0 Do Memoization
else
find p(n) OPT (n)
if OPT (n-1) 2w, + OPT(p(n)) = sort intervals according
return OPT (n-1) to finishing time
else initialize a memory M
return w, + OPT (p(n)) compute p(1), ..., p(n)
M[0]=0
for (i=1 to n)

M[i] = max { w; + M[p(i)], M[i-1] }



Weighted Interval Scheduling

OPT (n) | Similar to stairs climbing,
sort intervals according to # of calls here also F(n) & ¢n
finishing time
ifn=0 : :
return O Do Memoization
else
find p(n) OPT (n)
if OPT (n-1) 2w, + OPT(p(n)) = sort intervals according
return OPT (n-1) to finishing time
else initialize a memory M
return w, + OPT (p(n)) compute p(1), ..., p(n)
M[0]=0
for (i=1 to n)
Top-Down MIi] = max { w; + M[p(i)], M[i-1]}

Bottom-Up




Longest Common Subsequence

» given two sequence x[1..m] and y[1..n], find a longest
subsequence common to both of them

(doesn't need to be unique)

x:ABCBDARB

y:BDCABA



Longest Common Subsequence

» given two sequence x[1..m] and y[1..n], find a longest
subsequence common to both of them

(doesn't need to be unique)

—

x:ABCBDASB
— LCS(x,y) = BCAB

y:BDCABA

— — -



Longest Common Subsequence

+ given two sequence x[1..m] and]y[l...n], find a longest
subsequence common to both of them

(doesn't need to be unique)

—

x:ABCBDASB
— LCS(x,y) = BCAB

— — -

y:BDCABA

these subsets don't need to be continuous
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Longest Common Subsequence

Brute-Force

 check every subsequence of x[1..m] whether it is a
subsequence of y[1...n]

« each check takes O(n) time

« 2™ subsequence of x (each bit-vector defines a
subsequence).

* total running time will be O(2™.n)
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Longest Common Subsequence

Simplified Version

rather than directly calculating LCS(x,y), calculate the length of
LCS(x.y) (clij] = [LCS(x.y)])

define subproblems

consider the prefix x[1..i] of x and the prefix y[1..j] of y

cli,j]= |LCS(x[1...i], y[1..j])| : length of the longest
common subsequence of the
prefixes x[1..i]and y[1...j]
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construct recurrence relation

i n
X .
/
/ Two cases :
y (1) if x[i] = y[j], then continue with
] m cli-1,j-1]+ 1

(2) otherwise continue with
max { c[i,j-1], c[i-1,j1}



Longest Common Subsequence

construct recurrence relation

i n
/2
/
/ Two cases :
(1) if x[i] = y[j], then continue with
] m cli-1,j-1]+ 1

(2) otherwise continue with
max { c[i,j-1], c[i-1,j1}

cli-1,j-11+ 1 if x[i]1=y[j]
cli,jl=

max { c[i,j-1], c[i-1,j]1} otherwise



Longest Common Subsequence

LCS (x.y.n,m)

ifi=O0and j=0
return O
if x[n]=y[m]
c[nm] = LCS(x,y,n-1m-1) + 1
else
c[h,m] = max { LCS(x,y,n-1,m), LCS(x,y,nm-1) }
return c[n,m]
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Let's check it form=6,n=7
7.6

6.6 7,5\
5.6 74
4,6 5,5 6.4 7,3

The height of the tree m +n,
So the running time will be O(2™")

How many different subproblems are there? ( m.n)
Do Memoization
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initialize a memory M
M[0,0]=0
if M[n,m] = null
if x[n] = y[m]
M[nm] = LCS(x,y,n-1m-1) + 1
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LCS (x,y.nm) (with Memoization)

initialize a memory M running time : O(m.n)
M[0,0]=0 space : O(m.n)
if M[n,m] = null
if x[n] = y[m]
M[nm] = LCS(x,y,n-1m-1) + 1
else

M[n,m] = max { LCS(x,y,n-1,m), LCS(x,y,n,m-1) }
return M[n,m]

Top-Down




Longest Common Subsequence

Bottom-up

initialize a memory M
fori=O to n
M[i0]=0
fori=1tom
M[0,i1=0
fori=1ton
for j=1tom
iF x[i] = yIj]
M[i.j1= M[i-1,j-1]1 + 1
else
MLi.j] = max { M[i-1,j], M[i,j-1])
return M[n,m]
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Bottom-up
A B C B A
initialize a memory M : ; ; : :
fori=O ton OOOOOO
M[i0] = 0 5|0
fOl" |:1 1-0 m e
M[0,i]=0 D | 0:
foriclton b
for j=1tom ¢ O .......................................................
if x[i]=y[j] Al O
M[i j1= M[i-1,§-1] + 1 -
else

M[i.j]1= max { M[i-1,j1, M[i,j-11}
return M[n,m]
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j=1
Bottom-up |
A B C B A
initialize a memory M g : : : :
fori=0 ton OOOOOO
M[i,0]=0 iz] — B | O : : : :
fOl" l=1 Tom
M[0,i]1=0 D1 0
foriclton bbb
for j=1tom ¢ O .......................................................
if x[i]=y[j] Al O :
M[i.j]= M[i-1,j-1]1 + 1 :
else

M[i.j]1= max { M[i-1,j1, M[i,j-11}
return M[n,m]
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j=1
Bottom-up |
A B C B A
ini‘riglize a memory M 0:0:0:0:0:0
fori=O ton. T 3000 (OO SO OO SN S
M[i,0]=0 iz=] — B | 0-+0 : : : :
fori=ttom Tl SO O PPUDOOS TP SETRINNS S
M[0,i]= 0 D| O
forislton e
for j=1tom ¢ O .......................................................
if x[i] = y[j] Al O
M1 = M[i-1,j-1] + 1
else

M[i.j]1= max { M[i-1,j1, M[i,j-11}
return M[n,m]
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j=2

Bottom-up \

A B C B A
initialize a memory M g : : : :
fori=0 ton OOOOOO

M[i,0]=0 izl — B | 0 0 : : : :
fori=ttom Tl SO O PPUDOOS PPUUOINS SETSIINS S
M[0,i1=0 D | 0 :
foriclton b
for j=1tom ¢ O .......................................................
if x[i]=yl[j] A | O :
M[i.j]= M[i-1,j-1]1 + 1 :
else

M[i.j]1= max { M[i-1,j1, M[i,j-11}
return M[n,m]
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j=2
Bottom-up \

A B C B A
ini‘riglizeamemoryM 0:0:0:0:0:0
for i=O ton. | T R e, A

M[i,0]=0 izl — B | 001 : : :
fOl" l=1 Tom
M[0,i]1=0 D1 0
forislton e
for j=1tom ¢ O .......................................................
if x[i]=yl[j] Al O:
M[i.j]= M[i-1,j-1] + 1 '
else

M[i.j]1= max { M[i-1,j1, M[i,j-11}
return M[n,m]



Longest Common Subsequence

Bottom-up \

A B C B A
initialize a memory M 0. 0:0:0:0°:0
for i=O ton. | T R e, A

M[i0]=0 i=] — B |0 :0 :1: : :
fOl" |:1 fom
M[0,i]1= 0 D | 0:
foriclton b
for j=1tom ¢ O .......................................................
if x[i]=y[j] Al O
M[i.j1= M[i-1,j-1]1 + 1 :
else

M[i.j]1= max { M[i-1,j1, M[i,j-11}
return M[n,m]



Longest Common Subsequence

j=3
Bottom-up \

A B C B A
ini‘riglizeamemoryM 0:0:0:0:0:0
for i=O ton. | e N e A

M[i0]=0 izl = B | 0 0 ! 1=1: :
fOI" l=1 Tom
M[0,i1=0 D | 0 :
foriclion bbb
for j=1tom ¢ O .......................................................
if x[i]=yl[j] A | O :
M[i.j1= M[i-1,j-1]1 + 1 :
else

M[i.j]1= max { M[i-1,j1, M[i,j-11}
return M[n,m]



Longest Common Subsequence

j=4

Bottom-up \

A B C B A
initialize a memory M 0. 0:0:0:0°:0
for i=O ton. | I SR e, A

M[i0]=0 izl = B | 0 0 :1:1: :
fOI" |:1 fom
M[0,i]1= 0 D | 0:
foriclton b
for j=1tom ¢ O .......................................................
if x[i]=y[j] Al O
M[i.j1= M[i-1,j-1]1 + 1 :
else

M[i.j]1= max { M[i-1,j1, M[i,j-11}
return M[n,m]



Longest Common Subsequence

j=4
Bottom-up \

A B C B A
ini‘riglizeamemoryM 0:0:0:0:0:0
fori=O ton. T VRIS NI

M[i,0]=0 izl — B | 00 {1 {1 :i1:
fOl" l=1 Tom .............................................................
M[0,i1=0 D | 0
e R
for j=1tom ¢ O .......................................................
if x[i] = y[j] Al O
M[i,j1= M[i-1,j-1] + 1 '
else

M[i.j]1= max { M[i-1,j1, M[i,j-11}
return M[n,m]



Longest Common Subsequence

J=9

Bottom-up \

A B C B A
initialize a memory M 0 0 : 0:0:0°:0
for i=O ton. | T VRIS NI

M[i,0]=0 izl = B |0 {0 :i1:1:i1:
fOI" i=ltom i
M[0,i1=0 D | 0 :
forislton e
for j=1 tom ¢ O .......................................................
if x[i]=yl[j] Al O
MLi.j1= M[i-1,j-1] + 1 -
else

M[i.j]1= max { M[i-1,j1, M[i,j-11}
return M[n,m]



Longest Common Subsequence

J=95

A B C B A
ini‘riglizeamemoryM 0:0 0:0:0°:0
fori=O ton. T VRO e o
M[i0]=0 i=] — B | 00 :1:1:i1=1
fOI" |:1 Tom .............................................................

M[0,i]1=0 D 0:
foriclton bbb
for j=1tom ¢ O .......................................................

if x[i]=yl[j] A | O :

M[i.j]= M[i-1,j-1]1 + 1 :

else

M[i.j]1= max { M[i-1,j1, M[i,j-11}
return M[n,m]



Longest Common Subsequence

Bottom-up

initialize a memory M
fori=O to n
M[i0]=0
fori=1tom
M[0,i1=0
fori=1ton
for j=1tom
iF x[i] = yIj]
M[i.j1= M[i-1,j-1]1 + 1
else
MLi.j] = max { M[i-1,j], M[i,j-1])
return M[n,m]




Longest Common Subsequence

Bottom-up

initialize a memory M
fori=O to n
M[i0]=0
fori=1tom
M[0,i1=0
fori=1ton
for j=1tom
iF x[i] = yIj]
M[i.j1= M[i-1,j-1]1 + 1
else
M[i.j1 = max { M[i-1,j], M[i,j-11}
return M[n,m]

j=1

oI+



Longest Common Subsequence

Bottom-up

initialize a memory M
fori=O to n
M[i0]=0 i=4
fori=1tom
M[0,i1=0
fori=1ton
for j=1tom
iF x[i] = yIj]
M[i.j1= M[i-1,j-1]1 + 1
else
MLi.j] = max { M[i-1,j], M[i,j-1])
return M[n,m]

Jj=9

> O O w




Longest Common Subsequence

J=3

Bottom-up
A B C B A
ini‘riglizeamemoryM 0:0:0:0:0:0
fori=O ton. e N N
M[i,0]=0 i=4 B|O:0:i1:1:1:1
for iz1tom | e T E RIS
M[0.i]1=0 Doo§1\5‘1§1§1
for i=11on clo 0.1 "2 2 2
for j=1fom T .7 DR S e N
iF X[i] = ylj] Alo M1 12023

M[i.j]= M[i-1,j-1] + 1 ' '
else

M[i.j]1= max { M[i-1,j1, M[i,j-11}
return M[n,m]

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!



Longest Common Subsequence

J=9
Bottom-up
A B C B A
initialize a memory M 0 0 : 0:0:0°:0
for i=O ton. | e N N
M[i,0]=0 i=4 B|O:0:i1:1:1:1
for- i=1 tom TR .....................
M[0,i]= 0 D|O0O: 0 1. .1:1:1
for i=1 ton e 01\222
for j=1tfom 7 7 NG N
if x[i]=yl[j] AlO:i'1:i1:2:2:i3
M[i,j]= M[i-1,j-1] + 1 - ;
else
M[i.j] = max { M[i-1,j1, M[i j-11}
return M[n,m] A

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!



Longest Common Subsequence

J=9
Bottom-up
A B C B A
initialize a memory M 0 0 : 0:0:0°:0
for i=O ton. | e N N
M[i,0]=0 i=4 B|O:0:i1:1:1:1
for- i=1 tom TR .....................
M[0,i]= 0 D|O0O: 0 1. .1:1:1
for i=1 ton e 01\222
for j=1tfom 7 7 RN SROE SRS S -
if x[i]=yl[j] AlO:i'1:i1:2:2:i3
M[i,j]= M[i-1,j-1] + 1 - ;
else
M[i.j] = max { M[i-1,j1, M[i j-11}
return M[n,m] A

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!



Longest Common Subsequence

J=9
Bottom-up
A B C B A
initialize a memory M O 0 0 0 0 o0
for i=O ton. | e N N
M[i,0]=0 i=4 B|O:0:i1:1:1:1
for- i=1 tom U S ...............................
M[0,i]= 0 D|O0O: 0 1. .1:1:1
for i=1 ton e 01\222
for j=1tfom 7 7 RN SR R S -
if x[i]=yl[j] AlO:i'1:i1:2:2:i3
M[i,j]= M[i-1,j-1] + 1 - ;
else
M[i.j] = max { M[i-1,j], M[i,j-1]}
return M[n,r‘:\] ! ! C A

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!



Longest Common Subsequence

J=9
Bottom-up
A B C B A
initialize a memory M O 0 0 0 0 o0
for i=O ton. | e N N
M[i,0]=0 i=4 B|O:0:i1:1:1:1
for- i=1 tom U S ...............................
M[0,i]= 0 D|O0O: 0 1 1: 1:1
for i=1 ton e 01\222
for j=1tfom 7 7 RN SR R S -
if x[i]=yl[j] AlO:i'1:i1:2:2:i3
M[i,j]= M[i-1,j-1] + 1 - ;
else
M[i.j] = max { M[i-1,j], M[i,j-1]}
return M[n,r‘:\] ! ! C A

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!



Longest Common Subsequence

J=3
Bottom-up
A B C B A
ini‘riqlizeamemoryM 0 0:0:0:0°:0
for i=O ton. . e Nt N
M[i.0] =0 i=4 B|O: 0:i1:i1:i1:i1
for i=1 tom 5 00111 ......... 1
M[0,i]= 0 ERREEEN
for i=1 tan ¢ [0 ey N
for j=1tom 7 DR S i W
i X[i1 = ylj] Alo M1 1223
M[i,j]= M[i-1,j-1] + 1 ' ;
else

M[i.j]= max { M[i-1,j1, M[i,j-1]}

return M[n,m] B C A

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!
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+ given a rod of length n with the prices p;,..,p, where
p; is the price of a rod of length i, find an optimal way
of cutting the given rod that maximizes the profit




Rod Cutting

+ given a rod of length n with the prices p;,..,p, where
p; is the price of a rod of length i, find an optimal way
of cutting the given rod that maximizes the profit

length | 1

2 3 4
price | 1 5 8 9



Rod Cutting

+ given a rod of length n with the prices p;,..,p, where
p; is the price of a rod of length i, find an optimal way
of cutting the given rod that maximizes the profit
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Rod Cutting

+ given a rod of length n with the prices p;,..,p, where
p; is the price of a rod of length i, find an optimal way
of cutting the given rod that maximizes the profit

1 Ieng’rh|1234
I r‘uce1589
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Rod Cutting

» define subproblems

c(i) : max profit for the first length i part

e construct recurrence relation

( O O « focus on last cutting
find best j maximizing
<mmmmmms i > =) the profit

c(i) =max { p; +



Rod Cutting

define subproblems

c(i) : max profit for the first length i part

e construct recurrence relation

c(i) = max { p; + c(i-j) }

focus on last cutting
find best j maximizing
the profit

recursively continue
on the remaining part



Rod Cutting

input = (n:py, Pz, pn)

initialize a memory M
M[0]=0
for i=1ton
M[i] = - o
for j=1to i
q = M[i-j]+p;
if q> M[i]
M[i]=q
return M[n]



Rod Cutting

input = (n:py, Pz, pn)

initialize a memory M 1 2

M[0]=0 5 p | 1 5

fori=1ton ,
M[i] = - o Mii]
for j=1toi

q = M[i-j] + p;
if q> M[i]
M[i]=q
return M[n]



Rod Cutting

1
input = (n:py, Pz, pn)

initialize a memory M 1 2
M[0] =0 5 Pi 1

fori=1ton ,
M[i] = - oo MLi]
for j=1to i 1

q = M[i-j]+p; i=1
if q> M[i]
M[il=q M[1] = - o

return M[n]




Rod Cutting

1
input = (n:py, Pz, pn)

initialize a memory M 1 2
M[O] = 0 5 BEEE

fori=1ton ,
M[i] = - oo MLi]
for j=1to i 1

q = M[i-j]+p; i =
if q> M[i]
M[il=q M[1] = - o

return M[n]




Rod Cutting

j=1

input = (n:py, Pz, pn)

initialize a memory M

MIO] = 0 g B

fori=1ton ,
M[i]= - o MLi]
for j=1to i

q = M[i-j]+p;
if q> M[i]
M[i] = q M[1] =1
return M[n]
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Rod Cutting

1
input = (n:py, Pz, pn)

M[O] =0 5 Pi

initialize a memory M 1 2
1
1

fori=1ton ,
M[i] = - oo MLi]
for j=1to i 1

q = M[i-j]+p; i =
if q> M[i]
M[i]1=q M[2] = - o

return M[n]




input = (n:py, Pz, pn)

initialize a memory M
M[0]=0
fori=1ton
M[i]=- o
for j=1to i
q = M[i-j]+p;

Rod Cutting

1

if q> M[i]
M[i]=q

return M[n]



Rod Cutting

1
input = (n:py, Pz, pn)

M[O] = O d B

initialize a memory M 1 2
1
1

for izl ton )
M[i] = - oo MLi]
for j=1toi 1

q = M[i-j]+p; i =

if q> M[i]
M[il=q M[2] =2

return M[n] q= M[1]+p;




Rod Cutting

=2
input s (n:py, Pz, Pn) |
initialize a memory M 1 2
M[0]=0 5 p | 1 5
for i=1 ton MIi 1
ML= - oo [
for j=1to i 1
q = MLi-j]+ p; i=2
if q> M[i]
M[i]1=q M[2] =2
return M[n] q= M[1]+p;
q=2
q = M[O] + p,



Rod Cutting

=2
input s (n:py, Pz, Pn) |
initialize a memory M 1 2
M[0]=0 5 p | 1 5
for i=1 ton MIi 1
ML= - oo [
for j=1to i 1
q = MLi-j]+ p; i=2
if q> M[i]
M[i]1=q M[2]=5
return M[n] q= M[1]+p;
q=2
q = M[O] + p,



Rod Cutting

. =2
input:(n.p;.p2,..Pn) 1
initialize a memory M 1 2 5
M[0]=0 5 p. 1 5 10
for i=1+1 -
or/‘V\l[i] :o-noo M[i] 1 52
for j=1to i |
q = M[i-j]1+ p; i=2
if q> M[i]
M[i]=q M[2]=5
return M[H] q-= N\[l] + Py
q=2
q = M[O] + p,



Rod Cutting

=1
input : (n;py, P2, Pn) |
initialize a memory M 1 2 3 5
]/cV\[O] 1 0 5 p| 1 5 8 10
ori=l1ton : >
M[l] - _ o M[l] 1 5
for j=1toi 1
q = M[i-j]+p,
if q> M[i]

M[il=q M[3] = -
return M[n]




Rod Cutting

1
input = (n:py, Pz, pn)

M[O] = O d B

fori=1ton
M[i]= - o
for j=1to i
q = M[i-j]+p;
if q> M[i]
M[il=gq M[3] = - oo
return M[n] q = M[2] + p,

initialize a memory M 1
1
1




Rod Cutting

1
input = (n:py, Pz, pn)

M[O] = O d B

fori=1ton
M[i]= - o
for j=1to i
q = M[i-j]+p;
if q> M[i]
M[il=q M[3]=6
return M[n] q = M[2] + p,

initialize a memory M 1
1
1




Rod Cutting

j =
input:(n.p;.p2,..Pn) 1
initialize a memory M 1 2 3 5
]/cV\[O] 1 0 5 p| 1 5 8 10
orizlton ;
M[l] - _ o M[l] 1 5
for j=1toi 1
q = M[i-j]1+ p;
if q> M[i]

M[il=q M[3]=6
return M[n]




Rod Cutting

input:(n.p;.p2,..Pn) i
initialize a memory M 1 2 3 5
M[O]=0 5 | 1 5 8 10
fori=1ton -
M[l] - _ o M[l] 1 5 2
for j=1toi 1
q = M[i-j]+p;
if q> M[i]
M[i1=q M[3]=6
return M[n] q=M[2]+p,
q=6
q = M[1] + p;
q=6
q = M[O] + p;



Rod Cutting

input:(n.p;.p2,..Pn) i
initialize a memory M 1 2 3 5
M[O]=0 5 | 1 5 8 10
fori=1ton -
M[l] - _ o M[l] 1 5 2
for j=1toi 1
q = M[i-j]+p;
if q> M[i]
M[il=q M[3]=8
return M[n] q=M[2]+p,
q=6
q = M[1] + p;
q=6
q = M[O] + p;



input : (n;py,pz2, ..,

initialize a memory M
M[0]=0
fori=1ton
M[i]=- o
for j=1to i
q = M[i-j]+p;
if q> M[i]

Rod Cutting

Pn)

M[i]=q

M[3]=8

return M[n]

J=3
|
1 2 3 5
Pi 1 5 8 10
M[i]| 1 52 83
i=3
q=M[2]+p
q=6
q=M[1]+p,
q=6
q = M[O] + p3



Rod Cutting

. j=1
input:(n.p;.p2,..Pn) 1
initialize a memory M 1 2 3 4 5
no1 Y 5 p |1 5 8 9 10
ori=lfon : > 3
for j=11o i 1
q:M[I—J]+pJ i=4
if q> M[i]

M[il=q M[4] = - o
return M[n]




Rod Cutting

1
input = (n:py, Pz, pn)

M[O] = O d B

fori=1ton
M[i]= - o
for j=1to i
q = M[i-j]+p;
if q> M[i]
M[il=gq M[4] = - oo
return M[n] q = M[3]+p,

initialize a memory M 1
1
1

M[i]




Rod Cutting

1
input = (n:py, Pz, pn)

M[O] = O d B

fori=1ton
M[i] = - o
for j=1to i
q = M[i-j]+p;
if q> M[i]
M[il=q M[4]=9
return M[n] q = M[3]+p,

initialize a memory M 1
1
1

M[i]




Rod Cutting

. j=2
input : (n.py, P2, s Pn) |
initialize a memory M 1 2 3 4 5
for 11 o il e |1 5 8 9 10
M[i] = - o M[i]| 1 52 83
for j=11o i 1
q = M[i-j]+p;  _
if g > M[i]
M[il=q M[4]=9
return M[n] q=M[3]+p,
q=9
q M[2] + p,



Rod Cutting

. j=2
input : (n.py, P2, s Pn) |
initialize a memory M 1 2 3 4 5
1/‘V<\)[roi]-; ?o n 2 Pi | ! > 8 5 0
M[i] = - o M[i]| 1 52 83
for j=11o i 1
q = M[i-j]+p;  _
if g > M[i]
M[il=gq M[4] =10
return M[n] q=M[3]+p,
q=9
q M[2] + p,



Rod Cutting

. J - 3
input:(n.p;.p2,..Pn) 1
initialize a memory M 1 2 3 4 5
]/cV\[OJ 1 ? 5 p| 1 5 8 9 10
ori=lton :
MLi] = - oo M[i]| 1 52 83
for j=1to i 1
q-= M["‘J] pJ i=4
if q> M[i]
M[il=gq M[4] = 10
return M[n] q = M[3]+p, q=M[1]+p;
q=9 q=9
q=M[2]+p,

q=10



input: (n:p;.ps, -

initialize a memory M
M[0]=0
fori=1ton
M[i]=- o
for j=1to i
q= M["’J] pJ

Rod Cutting

. Pn)

if q> M[i]
M[i] =g

M[4]= 10

return M[n]

i=4
|
1 2 3 4 5
Pi 1 5 8 9 10
M[iT| 1 52 g3
i=4
q=M[3]+p, q=M[1] + ps
q=9 q=9
q=M[2] +p, q = M[O] + pq4
q=10 q=9



input: (n:p;.ps, -

initialize a memory M
M[0]=0
fori=1ton
M[i]=- o
for j=1to i
q= M["’J] pJ

Rod Cutting

. Pn)

if q> M[i]
M[i] =g

M[4]= 10

return M[n]

i=4
|
1 2 3 4 5
Pi 1 5 8 9 10
M[i]| 1 52 83 10°
i=4
q=M[3]+p, q=M[1]+p;
q=9 q=9
q=M[2]+ p; q = M[O] + p,
q=10 q=9



Rod Cutting

. J=1
input s (n:py, P2, Pn) |
initialize a memory M 1 2 3 4 5
no1 Y 5 p |1 5 8 9 10
orizlton ) > 3 2
M[i] = - o M[i]| 1 5 83 10
for j=1toi 1
q = M[i-j]+p; i=h
if q> M[i]

M[il=gq M[B] = - =
return M[n]




Rod Cutting

1
input = (n:py, Pz, pn)

MIO] =0 5 P

initialize a memory M 1 2 3 4 5
1
for i=1 ton "

M[i]= - o ML)

for j=1toi 1

q = MLi-j]+p, E

if q> M[i]

M[il=gq M[D] = - =

return M[n] q = M[4] + p,
q=11




input : (n;py,pz2, ..,

initialize a memory M
M[0]=0
fori=1ton
M[i]=- o
for j=1to i
q = M[i-j]+p;

Rod Cutting

Pn)

if q> M[i]
M[i]=q

M[5] = 11

return M[n]

j=1

Pi 5 8 9 10
M[i] 52 83 10°
i=5
q = M[4]+ p

qg=11



input : (n;py,pz2, ..,

initialize a memory M
M[0]=0
fori=1ton
M[i]=- o
for j=1to i
q = M[i-j]+p;

Rod Cutting

Pn)

if q> M[i]
M[i]=q

M[5] = 11

return M[n]

Pi 1

M[i]| 1

q = M[4]+p
qg=11

q=M[3]+p;
q=13



input : (n;py,pz2, ..,

initialize a memory M
M[0]=0
fori=1ton
M[i]=- o
for j=1to i
q = M[i-j]+p;

Rod Cutting

Pn)

if q> M[i]
M[i]=q

M[5] = 13

return M[n]

Pi 1

M[i]| 1

q = M[4]+p
qg=11

q=M[3]+p;
q=13



input : (n;py,pz2, ..,

initialize a memory M
M[0]=0
fori=1ton
M[i]=- o
for j=1to i
q = M[i-j]+p;

Rod Cutting

Pn)

if q> M[i]
M[i]=q

M[5] = 13

return M[n]

3
|
1 2 3 - 5
Pi 1 5 8 9 10
M[i]| 1 52 83 10°
q=M[4]+p
qg=11
q=M[3]+p;
q=13
q = M[2] +p;

q=13



Rod Cutting

. J - 4
input:(n.p;.p2,..Pn) 1
initialize a memory M 1 2 3 4 5
]/cV\[O] 1 0 5 p| 1 5 8 9 10
orizlton ) > 3 2
M[i] = - o M[i]| 1 5 8 10
for j=1toi 1
q = M[i-j]+p; i=h
if q> M[i]
M[i]1=q M[D] =13
return M[n] q = M[4] + p, q=M[1]+p,
q=11 q=10
q=M[3]+p,
q=13
q=M[2]+p;

q=13



Rod Cutting

. j - 5
input = (N py, Pz, . Pn) |
initialize a memory M 1 2 3 4 5
]/cV\[OJ 1? 5 p| 1 5 8 9 10
or i=
M) en MIi]| 1 52 83 102
for j=1toi 1
q = M[i-j]+ p; i=h
if q> M[i]
M[i]1=q M[D] =13
return M[n] q = M[4] + p, q=M[1]+p,
q=11 q=10
q=M[3]+p; q = M[O] + ps
q=13 q=10
q = M[2] + p;

q=13



Rod Cutting

. j: 5
input : (N py, P2, Pn) |
initialize a memory M 1 2 3 4 5
]/cV\[OJ 1? 5 p| 1 5 8 9 10
ori=1ton
res o M1l 1 52 83 10% 132
for j=1toi 1
q = M[i-j]+ p; i=h
if q> M[i]
M[i]1=q M[5] =13
return M[n] q = M[4]+p, q = M[1] + p4
q=11 q=10
q=M[3]+p; q = M[O] + ps
q=13 q=10
q = M[2] + p;

q=13



Rod Cutting

J=5
input : (N py, P2, Pn) 1
initialize a memory M 1 2 3 4 5
no1 Y 5 p |1 5 8 9 10
ori=lton : 2 3 2 2
M[i]= - o M[i]| 1 5 83 10° 13
for j=1to i 1
q = M[i-j]+p; i=h
if q> M[i]

M[i]=q
return M[n] \ 2l
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multiplication




Matrix Chain Multiplication

+ given bunch of matrices A,,..,A,;, find an optimal
parenthesization that minimizes the cost of
multiplication

(an a1n> (b11 blk) (C11 Clk)
An1 " Ay bn1 bnk Cm1 " Cmk

rd

Cij =



Matrix Chain Multiplication

+ given bunch of matrices A,,..,A,;, find an optimal
parenthesization that minimizes the cost of

multiplication -

bij

(@1 0 Qe [(biy | by | Dik Ci11 - Cik
[ a1 Qiz ... Qip ] 5 N : :
\aml amn/ bu1 . bu Cm1 " Cmk

( Pnj) /

Cij =



Matrix Chain Multiplication

+ given bunch of matrices A,,..,A,;, find an optimal
parenthesization that minimizes the cost of

multiplication -

bij

(@1 0 Qe [(biy | by | Dik Ci11 - Cik
[ a1 Qiz ... Qip ] 5 N = : :
\aml amn/ bu1 . bu Cm1 " Cmk

( Pnj) /

Cij = ail.blj + aiz.sz + .-+ ain.bnj




- for each c.

Matrix Chain Multiplication

+ given bunch of matrices A,,..,A,;, find an optimal
parenthesization that minimizes the cost of
multiplication

<a11 a1n> (b11 blk) (C11 C1k>
An1 " App bp1 -t by Cm1 " Cmk

Cij = ail.blj + aiz.sz + e 4+ ain.bnj

n multiplications and n-1 additions;

iy
O(n) operations

* m.k entries in C, thus total O(m.n.k) operations
(simply m.n.k) operations.



Matrix Chain Multiplication

ix_xi

nx1 1Xn nx1

ix_xi

nx1 1Xn nx1



Matrix Chain Multiplication




Matrix Chain Multiplication

1 1Xn nx1 nxn nx1

n X

I 8<_ P I} I }
1 1xn nx1 nxl1 1x1

n x




Matrix Chain Multiplication

<:‘I ,‘ :>"‘I == |IIIIII1k |\===‘\
1 1Xn nxl1 nxn nx1 nx1

n X

I 8<_ P I} I X L= I
1 1xn nx1 nxl1 1x1

n X nx1




Matrix Chain Multiplication

<:‘I ,‘ :>"‘I == |IIIIII1k |\===‘\
1 1Xn nxl1 nxn nx1 nx1

n X

n2 + n° =
1 1xn nx1 nxl1 1x1

n X nx1

2n?



Matrix Chain Multiplication

‘I ,t "‘I == |IIIIII:“:‘I ==‘I
1 1Xn nxl1 nxn nx1 nx1

n X

né + n2 =
I X[ Tm X l% I X L= I
1 Ixn nx1 nx1 1x1

n X nx1

2n?

n + ¢ = 2n



Matrix Chain Multiplication

axb bxc cxd dxe

paranthesization

total cost



Matrix Chain Multiplication

A, A, As A,
axb bxc cxd dxe

paranthesization A, A, A;A,

total cost



Matrix Chain Multiplication

A, A, As A,
axb bxc cxd dxe

paranthesization A (A, (A3 AY))

total cost



Matrix Chain Multiplication

Al AZ A3 A4
axb bxc cxd dxe

paranthesization A (A, (A3 AY))
total cost cde +



Matrix Chain Multiplication

Al AZ A3 A4
axb bxc cxd dxe

paranthesization A, (A, (A3 A,))) = A; (A, B)
total cost cde + bce +



Matrix Chain Multiplication

Al AZ A3 A4
axb bxc cxd dxe

paranthesization A, (A, (A3 A,))) = A;(A,B)= A;C

total cost cde + bce + abe



Matrix Chain Multiplication

» define subproblems
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Matrix Chain Multiplication

define subproblems

OPT(i,j) : optimal parenthesization of A,,.., A

construct recurrence relation

(A A (At .- A;)

focus on last move
(last parenthesization)
find best k minimizing

the cost



Matrix Chain Multiplication

define subproblems

OPT(i,j) : optimal parenthesization of A,,.., A

construct recurrence relation

(A A (At .- A;)

focus on last move
(last parenthesization)
find best k minimizing
the cost

recursively continue
on left and right



Matrix Chain Multiplication

define subproblems

A, A, As As
OPT(i,j) : optimal parenth = axb bxc cxd dxe

construct recurrence relation

(Ai . Ac) (A

focus on last move
(last parenthesization)
find best k minimizing

the cost OPT(i,j) =min { OPT(i k) +

recursively continue | |
on left and right cost of (AilAK) (Ak1--A)) )




Matrix Chain Multiplication

define subproblems

A, A, As As
OPT(i,j) : optimal parenth = axb bxc cxd dxe

« dimensions of (A;A,A3A,) will be axe
construct recurrence relation

(Ai . Ac) (A

focus on last move
(last parenthesization)
find best k minimizing

the cost OPT(i,j) =min { OPT(i k) +

recursively continue | |
on left and right cost of (AilAK) (Ak1--A)) )




Matrix Chain Multiplication

define subproblems

A, A, As As
OPT(i,j) : optimal parenth = axb bxc cxd dxe

« dimensions of (A;A,A3A,) will be axe

construct recurrence relation ., i rsion of each matrix A : DXDiug

« dimensions of (A;..A,) : PiXPk.1

(Ai . Ac) (A

focus on last move
(last parenthesization)
find best k minimizing

the cost OPT(i,j) =min { OPT(i k) + OPT(k+1,j) +

recursively continue | |
on left and right cost of (AilAK) (Ak1--A)) )




Matrix Chain Multiplication

define subproblems

OPT(i,j) : optimal parent}

construct recurrence relation| .

(Ai...Ak)(Ak+l:

Al Az A3 A4
axb bxc cxd dxe
dimensions of (A;A,A3A,) will be axe
dimension of each matrix A;: pixpi.1
dimensions of (A;..Ay) : PiXPk.1

cost of (A;..A\) (Aui.-Aj) : PiXPka1XPjut

focus on last move
(last parenthesization)
find best k minimizing

the cost OPT(i,j) =min { OPT(i k) +

recursively continue
on left and right

cost Of (A,Ak) (Ak+1AJ) }




Matrix Chain Multiplication

define subproblems

OPT(i,j) : optimal parenthesization of A;,..,A;

construct recurrence relation

(A.. . A )(An... A)

J
focus on last move
(last parenthesization)
find best k minimizing
the cost , OPT(i,j) =min { OPT(i k) + OPT(k+1,j) +
recursively continue cost of (A..A,) (Ak+1“'Aj) )

on left and right
OPT(i,i)= 0 for all i



Matrix Chain Multiplication

input @ Ay, A,,..., A, with
P1XP2, P2XP3,---s PnXPn+1

initialize a memory M
fori=lton
M[i,i]=0
for 1=2 to n
for i=1 to n-1+1
jei+l-1
M[i,j] = o
for k=i to j-1
q = M[i,k] + M[k+1,j]1+ piy Pi P;
if g<M[ij]
M[i.jl=q
return M[1,n]



Matrix Chain Multiplication

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

input @ Ay, A,,..., A, with
P1XP2, P2XP3,---s PnXPn+1

initialize a memory M 1 2 3 4 5
fori=1ton
M[i,i]=0
for 1=2 to n
for i=1 to n-1+1
jei+l-1
M[i,j] = o
for k=i to j-1
q = M[i,k] + M[k+1,j]1+ piy Pi P;
if g<M[ij]
M[i.jl=q
return M[1,n]

o B~ W N




Matrix Chain Multiplication

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

input @ Ay, A,,..., A, with
P1XP2, P2XP3,---s PnXPn+1

initialize a memory M 1 2 3 4 5
fori=1ton
M[i,i]=0
for 1=2 to n
for i=1 to n-1+1
jei+l-1
M[i,j] = o
for k=i to j-1
q = M[i,k] + M[k+1,j]1+ piy Pi P;
if g<M[ij]
M[i.jl=q
return M[1,n]

o B~ W N
o




Matrix Chain Multiplication

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

input @ Ay, A,,..., A, with
P1XP2, P2XP3.--+/ PnXPns1 =2 j=2
initialize a memory M 1 i 3 4 5
fori=l1ton _
M[i,i]= O i1 — 1 | 0 '60°
for, |:2 1.0 N [
for i=1 to -1 S T W SO R S
jei+l-1
M[i,j] = o S\ O i
for k=i to j-1 4 0
q-= M[I,k] + M[k"‘l,J] *+ Pi1 Px pj ....................................................
if q < M[ij] 3 - 0

M[ijl=q
return M[1,n] k=1
OPT(1,2) = OPT(1,1) + OPT(2,2) + p; p» p3
OPT(1,2) = 60



Matrix Chain Multiplication

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

input @ Ay, A,,..., A, with
P1XP2, P2XP3,---s PnXPn+1

initialize a memory M 1 2
fori=1ton
M[i,i]=0
for =2 ton
for i=1 to n-l+1
jei+l-1
M[i,j] = o
for k=i to j-1
q = M[ik] + M[k+1,j] + pi1 py p;
if q<M[ij]
Mij]= g
return M[1,n] k=2
OPT(2,3) = OPT(2,2) + OPT(3,3) + p, P3 P4
OPT(2,3) =90

i=2 —

o B~ W N
o



Matrix Chain Multiplication

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

input @ Ay, A,,..., A, with
P1XP2, P2XP3,---s PnXPn+1

initialize a memory M 1 2 3
fori=zl1ton
M[i,i]=0
for =2 ton
for i=1 to n-l+1
jri+l-1 f_2
M[i j] = oo =3
for k=i to j-1
q = M[i k] + M[k+1,j]+ pi.s Pk p;
if g<M[ij]
Mli.jl1=q
return M[1,n] k=3
OPT(3,4) = OPT(3,3) + OPT(4,4) + p5 p4 P5
OPT(3,4) = 36

u A W N R
o
w
w
o



Matrix Chain Multiplication

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

input @ Ay, A,,..., A, with
P1XP2, P2XP3.-+-, PnXPn.1 j=b
| =2 1
initialize a memory M 1 2 3 4 5
fori=l1ton —
M[i,i]=0 1| 0 760 :
for, I:Z 1.0 n e L 2 ......................
for i=1 to n-I+1 2l 0:99: ..
jai+l-1 3 0 °36
M[i,j] = o e
for k=i to j-1 iz4 — 4 0 36
q = M[',k] + M[k+1,J] + pi_l pk pJ ....................................................
if q < M[ij] 5 0

M[ijl=q
return M[1,n] k=4
OPT(4,5) = OPT(4,4) + OPT(5,5) + p4 p5 ps
OPT(4,5) = 36



Matrix Chain Multiplication

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

input @ Ay, A,,..., A, with
P1XP2, P2XP3,---s PnXPn+1

initialize a memory M 1 2
for i=1ton
M[i,i] = 0 iz] ——
for I=2 ton
for i=1 to n-I+1
jei+l-1
M[i,j] = o
for k=i to j-1
q = M[i k] + M[k+1,j]+ pi.s Pk p;
if g<M[ij]
MIij]1=q k=1
return M[1,n] OPT(1,3) = OPT(1,1) + OPT(2,3) + p; p, p4
OPT(1,3) =90+ 120 =210

u A W N R
o
w
w
o



Matrix Chain Multiplication

Ar v Ay Ag s Ay A

input : AL A, A, with 4x5, 5x3, 3x6 , 6X2 , 2X3

P1XP2, P2XP3.--.s PnXPn+1

initialize a memory M 1 2
for i=1ton
M[i,i]=0 i=1l ——
for I=2 ton
for i=1 to n-I+1
jei+l-1
M[i,j] = o
for k=i to j-1
q = M[i k] + M[k+1,j]+ pi.s Pk p;
if g<M[ij]
MIij]1=q k=1
return M[1,n] OPT(1,3) = OPT(1,1) + OPT(2,3) + p; p, p4
OPT(1,3) =90+ 120 =210

k=2

OPT(1,3) = OPT(1,2) + OPT(3,3) + p; ps Pa
OPT(1,3) = 60 + 72 = 132

u A W N R
o
w
w
o



Matrix Chain Multiplication

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

input @ Ay, A,,..., A, with
P1XP2, P2XP3.--., PnXPns1 -3 j=3
initialize a memory M 1 2 i 4 5
forizlton o _
M[i,i]= 0 i1 — 1 | 0 '60 432
for, I:Z 1.0 n e 2 ........ RRRRRRELE EERRRRRR:
for i=1 fo n-l+1 2 029 i
jrivl-1 3 0 36
Mijl=e T b o
for k=i to j-1 4 0 :'36
q = M[l,k] + M[k"'l,J] + pi-l pk pJ ....................................................
if q<M[ij] > 0
MIi.j]= g k=1
refurn M[1,n] OPT(1,3) = OPT(1,1) + OPT(2,3) + p; p, P4
OPT(1,3) = 90 + 120 = 210

k=2

OPT(1,3) = OPT(1,2) + OPT(3,3) + p; ps Pa
OPT(1,3) = 60 + 72 = 132



Matrix Chain Multiplication

input @ Ay, A,,..., A, with
P1XP2, P2XP3,---s PnXPn+1

initialize a memory M
for iz1ton
M[i,i]=0 i
for =2 ton
for i=1 to n-I+1
j=i+l-1
M[i,j] = =
for k=i to j-1
q = M[i k] + M[k+1,j]+ pi.s Pk p;
if q< MIi.j]
M[ijl=q
return M[1,n]

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

j=5

1

1 2 3 4 5

o B~ W N

0 160 %32 1106 130



Matrix Chain Multiplication

input @ Ay, A,,..., A, with
P1XP2, P2XP3/---, PnXPn+1 =5
initialize a memory M
for i=1ton
M[i,i]=0 iz] ——

for =2 tfon
for i=1 to n-l+1

jei+l-1

M[i’J] = oo

for k=i to j-1
q = M[i k] + M[k+1,j] + pi.1 px P
if g<M[ij]

M[i.jl1=q

return M[1,n] A A
1 - 2

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

j=5

1

1 2 3 4 5

o B~ W N

0 160 %32 1106 130



Matrix Chain Multiplication

input @ Ay, A,,..., A, with
P1XP2, P2XP3,---s PnXPn+1

initialize a memory M
for i=1ton
M[i,i]= O
for I=2 ton
for i=1 to n-I+1

jei+l-1
M[i,j]= o
for k=i to j-1

q = M[i k] + M[k+1,j] + pi.1 px P

if q<M[ij]
M[i.jl=q
return M[1,n]

A

A,

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

j=5

1

1 2 3 4 5

o B~ W N

As

0 160 %32 1106 130

A4 . A5

k=4 = OPT(1,4) and OPT(5,5)



Matrix Chain Multiplication

input @ Ay, A,,..., A, with
P1XP2, P2XP3,---s PnXPn+1

initialize a memory M
for i=1ton
M[i,i]= O
for I=2 ton
for i=1 to n-I+1

jei+l-1
M[i,j]= o
for k=i to j-1

q = M[i k] + M[k+1,j] + pi.1 px P

if q<M[ij]
M[i.jl=q
return M[1,n]

(Ay

A,

Ar v Ay Ag s Ay A

4x5 |

5x3, 3x6 , 6x2 , 2x3
J=5

1

1 2 3 4 5

o B~ W N

As

0 160 %32 1106 130

Ay ) As

k=4 = OPT(1,4) and OPT(5,5)



Matrix Chain Multiplication

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

input @ Ay, A,,..., A, with
P1XP2, P2XP3.-+-, PnXPn.1 =5 j=b
initialize a memory M 1 2 3 4 i
for i=1ton 1 T30°
M[i,i1= 0 i=1 — 1 | 0 '60 ‘132 1106 130
for, I:Z 1.0 n 4 .........
for i=1 fo n-t+1 2 0 790 66 "6
jeivl-1 3 0 336 754
M[i,jl=e T
for k=i to j-1 4 . 0 36
q = M[l,k] + M[k"'l,J] + pi_l pk pJ ............................. ......................
if q<M[i,j] > 10

M[i.jl=q
return M[1,n] (A1 A L A L A )- As

=2 OPT(1,4) and OPT(5,5)
<2 OPT(1,1) and OPT(2,4)

x X
]



Matrix Chain Multiplication

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

input @ Ay, A,,..., A, with
P1XP2, P2XP3.-+-, PnXPn.1 =5 j=b
initialize a memory M 1 2 3 4 i
for i=1ton 1 T30°
M[i,i1= 0 i=1 — 1 | 0 '60 ‘132 1106 130
for, I:Z 1.0 n 4 .........
for i=1 fo n-t+1 2 0 790 66 "6
jeivl-1 3 0 336 754
M[i,jl=e T
for k=i to j-1 4 . 0 36
q = M[l,k] + M[k"'l,J] + pi_l pk pJ ............................. ......................
if q<M[i,j] > 10

M[ijl=q
return M[1,n] A, (A, . Ay . A A

=2 OPT(1,4) and OPT(5,5)
<2 OPT(1,1) and OPT(2,4)

x X
]



Matrix Chain Multiplication

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

input @ Ay, A,,..., A, with
P1XP2, P2XP3.--/ PnXPn+1 -5 j=b
initialize a memory M 1 2 3 4 i
for i=1 ton — _ S
M[i,i1=0 i=1 — 1 | 0 160 %132 1106 "130 .
for, I:Z 1.0 n ......... e .2 ....... 2 ........ 4
for i1 o n-l+1 2| 07086 9¢
jeixl-1 3 0 36 54
M[i,jl=e i g
for k=i to j-1 4 . 0 36
q = M[I,k] + M[k"'l,J] + pi_l pk pJ ............................. ......................
if g < M[ij] > 0

M[ijl=q
return M[1,n] A, (A, . Ay . A A

k=4 = OPT(1,4) and OPT(5,5)
k=1 = OPT(1,1) and OPT(2,4)
k=2 = OPT(2,2) and OPT(3,4)



Matrix Chain Multiplication

Al A, A AL A
4x5, 5x3, 3x6 , 6X2 , 2X3

input @ Ay, A,,..., A, with

P1XP2, P2XP3.-rrs PrXPpet s j=5

initialize a memory M 1 2 3 4 i
for i=1 ton — _ T
Mi,i]= 0 =1 — 1 [ 0 60 “132 1106 130
for‘ I:Z 1.0 n ......... e .2 ....... 2 ........ 4
for i1 o n-l+1 2| 07086 9¢
j=ixl-1 3 0 °36 54
M[i,j] = = s

for k=i to j-1 4 . 0 36
q = M[l,k] + M[k+1,J] + p|_]_ pk pJ . ......................
if q < M[ij] 3 10

Mi.jl=q
return M[1,n] A (A (A . A A

k=4 = OPT(1,4) and OPT(5,5)
k=1 = OPT(1,1) and OPT(2,4)
k=2 = OPT(2,2) and OPT(3,4)



Subset Sum

« given a set of M positive integers A={q,,a,,...ay}, a predefined
number N, find out whether it is possible to find a subset of A
such that the sum of the elements in this subset is N



Subset Sum

« given a set of M positive integers A={q,,a,,...ay}, a predefined
number N, find out whether it is possible to find a subset of A
such that the sum of the elements in this subset is N

A={14,12,20,9}and N=14



Subset Sum

given a set of M positive integers A={qa,,a,,..,ay}, a predefined
number N, find out whether it is possible to find a subset of A
such that the sum of the elements in this subset is N

A={14,12,20,9}and N=14

for the subset {1,4,9}, thesumis 1+4+9=14



Subset Sum

« given a set of M positive integers A={q,,a,,...ay}, a predefined
number N, find out whether it is possible to find a subset of A
such that the sum of the elements in this subset is N

A={1412,20,9}andN=14
for the subset {1,4,9}, thesumis 1+4+9=14

your program should output true for this input.



Subset Sum

* define subproblems
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the sum is j
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the sum is j

e construct recurrence relation

Two cases
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* define subproblems

OPT(i,j) : it is possible to find a subset of {q;,...,a;} such that
the sum is j

e construct recurrence relation

Two cases

(1)

(2)



Subset Sum

* define subproblems

OPT(i,j) : it is possible to find a subset of {q,,....a} such that
the sum is j

e construct recurrence relation

Two cases

(1) if the subset contains a;, then continue with
OPT(l - I,J - Gi)

(2)



Subset Sum

 define subproblems

OPT(i,j) : it is possible to find a subset of {q,,....a} such that
the sum is j

e construct recurrence relation

Two cases

(1) if the subset contains a;, then continue with
OPT(l - I,J - Gi)

(2) if it doesn't, then continue with
OPT(i - 1, j)



Subset Sum

* define subproblems

OPT(i,j) : it is possible to find a subset of {q;,...,a;} such that
the sum is j

e construct recurrence relation

Two cases

(1) if the subset contains a;, then continue with
OPT(l - I,J - Gi)
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Subset Sum

* define subproblems

OPT(i,j) : it is possible to find a subset of {q;,...,a;} such that
the sum is j

e construct recurrence relation

Two cases

(1) if the subset contains a;, then continue with

OPT(l - I,J - Gi)
(2) if it doesn't, then continue with combine them with 'OR’
OPT(i - 1, j) _—

Base cases
OPT(m,0) = TRUE forallm
OPT(ON) = FALSE forallN
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Partition into Lines

« given a sequence of N words w;, w,, ..., wy, Where each w; contains c;
characters.

* you insert line breaks that partition these words into lines such that
the total number of characters in each line is at most L

(you also have to put one space between each pair of words to separate them)
the slack of a line containing ¢ characters is defined to be L - ¢

Your task is to find a partition such that the sum of the squares of the
slacks of all lines is minimized.

{computer, music, discrete, linear}, {8,5, 8,6}, L=18

computer 18 - 8 computer music 18 -14
music 18 -5 discrete linear 18 - 15
c.hscr'e‘re 18 - 8 16 + 9 = 25
linear 18 -6

100 + 169 + 100 + 144 = 513
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Partition into Lines

* define subproblems

OPT(j) : the cost of the optimal partition for the first j words
e construct recurrence relation

WiWo .o Wig Wi Wy - y WiWa .. Wiy

OPT(j) = min {OPT(i-1) + S[i,j]2} where S[i,j]> 0

/ Base case
A -3 OPT(0)=0
Slijl=L-(-i)-%¢ Shii]=L-c, foralli

_— Stij] = S[i-1] - (6, + 1)

# of spaces
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them among k workers so that they scan the books to find some
codes. You can divide the shelf into k regions and assign each
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Dividing the Books

Suppose you given a shelf of books, and your job is to divide
them among k workers so that they scan the books to find some
codes. You can divide the shelf into k regions and assign each
region to a worker. (The books ordered according to the number
of pages)
What will be the fairest way to divide the book among k workers?

(the total number of pages each worker gets will be close to each other)

100 200[ [11300] [T1400] [1500( 1600} [1700{|1800| 71900

e’ \ e’ \ e’ e’ \ e’ S

1500 1300 1700

9 books and 3 workers
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n books (v1,p>,..., Pn) and k workers
e construct recurrence relation

Base cases

M[ll k] = P1

Mln 1] =) p

i books

n
M[n, k] = min;-, max(M|[i, k — 1], Z ;i)

\ j=i+1

optimum number of pages
of the largest share



Dynamic Programming

analyze structure of the optimal solution and define
subproblems that need to be solved in order to get the
optimal solution

establish the relationship between the optimal solution and
those subproblems (construct the recurrence relation)

compute the optimal values of subproblems, save them in a
table (memoization), then compute the optimal values of
larger subproblems, and eventually compute the optimal
value of the original problem



