
Dynamic Programming

Murat Osmanoglu

Dynamic Programming

• ‘programming’ here not refering software. The word
itself older than computer. ‘programming’ means any
tabular method to accomplish a task.

Dynamic Programming

• ‘programming’ here not refering software. The word
itself older than computer. ‘programming’ means any
tabular method to accomplish a task.

• introduced by Richard Bellman in 1949. He developed
the method with Lester Ford to find the shortest
path in a graph.

Dynamic Programming

• from “Eye of the Hurricane : an Autobiography” by
Richard Bellman

Dynamic Programming

• DP can be considered as brute force
search all posibilities but do it in a smart way to get
the optimal solution

Dynamic Programming

• DP can be considered as brute force
search all posibilities but do it in a smart way to get
the optimal solution

For what type of problems DP is useful?

Dynamic Programming

• DP can be considered as brute force
search all posibilities but do it in a smart way to get
the optimal solution

For what type of problems DP is useful?

the problems that can be broken into
subproblems

Dynamic Programming

• DP can be considered as brute force
search all posibilities but do it in a smart way to get
the optimal solution

For what type of problems DP is useful?

the problems that can be broken into
subproblems

Divide & Conquer Dynamic Programming

Dynamic Programming

• DP can be considered as brute force
search all posibilities but do it in a smart way to get
the optimal solution

For what type of problems DP is useful?

the problems that can be broken into
subproblems

Divide & Conquer Dynamic Programming

you deal with independent
subproblems

Dynamic Programming

• DP can be considered as brute force
search all posibilities but do it in a smart way to get
the optimal solution

For what type of problems DP is useful?

the problems that can be broken into
subproblems

Divide & Conquer Dynamic Programming

you deal with independent
subproblems

you deal with overlapping
subproblems

Stairs Climbing

n stairs

Stairs Climbing
You take one step or two steps at a time.

n stairs

Stairs Climbing
You take one step or two steps at a time.
How many possible ways to climb n stairs ?

n stairs

Stairs Climbing
You take one step or two steps at a time.
How many possible ways to climb n stairs ?

n stairs

1 1 1 . . . 1 1
2 2 2 . . . 2 2
1 1 1 . . . 1 2

2 1 2 . . . 1 2
1 2 1 . . . 2 1

.
.
.

Stairs Climbing
You take one step or two steps at a time.
How many possible ways to climb n stairs ?

n stairs

1 1 1 . . . 1 1
2 2 2 . . . 2 2
1 1 1 . . . 1 2

2 1 2 . . . 1 2
1 2 1 . . . 2 1

.
.
.

create all possibilities
and count them

Stairs Climbing

T(n) = # of ways to climb n stairs

T(n)

Stairs Climbing

T(n) = # of ways to climb n stairs

T(n) = T(n-1) + T(n-2)
T(n)

T(n-1)

T(n-2)

Stairs Climbing

T(n) = # of ways to climb n stairs

T(n) = T(n-1) + T(n-2)
T(n)

T(n-1)

T(n-2)
finding # of

different ways
= solving this
recurrence relation

Stairs Climbing

T(n) = # of ways to climb n stairs

T(n) = T(n-1) + T(n-2)
T(n)

T(n-1)

T(n-2)
finding # of

different ways
= solving this
recurrence relation

Fibonacci number
T(n) = F(n) = ϕn

Stairs Climbing

SC (n)

if n ≤ 1
return 1

else
return SC (n-1) + SC (n-2)

Stairs Climbing

SC (n)

if n ≤ 1
return 1

else
return SC (n-1) + SC (n-2)

SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

Stairs Climbing

SC (n)

if n ≤ 1
return 1

else
return SC (n-1) + SC (n-2)

SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

In order to calculate SC(4), the program makes 9 recursive calls;
5 for SC(3) + 3 for SC(2)

Stairs Climbing

SC (n)

if n ≤ 1
return 1

else
return SC (n-1) + SC (n-2)

SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

In order to calculate SC(4), the program makes 9 recursive calls;
5 for SC(3) + 3 for SC(2)

of calls for SC(n) = # of calls for SC(n-1) + # of calls for SC(n-2)
of calls for SC(n) = F(n) ≈ ϕn ; nth Fibonacci number
So the running time will be exponential O(ϕn)

Stairs Climbing
SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

• We deal with the overlapping subproblems

Stairs Climbing
SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

• We deal with the overlapping subproblems
• Whenever computing subproblems, keep them

in a table to avoid recomputation, and refer
them whenever they are needed

Stairs Climbing
SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

• We deal with the overlapping subproblems
• Whenever computing subproblems, keep them

in a table to avoid recomputation, and refer
them whenever they are needed

MEMOIZATION

Stairs Climbing
SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

• We deal with the overlapping subproblems
• Whenever computing subproblems, keep them

in a table to avoid recomputation, and refer
them whenever they are needed

MEMOIZATION

SC (n)
initialize a memory M
if n ≤ 1

return 1
if M contains n

return M[n]
else

A = SC(n-1) + SC(n-2)
M[n] = A
return A

Stairs Climbing
SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

• We deal with the overlapping subproblems
• Whenever computing subproblems, keep them

in a table to avoid recomputation, and refer
them whenever they are needed

MEMOIZATION

SC (n)
initialize a memory M
if n ≤ 1

return 1
if M contains n

return M[n]
else

A = SC(n-1) + SC(n-2)
M[n] = A
return A

Top-Down

Stairs Climbing
SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

Can we come up with simpler program ?

Stairs Climbing
SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

Can we come up with simpler program ?

get rid of recursion
use a simple for loop

Stairs Climbing
SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

Can we come up with simpler program ?

SC (n)
initialize a memory M
M[0] = 1
M[1] = 1
for (i=2 to n)

M[i] = M[i-1] + M[i-2]
return M[n]

get rid of recursion
use a simple for loop

Stairs Climbing
SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

Can we come up with simpler program ?

SC (n)
initialize a memory M
M[0] = 1
M[1] = 1
for (i=2 to n)

M[i] = M[i-1] + M[i-2]
return M[n]

get rid of recursion
use a simple for loop

Bottom-Up

Dynamic Programming

• analyze structure of the optimal solution and define
subproblems that need to be solved in order to get the
optimal solution

Dynamic Programming

• analyze structure of the optimal solution and define
subproblems that need to be solved in order to get the
optimal solution

• establish the relationship between the optimal solution and
those subproblems (construct the recurrence relation)

Dynamic Programming

• analyze structure of the optimal solution and define
subproblems that need to be solved in order to get the
optimal solution

• establish the relationship between the optimal solution and
those subproblems (construct the recurrence relation)

• compute the optimal values of subproblems, save them in a
table (memoization), then compute the optimal values of
larger subproblems, and eventually compute the optimal
value of the original problem

Weighted Interval Scheduling

• given a set of intervals (I1, I2, ... , In)

• each interval Ii has a starting time si, a finishing time
fi, and a weight wi

• your task is to find a subset of intervals (pairwise
nonoverlapping) such that the total weight of
intervals is maximized

Weighted Interval Scheduling

• given a set of intervals (I1, I2, ... , In)

• each interval Ii has a starting time si, a finishing time
fi, and a weight wi

• your task is to find a subset of intervals (pairwise
nonoverlapping) such that the total weight of
intervals is maximized

7

5

36

43

1

Weighted Interval Scheduling

• given a set of intervals (I1, I2, ... , In)

• each interval Ii has a starting time si, a finishing time
fi, and a weight wi

• your task is to find a subset of intervals (pairwise
nonoverlapping) such that the total weight of
intervals is maximized

7

5

36

43

1

Weighted Interval Scheduling

• first sort all the intervals according to their finishing
time : i1, i2, … , in such that f1 ≤ f2 ≤ ... ≤ fn

Weighted Interval Scheduling

• first sort all the intervals according to their finishing
time : i1, i2, … , in such that f1 ≤ f2 ≤ ... ≤ fn

• define subproblems

OPT (j) : value of the optimal solution for

the first j intervals 1, … , j

Weighted Interval Scheduling

• first sort all the intervals according to their finishing
time : i1, i2, … , in such that f1 ≤ f2 ≤ ... ≤ fn

• define subproblems

OPT (j) : value of the optimal solution for

the first j intervals 1, … , j

• construct the recurrence relation

Weighted Interval Scheduling

• first sort all the intervals according to their finishing
time : i1, i2, … , in such that f1 ≤ f2 ≤ ... ≤ fn

• define subproblems

OPT (j) : value of the optimal solution for

the first j intervals 1, … , j

• construct the recurrence relation

fj
jsj

J-1

Two cases :

Weighted Interval Scheduling

• first sort all the intervals according to their finishing
time : i1, i2, … , in such that f1 ≤ f2 ≤ ... ≤ fn

• define subproblems

OPT (j) : value of the optimal solution for

the first j intervals 1, … , j

• construct the recurrence relation

fj
jsj

J-1

Two cases :
(1) either optimal solution does not
include interval j, then continue with
OPT (j-1)

Weighted Interval Scheduling

• first sort all the intervals according to their finishing
time : i1, i2, … , in such that f1 ≤ f2 ≤ ... ≤ fn

• define subproblems

OPT (j) : value of the optimal solution for

the first j intervals 1, … , j

• construct the recurrence relation

fj
jsj

J-1

Two cases :
(1) either optimal solution does not
include interval j, then continue with
OPT (j-1)

(2) or optimal solution includes interval j,
then continue with wj +

Weighted Interval Scheduling

• first sort all the intervals according to their finishing
time : i1, i2, … , in such that f1 ≤ f2 ≤ ... ≤ fn

• define subproblems

OPT (j) : value of the optimal solution for

the first j intervals 1, … , j

• construct the recurrence relation

fj
jsj

J-1

Two cases :
(1) either optimal solution does not
include interval j, then continue with
OPT (j-1)

(2) or optimal solution includes interval j,
then continue with wj +

p(j) : largest index i
such that i < j and fi < sj

Weighted Interval Scheduling

• first sort all the intervals according to their finishing
time : i1, i2, … , in such that f1 ≤ f2 ≤ ... ≤ fn

• define subproblems

OPT (j) : value of the optimal solution for

the first j intervals 1, … , j

• construct the recurrence relation

fj
jsj

J-1

Two cases :
(1) either optimal solution does not
include interval j, then continue with
OPT (j-1)

(2) or optimal solution includes interval j,
then continue with wj + OPT (p(j))

p(j) : largest index i
such that i < j and fi < sj

Weighted Interval Scheduling

• first sort all the intervals according to their finishing
time : i1, i2, … , in such that f1 ≤ f2 ≤ ... ≤ fn

• define subproblems

OPT (j) : value of the optimal solution for

the first j intervals 1, … , j

• construct the recurrence relation

fj
jsj

J-1

Two cases :
(1) either optimal solution does not
include interval j, then continue with
OPT (j-1)

(2) or optimal solution includes interval j,
then continue with wj + OPT (p(j))

OPT (j) = max { OPT (j-1), wj + OPT (p(j)) }

Weighted Interval Scheduling
OPT (n)
sort intervals according to
finishing time
if n = 0

return 0
else

find p(n)
if OPT (n-1) ≥ wn + OPT(p(n))

return OPT (n-1)
else

return wn + OPT (p(n))

Weighted Interval Scheduling

Similar to stairs climbing,
of calls here also F(n) ≈ ϕn

OPT (n)
sort intervals according to
finishing time
if n = 0

return 0
else

find p(n)
if OPT (n-1) ≥ wn + OPT(p(n))

return OPT (n-1)
else

return wn + OPT (p(n))

Weighted Interval Scheduling

Similar to stairs climbing,
of calls here also F(n) ≈ ϕn

Do Memoization

OPT (n)
sort intervals according to
finishing time
if n = 0

return 0
else

find p(n)
if OPT (n-1) ≥ wn + OPT(p(n))

return OPT (n-1)
else

return wn + OPT (p(n))

Weighted Interval Scheduling

Similar to stairs climbing,
of calls here also F(n) ≈ ϕn

Do Memoization

OPT (n)
sort intervals according to
finishing time
if n = 0

return 0
else

find p(n)
if OPT (n-1) ≥ wn + OPT(p(n))

return OPT (n-1)
else

return wn + OPT (p(n))

OPT (n)
sort intervals according
to finishing time
initialize a memory M
compute p(1), ... , p(n)
M[0] = 0
for (i=1 to n)

M[i] = max { wi + M[p(i)], M[i-1] }

Weighted Interval Scheduling

Similar to stairs climbing,
of calls here also F(n) ≈ ϕn

Do Memoization

OPT (n)
sort intervals according to
finishing time
if n = 0

return 0
else

find p(n)
if OPT (n-1) ≥ wn + OPT(p(n))

return OPT (n-1)
else

return wn + OPT (p(n))

OPT (n)
sort intervals according
to finishing time
initialize a memory M
compute p(1), ... , p(n)
M[0] = 0
for (i=1 to n)

M[i] = max { wi + M[p(i)], M[i-1] }

Bottom-Up

Top-Down

Longest Common Subsequence
• given two sequence x[1…m] and y[1…n], find a longest

subsequence common to both of them
(doesn’t need to be unique)

x : A B C B D A B

y : B D C A B A

Longest Common Subsequence
• given two sequence x[1…m] and y[1…n], find a longest

subsequence common to both of them
(doesn’t need to be unique)

x : A B C B D A B
LCS(x,y) = BCAB

y : B D C A B A

Longest Common Subsequence
• given two sequence x[1…m] and y[1…n], find a longest

subsequence common to both of them
(doesn’t need to be unique)

x : A B C B D A B
LCS(x,y) = BCAB

y : B D C A B A

these subsets don’t need to be continuous

Longest Common Subsequence
Brute-Force

Longest Common Subsequence
Brute-Force

• check every subsequence of x[1…m] whether it is a
subsequence of y[1…n]

Longest Common Subsequence
Brute-Force

• check every subsequence of x[1…m] whether it is a
subsequence of y[1…n]

• each check takes O(n) time

Longest Common Subsequence
Brute-Force

• check every subsequence of x[1…m] whether it is a
subsequence of y[1…n]

• each check takes O(n) time

• 2m subsequence of x (each bit-vector defines a
subsequence).

Longest Common Subsequence
Brute-Force

• check every subsequence of x[1…m] whether it is a
subsequence of y[1…n]

• each check takes O(n) time

• 2m subsequence of x (each bit-vector defines a
subsequence).

• total running time will be O(2m.n)

Longest Common Subsequence
Simplified Version

• rather than directly calculating LCS(x,y), calculate the length of
LCS(x,y) (c[i,j] = LCS(x,y))

Longest Common Subsequence
Simplified Version

• rather than directly calculating LCS(x,y), calculate the length of
LCS(x,y) (c[i,j] = LCS(x,y))

• define subproblems

Longest Common Subsequence
Simplified Version

• rather than directly calculating LCS(x,y), calculate the length of
LCS(x,y) (c[i,j] = LCS(x,y))

• define subproblems

consider the prefix x[1…i] of x and the prefix y[1…j] of y

Longest Common Subsequence
Simplified Version

• rather than directly calculating LCS(x,y), calculate the length of
LCS(x,y) (c[i,j] = LCS(x,y))

• define subproblems

consider the prefix x[1…i] of x and the prefix y[1…j] of y

c[i,j] = LCS(x[1…i], y[1…j]) : length of the longest
common subsequence of the
prefixes x[1…i] and y[1…j]

Longest Common Subsequence
• construct recurrence relation

Longest Common Subsequence
• construct recurrence relation

i

j

n

m

x

y
Two cases :

Longest Common Subsequence
• construct recurrence relation

i

j

n

m

x

y
Two cases :
(1) if x[i] = y[j], then continue with
c[i-1,j-1] + 1

Longest Common Subsequence
• construct recurrence relation

i

j

n

m

x

y
Two cases :
(1) if x[i] = y[j], then continue with
c[i-1,j-1] + 1

(2) otherwise continue with
max { c[i,j-1], c[i-1,j] }

Longest Common Subsequence
• construct recurrence relation

i

j

n

m

x

y
Two cases :
(1) if x[i] = y[j], then continue with
c[i-1,j-1] + 1

(2) otherwise continue with
max { c[i,j-1], c[i-1,j] }

c[i,j] =
c[i-1,j-1] + 1 if x[i] = y[j]

max { c[i,j-1], c[i-1,j] } otherwise

Longest Common Subsequence

LCS (x,y,n,m)

if i = 0 and j = 0
return 0

if x[n] = y[m]
c[n,m] = LCS(x,y,n-1,m-1) + 1

else
c[n,m] = max { LCS(x,y,n-1,m), LCS(x,y,n,m-1) }

return c[n,m]

Longest Common Subsequence
Let’s check it for m = 6, n = 7

7,6

6,6 7,5

5,6 6,5 6,5 7,4

4,6 5,5 5,5 6,4 5,5 6,4 6,4 7,3

The height of the tree m + n,

Longest Common Subsequence
Let’s check it for m = 6, n = 7

7,6

6,6 7,5

5,6 6,5 6,5 7,4

4,6 5,5 5,5 6,4 5,5 6,4 6,4 7,3

The height of the tree m + n,
So the running time will be O(2m+n)

Longest Common Subsequence
Let’s check it for m = 6, n = 7

7,6

6,6 7,5

5,6 6,5 6,5 7,4

4,6 5,5 5,5 6,4 5,5 6,4 6,4 7,3

The height of the tree m + n,
So the running time will be O(2m+n)

Longest Common Subsequence
Let’s check it for m = 6, n = 7

7,6

6,6 7,5

5,6 6,5 6,5 7,4

4,6 5,5 5,5 6,4 5,5 6,4 6,4 7,3

How many different subproblems are there?

The height of the tree m + n,
So the running time will be O(2m+n)

Longest Common Subsequence
Let’s check it for m = 6, n = 7

7,6

6,6 7,5

5,6 6,5 6,5 7,4

4,6 5,5 5,5 6,4 5,5 6,4 6,4 7,3

How many different subproblems are there? (m.n)

The height of the tree m + n,
So the running time will be O(2m+n)

Longest Common Subsequence
Let’s check it for m = 6, n = 7

7,6

6,6 7,5

5,6 6,5 6,5 7,4

4,6 5,5 5,5 6,4 5,5 6,4 6,4 7,3

How many different subproblems are there? (m.n)

Do Memoization

The height of the tree m + n,
So the running time will be O(2m+n)

Longest Common Subsequence

LCS (x,y,n,m) (with Memoization)

initialize a memory M
M[0,0] = 0
if M[n,m] = null

if x[n] = y[m]
M[n,m] = LCS(x,y,n-1,m-1) + 1

else
M[n,m] = max { LCS(x,y,n-1,m), LCS(x,y,n,m-1) }

return M[n,m]

Longest Common Subsequence

LCS (x,y,n,m) (with Memoization)

initialize a memory M
M[0,0] = 0
if M[n,m] = null

if x[n] = y[m]
M[n,m] = LCS(x,y,n-1,m-1) + 1

else
M[n,m] = max { LCS(x,y,n-1,m), LCS(x,y,n,m-1) }

return M[n,m]

running time : O(m.n)
space : O(m.n)

Longest Common Subsequence

LCS (x,y,n,m) (with Memoization)

initialize a memory M
M[0,0] = 0
if M[n,m] = null

if x[n] = y[m]
M[n,m] = LCS(x,y,n-1,m-1) + 1

else
M[n,m] = max { LCS(x,y,n-1,m), LCS(x,y,n,m-1) }

return M[n,m]

Top-Down

running time : O(m.n)
space : O(m.n)

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0

D 0

C 0

A 0

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0

D 0

C 0

A 0

i = 1

j = 1

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0

D 0

C 0

A 0

i = 1

j = 1

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0

D 0

C 0

A 0

i = 1

j = 2

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1

D 0

C 0

A 0

i = 1

j = 2

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1

D 0

C 0

A 0

i = 1

j = 3

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1

D 0

C 0

A 0

i = 1

j = 3

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1

D 0

C 0

A 0

i = 1

j = 4

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1

D 0

C 0

A 0

i = 1

j = 4

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1

D 0

C 0

A 0

i = 1

j = 5

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1 1

D 0

C 0

A 0

i = 1

j = 5

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1 1

D 0

C 0

A 0

i = 2

j = 1

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1 1

D 0 0

C 0

A 0

i = 2

j = 1

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1 1

D 0 0 1 1 1 1

C 0 0 1 2 2 2

A 0 1 1 2 2 3

i = 4

j = 5

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1 1

D 0 0 1 1 1 1

C 0 0 1 2 2 2

A 0 1 1 2 2 3

i = 4

j = 5

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1 1

D 0 0 1 1 1 1

C 0 0 1 2 2 2

A 0 1 1 2 2 3

i = 4

j = 5

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!

A

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1 1

D 0 0 1 1 1 1

C 0 0 1 2 2 2

A 0 1 1 2 2 3

i = 4

j = 5

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!

A

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1 1

D 0 0 1 1 1 1

C 0 0 1 2 2 2

A 0 1 1 2 2 3

i = 4

j = 5

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!

C A

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1 1

D 0 0 1 1 1 1

C 0 0 1 2 2 2

A 0 1 1 2 2 3

i = 4

j = 5

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!

C A

Longest Common Subsequence

Bottom-up

initialize a memory M
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j]

M[i,j] = M[i-1,j-1] + 1
else

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1 1

D 0 0 1 1 1 1

C 0 0 1 2 2 2

A 0 1 1 2 2 3

i = 4

j = 5

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!

B C A

Rod Cutting

• given a rod of length n with the prices p1,…,pn where
pi is the price of a rod of length i, find an optimal way
of cutting the given rod that maximizes the profit

Rod Cutting

• given a rod of length n with the prices p1,…,pn where
pi is the price of a rod of length i, find an optimal way
of cutting the given rod that maximizes the profit

length 1 2 3 4

price 1 5 8 9

4

Rod Cutting

• given a rod of length n with the prices p1,…,pn where
pi is the price of a rod of length i, find an optimal way
of cutting the given rod that maximizes the profit

length 1 2 3 4

price 1 5 8 9
4 1

1

1

1

2

2

1

1

2

1

3

4

Rod Cutting

• given a rod of length n with the prices p1,…,pn where
pi is the price of a rod of length i, find an optimal way
of cutting the given rod that maximizes the profit

length 1 2 3 4

price 1 5 8 9
4 1

1

1

1

2

2

1

1

2

1

3

4

4 10 7 99

Rod Cutting

• define subproblems

Rod Cutting

• define subproblems

c(i) : max profit for the first length i part

Rod Cutting

• define subproblems

c(i) : max profit for the first length i part

• construct recurrence relation

Rod Cutting

• define subproblems

c(i) : max profit for the first length i part

• construct recurrence relation

c(i) =

Rod Cutting

• define subproblems

c(i) : max profit for the first length i part

• construct recurrence relation

• focus on last cutting

<-------- i – j --------> <-- j -->

c(i) =

Rod Cutting

• define subproblems

c(i) : max profit for the first length i part

• construct recurrence relation

• focus on last cutting
• find best j maximizing

the profit<-------- i – j --------> <-- j -->

c(i) = max { pj +

Rod Cutting

• define subproblems

c(i) : max profit for the first length i part

• construct recurrence relation

• focus on last cutting
• find best j maximizing

the profit
• recursively continue

on the remaining part

<-------- i – j --------> <-- j -->

c(i) = max { pj + c(i-j) }

Rod Cutting

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i]

5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i]

i = 1

j = 1

5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

M[1] = - ∞

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i]

i = 1

j = 1

q = M[0] + p1

q = 1

5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

M[1] = - ∞

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1

i = 1

j = 1

q = M[0] + p1

q = 1

5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

M[1] = 1

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1

i = 2

j = 1

5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

M[2] = - ∞

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1

i = 2

j = 1

q = M[1] + p1

q = 2

5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

M[2] = - ∞

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1

i = 2

j = 1

q = M[1] + p1

q = 2

5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

M[2] = 2

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1

i = 2

j = 2

q = M[1] + p1

q = 2

q = M[0] + p2

q = 5

5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

M[2] = 2

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1

i = 2

j = 2

q = M[1] + p1

q = 2

q = M[0] + p2

q = 5

5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

M[2] = 5

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5

i = 2

j = 2

q = M[1] + p1

q = 2

q = M[0] + p2

q = 5

2
5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

M[2] = 5

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5

i = 3

j = 1

2
5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[3] = - ∞

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5

i = 3

j = 1

q = M[2] + p1

q = 6

2
5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[3] = - ∞

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5

i = 3

j = 1

q = M[2] + p1

q = 6

2
5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[3] = 6

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5

i = 3

j = 2

q = M[2] + p1

q = 6

q = M[1] + p2

q = 6

2
5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[3] = 6

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5

i = 3

j = 3

q = M[2] + p1

q = 6

q = M[1] + p2

q = 6

q = M[0] + p3

q = 8

2
5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[3] = 6

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5

i = 3

j = 3

q = M[2] + p1

q = 6

q = M[1] + p2

q = 6

q = M[0] + p3

q = 8

2
5

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[3] = 8

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8

i = 3

j = 3

q = M[2] + p1

q = 6

q = M[1] + p2

q = 6

q = M[0] + p3

q = 8

2
5

3

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[3] = 8

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8

i = 4

j = 1

2
5

3

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[4] = - ∞

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8

i = 4

j = 1

q = M[3] + p1

q = 9

2
5

3

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[4] = - ∞

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8

i = 4

j = 1

q = M[3] + p1

q = 9

2
5

3

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[4] = 9

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8

i = 4

j = 2

q = M[3] + p1

q = 9

q = M[2] + p2

q = 10

2
5

3

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[4] = 9

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8

i = 4

j = 2

q = M[3] + p1

q = 9

q = M[2] + p2

q = 10

2
5

3

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[4] = 10

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8

i = 4

j = 3

q = M[3] + p1

q = 9

q = M[2] + p2

q = 10

2
5

3

q = M[1] + p3

q = 9

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[4] = 10

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8

i = 4

j = 4

2
5

3

q = M[1] + p3

q = 9

q = M[0] + p4

q = 9

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n] q = M[3] + p1

q = 9

q = M[2] + p2

q = 10

M[4] = 10

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 4

j = 4

2
5

3

q = M[1] + p3

q = 9

q = M[0] + p4

q = 9

2

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n] q = M[3] + p1

q = 9

q = M[2] + p2

q = 10

M[4] = 10

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 1

2
5

3 2

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[5] = - ∞

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 1

q = M[4] + p1

q = 11

2
5

3 2

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[5] = - ∞

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 1

q = M[4] + p1

q = 11

2
5

3 2

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[5] = 11

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 2

q = M[4] + p1

q = 11

q = M[3] + p2

q = 13

2
5

3 2

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[5] = 11

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 2

q = M[4] + p1

q = 11

q = M[3] + p2

q = 13

2
5

3 2

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[5] = 13

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 3

q = M[4] + p1

q = 11

q = M[3] + p2

q = 13

q = M[2] + p3

q = 13

2
5

3 2

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[5] = 13

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 4

2
5

3 2

q = M[1] + p4

q = 10

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n] q = M[4] + p1

q = 11

q = M[3] + p2

q = 13

q = M[2] + p3

q = 13

M[5] = 13

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 5

2
5

3 2

q = M[1] + p4

q = 10

q = M[0] + p5

q = 10

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n] q = M[4] + p1

q = 11

q = M[3] + p2

q = 13

q = M[2] + p3

q = 13

M[5] = 13

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10 13

i = 5

j = 5

2
5

3 2

q = M[1] + p4

q = 10

q = M[0] + p5

q = 10

2

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n] q = M[4] + p1

q = 11

q = M[3] + p2

q = 13

q = M[2] + p3

q = 13

M[5] = 13

Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10 13

i = 5

j = 5

2
5

3 2 2

input : (n ; p1 , p2 , ... , pn)

initialize a memory M
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

3

2

Matrix Chain Multiplication

• given bunch of matrices A0,…,An-1, find an optimal
parenthesization that minimizes the cost of
multiplication

Matrix Chain Multiplication

• given bunch of matrices A0,…,An-1, find an optimal
parenthesization that minimizes the cost of
multiplication

𝑐𝑖𝑗 =

Matrix Chain Multiplication

• given bunch of matrices A0,…,An-1, find an optimal
parenthesization that minimizes the cost of
multiplication

𝑎𝑖1 𝑎𝑖2 . . . 𝑎𝑖𝑛

𝑏1𝑗
𝑏2𝑗
.
.
.

𝑏𝑛𝑗

𝑐𝑖𝑗 =

Matrix Chain Multiplication

• given bunch of matrices A0,…,An-1, find an optimal
parenthesization that minimizes the cost of
multiplication

𝑎𝑖1 𝑎𝑖2 . . . 𝑎𝑖𝑛

𝑏1𝑗
𝑏2𝑗
.
.
.

𝑏𝑛𝑗

𝑐𝑖𝑗 = 𝑎𝑖1. 𝑏1𝑗 + 𝑎𝑖2. 𝑏2𝑗 +⋯+ 𝑎𝑖𝑛. 𝑏𝑛𝑗

Matrix Chain Multiplication

• given bunch of matrices A0,…,An-1, find an optimal
parenthesization that minimizes the cost of
multiplication

• for each cij, n multiplications and n-1 additions;
O(n) operations

• m.k entries in C, thus total O(m.n.k) operations
(simply m.n.k) operations.

𝑐𝑖𝑗 = 𝑎𝑖1. 𝑏1𝑗 + 𝑎𝑖2. 𝑏2𝑗 +⋯+ 𝑎𝑖𝑛. 𝑏𝑛𝑗

Matrix Chain Multiplication

𝑛 × 1 1 × 𝑛 𝑛 × 1

𝑛 × 1 𝑛 × 11 × 𝑛

Matrix Chain Multiplication

𝑛 × 1 1 × 𝑛 𝑛 × 1

𝑛 × 1 𝑛 × 11 × 𝑛

Matrix Chain Multiplication

𝑛 × 1 1 × 𝑛 𝑛 × 𝑛 𝑛 × 1𝑛 × 1

𝑛 × 1 𝑛 × 1 𝑛 × 1 1x11 × 𝑛

Matrix Chain Multiplication

𝑛 × 1 1 × 𝑛 𝑛 × 𝑛 𝑛 × 1 𝑛 × 1𝑛 × 1

𝑛 × 1 𝑛 × 1𝑛 × 1 𝑛 × 1 1x11 × 𝑛

Matrix Chain Multiplication

𝑛 × 1 1 × 𝑛 𝑛 × 𝑛 𝑛 × 1 𝑛 × 1𝑛 × 1

n2 n2 2n2

𝑛 × 1 𝑛 × 1𝑛 × 1 𝑛 × 1 1x11 × 𝑛

Matrix Chain Multiplication

𝑛 × 1 1 × 𝑛 𝑛 × 𝑛 𝑛 × 1 𝑛 × 1𝑛 × 1

n2 n2 2n2

𝑛 × 1 𝑛 × 1𝑛 × 1

n n 2n

𝑛 × 1 1x11 × 𝑛

Matrix Chain Multiplication

paranthesization

total cost

A1

axb
A2

bxc
A3

cxd
A4

dxe

Matrix Chain Multiplication

paranthesization

total cost

A1

axb
A2

bxc
A3

cxd
A4

dxe

A1 A2 A3 A4

Matrix Chain Multiplication

paranthesization

total cost

A1

axb
A2

bxc
A3

cxd
A4

dxe

A1 (A2 (A3 A4)))

Matrix Chain Multiplication

cde +

paranthesization

total cost

A1

axb
A2

bxc
A3

cxd
A4

dxe

A1 (A2 (A3 A4)))

Matrix Chain Multiplication

cde + bce +

paranthesization

total cost

A1

axb
A2

bxc
A3

cxd
A4

dxe

A1 (A2 (A3 A4))) = A1 (A2 B)

Matrix Chain Multiplication

cde + bce + abe

paranthesization

total cost

A1

axb
A2

bxc
A3

cxd
A4

dxe

A1 (A2 (A3 A4))) = A1 (A2 B) = A1 C

Matrix Chain Multiplication

• define subproblems

Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj

Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj

• construct recurrence relation

Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj

• construct recurrence relation

(Ai . . . Ak) (Ak+1 . . . Aj)

• focus on last move
(last parenthesization)

Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj-1

• construct recurrence relation

(Ai . . . Ak) (Ak+1 . . . Aj)

• focus on last move
(last parenthesization)

• find best k minimizing
the cost

Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj-1

• construct recurrence relation

(Ai . . . Ak) (Ak+1 . . . Aj)

• focus on last move
(last parenthesization)

• find best k minimizing
the cost

• recursively continue
on left and right

Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj-1

• construct recurrence relation

(Ai . . . Ak) (Ak+1 . . . Aj)

• focus on last move
(last parenthesization)

• find best k minimizing
the cost

• recursively continue
on left and right

OPT(i,j) =min { OPT(i,k) + OPT(k+1,j) +
cost of (Ai…Ak) (Ak+1…Aj) }

A1

axb
A2

bxc
A3

cxd
A4

dxe

Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj-1

• construct recurrence relation

(Ai . . . Ak) (Ak+1 . . . Aj)

• focus on last move
(last parenthesization)

• find best k minimizing
the cost

• recursively continue
on left and right

OPT(i,j) =min { OPT(i,k) + OPT(k+1,j) +
cost of (Ai…Ak) (Ak+1…Aj) }

• dimensions of (A1A2A3A4) will be axe

A1

axb
A2

bxc
A3

cxd
A4

dxe

Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj-1

• construct recurrence relation

(Ai . . . Ak) (Ak+1 . . . Aj)

• focus on last move
(last parenthesization)

• find best k minimizing
the cost

• recursively continue
on left and right

OPT(i,j) =min { OPT(i,k) + OPT(k+1,j) +
cost of (Ai…Ak) (Ak+1…Aj) }

• dimensions of (A1A2A3A4) will be axe

A1

axb
A2

bxc
A3

cxd
A4

dxe

• dimension of each matrix Ai : pixpi+1

• dimensions of (Ai…Ak) : pixpk+1

Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj-1

• construct recurrence relation

(Ai . . . Ak) (Ak+1 . . . Aj)

• focus on last move
(last parenthesization)

• find best k minimizing
the cost

• recursively continue
on left and right

OPT(i,j) =min { OPT(i,k) + OPT(k+1,j) +
cost of (Ai…Ak) (Ak+1…Aj) }

• dimensions of (A1A2A3A4) will be axe

A1

axb
A2

bxc
A3

cxd
A4

dxe

• dimension of each matrix Ai : pixpi+1

• dimensions of (Ai…Ak) : pixpk+1

• cost of (Ai…Ak) (Ak+1…Aj) : pixpk+1xpj+1

Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj-1

• construct recurrence relation

(Ai . . . Ak) (Ak+1 . . . Aj)

• focus on last move
(last parenthesization)

• find best k minimizing
the cost

• recursively continue
on left and right

OPT(i,j) =min { OPT(i,k) + OPT(k+1,j) +
cost of (Ai…Ak) (Ak+1…Aj) }

OPT(i,i) = 0 for all i

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1

2

3

4

5

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0

2 0

3 0

4 0

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60

2 0

3 0

4 0

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 1

j = 2
l = 2

OPT(1,2) = OPT(1,1) + OPT(2,2) + p1 p2 p3

OPT(1,2) = 60

k = 1

1

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60

2 0 90

3 0

4 0

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 2

j = 3
l = 2

OPT(2,3) = OPT(2,2) + OPT(3,3) + p2 p3 p4

OPT(2,3) = 90

k = 2

2

1

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60

2 0 90

3 0 36

4 0

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 3

j = 4
l = 2

OPT(3,4) = OPT(3,3) + OPT(4,4) + p3 p4 p5

OPT(3,4) = 36

k = 3

2

1

3

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60

2 0 90

3 0 36

4 0 36

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 4

j = 5
l = 2

OPT(4,5) = OPT(4,4) + OPT(5,5) + p4 p5 p6

OPT(4,5) = 36

k = 4

2

1

3

4

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60

2 0 90

3 0 36

4 0 36

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 1

j = 3
l = 3

OPT(1,3) = OPT(1,1) + OPT(2,3) + p1 p2 p4

OPT(1,3) = 90 + 120 = 210

k = 1

2

1

3

4

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60

2 0 90

3 0 36

4 0 36

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 1

j = 3
l = 3

OPT(1,3) = OPT(1,1) + OPT(2,3) + p1 p2 p4

OPT(1,3) = 90 + 120 = 210

k = 1

OPT(1,3) = OPT(1,2) + OPT(3,3) + p1 p3 p4

OPT(1,3) = 60 + 72 = 132

k = 2

2

1

3

4

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60 132

2 0 90

3 0 36

4 0 36

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 1

j = 3
l = 3

OPT(1,3) = OPT(1,1) + OPT(2,3) + p1 p2 p4

OPT(1,3) = 90 + 120 = 210

k = 1

OPT(1,3) = OPT(1,2) + OPT(3,3) + p1 p3 p4

OPT(1,3) = 60 + 72 = 132

k = 2

2

2

1

3

4

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60 132 106 130

2 0 90 66 96

3 0 36 54

4 0 36

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 1

j = 5
l = 5

2

2

1

3

4

2

4

1

4

4

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60 132 106 130

2 0 90 66 96

3 0 36 54

4 0 36

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 1

j = 5
l = 5

2

2

1

3

4

2

4

1

4

4

A1 . A2 . A3 . A4 . A5

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60 132 106 130

2 0 90 66 96

3 0 36 54

4 0 36

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 1

j = 5
l = 5

2

2

1

3

4

2

4

1

4

4

A1 . A2 . A3 . A4 . A5

k = 4  OPT(1,4) and OPT(5,5)

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60 132 106 130

2 0 90 66 96

3 0 36 54

4 0 36

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 1

j = 5
l = 5

2

2

1

3

4

2

4

1

4

4

(A1 . A2 . A3 . A4). A5

k = 4  OPT(1,4) and OPT(5,5)

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60 132 106 130

2 0 90 66 96

3 0 36 54

4 0 36

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 1

j = 5
l = 5

2

2

1

3

4

2

4

1

4

4

(A1 . A2 . A3 . A4). A5

k = 4  OPT(1,4) and OPT(5,5)
k = 1  OPT(1,1) and OPT(2,4)

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60 132 106 130

2 0 90 66 96

3 0 36 54

4 0 36

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 1

j = 5
l = 5

2

2

1

3

4

2

4

1

4

4

(A1 . (A2 . A3 . A4)). A5

k = 4  OPT(1,4) and OPT(5,5)
k = 1  OPT(1,1) and OPT(2,4)

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60 132 106 130

2 0 90 66 96

3 0 36 54

4 0 36

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 1

j = 5
l = 5

2

2

1

3

4

2

4

1

4

4

k = 4  OPT(1,4) and OPT(5,5)
k = 1  OPT(1,1) and OPT(2,4)
k = 2  OPT(2,2) and OPT(3,4)

(A1 . (A2 . A3 . A4)). A5

Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60 132 106 130

2 0 90 66 96

3 0 36 54

4 0 36

5 0

A1 , A2 , A3 , A4 , A5

4x5 , 5x3 , 3x6 , 6x2 , 2x3

i = 1

j = 5
l = 5

2

2

1

3

4

2

4

1

4

4

k = 4  OPT(1,4) and OPT(5,5)
k = 1  OPT(1,1) and OPT(2,4)
k = 2  OPT(2,2) and OPT(3,4)

(A1 . (A2 . (A3 . A4))). A5

• given a set of M positive integers A={a1,a2,…,aM}, a predefined
number N, find out whether it is possible to find a subset of A
such that the sum of the elements in this subset is N

Subset Sum

• given a set of M positive integers A={a1,a2,…,aM}, a predefined
number N, find out whether it is possible to find a subset of A
such that the sum of the elements in this subset is N

A = { 1, 4, 12, 20, 9 } and N = 14

Subset Sum

• given a set of M positive integers A={a1,a2,…,aM}, a predefined
number N, find out whether it is possible to find a subset of A
such that the sum of the elements in this subset is N

A = { 1, 4, 12, 20, 9 } and N = 14

for the subset { 1, 4, 9 }, the sum is 1 + 4 + 9 = 14

Subset Sum

• given a set of M positive integers A={a1,a2,…,aM}, a predefined
number N, find out whether it is possible to find a subset of A
such that the sum of the elements in this subset is N

A = { 1, 4, 12, 20, 9 } and N = 14

for the subset { 1, 4, 9 }, the sum is 1 + 4 + 9 = 14

your program should output true for this input.

Subset Sum

Subset Sum
• define subproblems

Subset Sum
• define subproblems

OPT(i,j) : it is possible to find a subset of {a1,...,ai} such that
the sum is j

Subset Sum
• define subproblems

OPT(i,j) : it is possible to find a subset of {a1,...,ai} such that
the sum is j

• construct recurrence relation

Two cases

Subset Sum
• define subproblems

OPT(i,j) : it is possible to find a subset of {a1,...,ai} such that
the sum is j

• construct recurrence relation

Two cases

(1)

(2)

Subset Sum
• define subproblems

OPT(i,j) : it is possible to find a subset of {a1,...,ai} such that
the sum is j

• construct recurrence relation

Two cases

(1) if the subset contains ai, then continue with

OPT(i - 1, j – ai)

(2)

Subset Sum
• define subproblems

OPT(i,j) : it is possible to find a subset of {a1,...,ai} such that
the sum is j

• construct recurrence relation

Two cases

(1) if the subset contains ai, then continue with

OPT(i - 1, j – ai)

(2) if it doesn’t,, then continue with

OPT(i – 1, j)

Subset Sum
• define subproblems

OPT(i,j) : it is possible to find a subset of {a1,...,ai} such that
the sum is j

• construct recurrence relation

Two cases

(1) if the subset contains ai, then continue with

OPT(i - 1, j – ai)

(2) if it doesn’t,, then continue with

OPT(i – 1, j)

combine them with ‘OR’

Subset Sum
• define subproblems

OPT(i,j) : it is possible to find a subset of {a1,...,ai} such that
the sum is j

• construct recurrence relation

Two cases

(1) if the subset contains ai, then continue with

OPT(i - 1, j – ai)

(2) if it doesn’t,, then continue with

OPT(i – 1, j)

combine them with ‘OR’

Base cases
OPT(m,0) = TRUE for all m
OPT(0,N) = FALSE for all N

• given a sequence of N words w1, w2, …, wN where each wi contains ci

characters.

• you insert line breaks that partition these words into lines such that
the total number of characters in each line is at most L

(you also have to put one space between each pair of words to separate them)

Partition into Lines

• given a sequence of N words w1, w2, …, wN where each wi contains ci

characters.

• you insert line breaks that partition these words into lines such that
the total number of characters in each line is at most L

(you also have to put one space between each pair of words to separate them)

• the slack of a line containing c characters is defined to be L – c

Partition into Lines

• given a sequence of N words w1, w2, …, wN where each wi contains ci

characters.

• you insert line breaks that partition these words into lines such that
the total number of characters in each line is at most L

(you also have to put one space between each pair of words to separate them)

• the slack of a line containing c characters is defined to be L – c

• Your task is to find a partition such that the sum of the squares of the
slacks of all lines is minimized.

Partition into Lines

• given a sequence of N words w1, w2, …, wN where each wi contains ci

characters.

• you insert line breaks that partition these words into lines such that
the total number of characters in each line is at most L

(you also have to put one space between each pair of words to separate them)

• the slack of a line containing c characters is defined to be L – c

• Your task is to find a partition such that the sum of the squares of the
slacks of all lines is minimized.

Partition into Lines

{computer, music, discrete, linear}, {8, 5, 8, 6}, L = 18

• given a sequence of N words w1, w2, …, wN where each wi contains ci

characters.

• you insert line breaks that partition these words into lines such that
the total number of characters in each line is at most L

(you also have to put one space between each pair of words to separate them)

• the slack of a line containing c characters is defined to be L – c

• Your task is to find a partition such that the sum of the squares of the
slacks of all lines is minimized.

Partition into Lines

{computer, music, discrete, linear}, {8, 5, 8, 6}, L = 18

computer

music

discrete

linear

• given a sequence of N words w1, w2, …, wN where each wi contains ci

characters.

• you insert line breaks that partition these words into lines such that
the total number of characters in each line is at most L

(you also have to put one space between each pair of words to separate them)

• the slack of a line containing c characters is defined to be L – c

• Your task is to find a partition such that the sum of the squares of the
slacks of all lines is minimized.

Partition into Lines

{computer, music, discrete, linear}, {8, 5, 8, 6}, L = 18

computer

music

discrete

linear

18 – 8

18 – 5

18 – 8

18 – 6

• given a sequence of N words w1, w2, …, wN where each wi contains ci

characters.

• you insert line breaks that partition these words into lines such that
the total number of characters in each line is at most L

(you also have to put one space between each pair of words to separate them)

• the slack of a line containing c characters is defined to be L – c

• Your task is to find a partition such that the sum of the squares of the
slacks of all lines is minimized.

Partition into Lines

{computer, music, discrete, linear}, {8, 5, 8, 6}, L = 18

computer

music

discrete

linear

18 – 8

18 – 5

18 – 8

18 – 6

100 + 169 + 100 + 144 = 513

• given a sequence of N words w1, w2, …, wN where each wi contains ci

characters.

• you insert line breaks that partition these words into lines such that
the total number of characters in each line is at most L

(you also have to put one space between each pair of words to separate them)

• the slack of a line containing c characters is defined to be L – c

• Your task is to find a partition such that the sum of the squares of the
slacks of all lines is minimized.

Partition into Lines

{computer, music, discrete, linear}, {8, 5, 8, 6}, L = 18

computer

music

discrete

linear

18 – 8

18 – 5

18 – 8

18 – 6

100 + 169 + 100 + 144 = 513

computer music

discrete linear

• given a sequence of N words w1, w2, …, wN where each wi contains ci

characters.

• you insert line breaks that partition these words into lines such that
the total number of characters in each line is at most L

(you also have to put one space between each pair of words to separate them)

• the slack of a line containing c characters is defined to be L – c

• Your task is to find a partition such that the sum of the squares of the
slacks of all lines is minimized.

Partition into Lines

{computer, music, discrete, linear}, {8, 5, 8, 6}, L = 18

computer

music

discrete

linear

18 – 8

18 – 5

18 – 8

18 – 6

100 + 169 + 100 + 144 = 513

computer music

discrete linear

18 – 14

18 – 15

• given a sequence of N words w1, w2, …, wN where each wi contains ci

characters.

• you insert line breaks that partition these words into lines such that
the total number of characters in each line is at most L

(you also have to put one space between each pair of words to separate them)

• the slack of a line containing c characters is defined to be L – c

• Your task is to find a partition such that the sum of the squares of the
slacks of all lines is minimized.

Partition into Lines

{computer, music, discrete, linear}, {8, 5, 8, 6}, L = 18

computer

music

discrete

linear

18 – 8

18 – 5

18 – 8

18 – 6

100 + 169 + 100 + 144 = 513

computer music

discrete linear

18 – 14

18 – 15

16 + 9 = 25

• define subproblems

Partition into Lines

• define subproblems

OPT(j) : the cost of the optimal partition for the first j words

Partition into Lines

• define subproblems

OPT(j) : the cost of the optimal partition for the first j words

• construct recurrence relation

Partition into Lines

• define subproblems

OPT(j) : the cost of the optimal partition for the first j words

• construct recurrence relation

w1 w2 . . . wi-1 wi . . . wj

Partition into Lines

• define subproblems

OPT(j) : the cost of the optimal partition for the first j words

• construct recurrence relation

w1 w2 . . . wi-1 wi . . . wj w1 w2 . . . wi-1

wi . . . wj

Partition into Lines

• define subproblems

OPT(j) : the cost of the optimal partition for the first j words

• construct recurrence relation

w1 w2 . . . wi-1 wi . . . wj w1 w2 . . . wi-1

wi . . . wj

OPT(j) = min {OPT(i-1) + S[i,j]2} where S[i,j] ≥ 0

Partition into Lines

• define subproblems

OPT(j) : the cost of the optimal partition for the first j words

• construct recurrence relation

w1 w2 . . . wi-1 wi . . . wj w1 w2 . . . wi-1

wi . . . wj

OPT(j) = min {OPT(i-1) + S[i,j]2} where S[i,j] ≥ 0

S[i,j] = L – (j – i) – Σ ci

of spaces

Partition into Lines

• define subproblems

OPT(j) : the cost of the optimal partition for the first j words

• construct recurrence relation

Base case
OPT(0) = 0

S[i,i] = L – ci for all i
S[i,j] = S[i,j-1] – (ci + 1)

w1 w2 . . . wi-1 wi . . . wj w1 w2 . . . wi-1

wi . . . wj

OPT(j) = min {OPT(i-1) + S[i,j]2} where S[i,j] ≥ 0

S[i,j] = L – (j – i) – Σ ci

of spaces

Partition into Lines

Dividing the Books

• Suppose you given a shelf of books, and your job is to divide
them among k workers so that they scan the books to find some
codes. You can divide the shelf into k regions and assign each
region to a worker. (The books ordered according to the number
of pages)

Dividing the Books

• Suppose you given a shelf of books, and your job is to divide
them among k workers so that they scan the books to find some
codes. You can divide the shelf into k regions and assign each
region to a worker. (The books ordered according to the number
of pages)

What will be the fairest way to divide the book among k workers?

Dividing the Books

• Suppose you given a shelf of books, and your job is to divide
them among k workers so that they scan the books to find some
codes. You can divide the shelf into k regions and assign each
region to a worker. (The books ordered according to the number
of pages)

What will be the fairest way to divide the book among k workers?

(the total number of pages each worker gets will be close to each other)

9 books and 3 workers

Dividing the Books

• Suppose you given a shelf of books, and your job is to divide
them among k workers so that they scan the books to find some
codes. You can divide the shelf into k regions and assign each
region to a worker. (The books ordered according to the number
of pages)

What will be the fairest way to divide the book among k workers?

(the total number of pages each worker gets will be close to each other)

100 100 100 100 100 100 100 100 100

9 books and 3 workers

Dividing the Books

• Suppose you given a shelf of books, and your job is to divide
them among k workers so that they scan the books to find some
codes. You can divide the shelf into k regions and assign each
region to a worker. (The books ordered according to the number
of pages)

What will be the fairest way to divide the book among k workers?

(the total number of pages each worker gets will be close to each other)

100 100 100 100 100 100 100 100 100

9 books and 3 workers

Dividing the Books

• Suppose you given a shelf of books, and your job is to divide
them among k workers so that they scan the books to find some
codes. You can divide the shelf into k regions and assign each
region to a worker. (The books ordered according to the number
of pages)

What will be the fairest way to divide the book among k workers?

(the total number of pages each worker gets will be close to each other)

100 200 300 400 500 600 700 800 900

9 books and 3 workers

Dividing the Books

• Suppose you given a shelf of books, and your job is to divide
them among k workers so that they scan the books to find some
codes. You can divide the shelf into k regions and assign each
region to a worker. (The books ordered according to the number
of pages)

What will be the fairest way to divide the book among k workers?

(the total number of pages each worker gets will be close to each other)

100 200 300 400 500 600 700 800 900

9 books and 3 workers

24001500600

Dividing the Books

• Suppose you given a shelf of books, and your job is to divide
them among k workers so that they scan the books to find some
codes. You can divide the shelf into k regions and assign each
region to a worker. (The books ordered according to the number
of pages)

What will be the fairest way to divide the book among k workers?

(the total number of pages each worker gets will be close to each other)

100 200 300 400 500 600 700 800 900

9 books and 3 workers

170018001000

Dividing the Books

• Suppose you given a shelf of books, and your job is to divide
them among k workers so that they scan the books to find some
codes. You can divide the shelf into k regions and assign each
region to a worker. (The books ordered according to the number
of pages)

What will be the fairest way to divide the book among k workers?

(the total number of pages each worker gets will be close to each other)

100 200 300 400 500 600 700 800 900

9 books and 3 workers

170013001500

Dividing the Books

n books (𝒑𝟏, 𝒑𝟐,…, 𝒑𝒏) and k workers

• construct recurrence relation

n books

𝑀 𝑛, 𝑘 =

Dividing the Books

n books (𝒑𝟏, 𝒑𝟐,…, 𝒑𝒏) and k workers

• construct recurrence relation

n books

𝑀 𝑛, 𝑘 =

optimum number of pages
of the largest share

Dividing the Books

n books (𝒑𝟏, 𝒑𝟐,…, 𝒑𝒏) and k workers

• construct recurrence relation

n books

i books

𝑀 𝑛, 𝑘 = max(, ෍

𝑗=𝑖+1

𝑛

𝑝𝑗)

optimum number of pages
of the largest share

Dividing the Books

n books (𝒑𝟏, 𝒑𝟐,…, 𝒑𝒏) and k workers

• construct recurrence relation

n books

i books

𝑀 𝑛, 𝑘 = max(𝑀 𝑖, 𝑘 − 1 , ෍

𝑗=𝑖+1

𝑛

𝑝𝑗)

optimum number of pages
of the largest share

Dividing the Books

n books (𝒑𝟏, 𝒑𝟐,…, 𝒑𝒏) and k workers

• construct recurrence relation

n books

i books

𝑀 𝑛, 𝑘 = 𝑚𝑖𝑛𝑖=1
𝑛 max(𝑀 𝑖, 𝑘 − 1 , ෍

𝑗=𝑖+1

𝑛

𝑝𝑗)

optimum number of pages
of the largest share

𝑀 1, 𝑘 = 𝑝1

𝑀 𝑛, 1 =෍𝑝𝑖

Base cases

Dynamic Programming

• analyze structure of the optimal solution and define
subproblems that need to be solved in order to get the
optimal solution

• establish the relationship between the optimal solution and
those subproblems (construct the recurrence relation)

• compute the optimal values of subproblems, save them in a
table (memoization), then compute the optimal values of
larger subproblems, and eventually compute the optimal
value of the original problem

