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itself older than computer. ‘programming’ means any
tabular method to accomplish a task.

• introduced by Richard Bellman in 1949. He developed
the method with Lester Ford to find the shortest
path in a graph.     
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Dynamic Programming

• DP can be considered as brute force
search all posibilities but do it in a smart way to get
the optimal solution

For what type of problems DP is useful?

the problems that can be broken into
subproblems

Divide & Conquer Dynamic Programming

you deal with independent 
subproblems

you deal with overlapping 
subproblems
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You take one step or two steps at a time.
How many possible ways to climb n stairs ?

n stairs

1  1  1  . . .  1  1
2 2  2 . . .  2  2
1  1  1  . . .  1  2

2 1  2 . . .  1  2
1 2  1 . . .  2  1 

. 
. 
.

create all possibilities
and count them 
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Stairs Climbing

T(n) = # of ways to climb n stairs

T(n) = T(n-1) + T(n-2)
T(n)

T(n-1)

T(n-2)
finding # of 

different ways  
= solving this 
recurrence relation

Fibonacci number
T(n) = F(n) = ϕn
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Stairs Climbing

SC (n) 

if n ≤ 1 
return 1

else
return SC (n-1) + SC (n-2) 

SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

In order to calculate SC(4), the program makes 9 recursive calls; 
5 for SC(3) + 3 for SC(2)

# of calls for SC(n) = # of calls for SC(n-1) + # of calls for SC(n-2)
# of calls for SC(n) = F(n) ≈ ϕn ; nth Fibonacci number
So the running time will be exponential O(ϕn)
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• We deal with the overlapping subproblems
• Whenever computing subproblems, keep them 

in a table to avoid recomputation, and refer 
them whenever they are needed

MEMOIZATION

SC (n) 
initialize a memory M
if n ≤ 1 

return 1
if M contains n

return M[n]
else

A = SC(n-1) + SC(n-2)
M[n] = A
return A



Stairs Climbing
SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

• We deal with the overlapping subproblems
• Whenever computing subproblems, keep them 

in a table to avoid recomputation, and refer 
them whenever they are needed

MEMOIZATION

SC (n) 
initialize a memory M
if n ≤ 1 

return 1
if M contains n

return M[n]
else

A = SC(n-1) + SC(n-2)
M[n] = A
return A

Top-Down
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Stairs Climbing
SC (4)

SC (3) SC (2)

SC (2) SC (1) SC (1) SC (0)

SC (1) SC (0)

Can we come up with simpler program ?

SC (n) 
initialize a memory M
M[0] = 1
M[1] = 1
for ( i=2 to n)

M[i] = M[i-1] + M[i-2]
return M[n]

get rid of recursion
use a simple for loop

Bottom-Up
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Dynamic Programming

• analyze structure of the optimal solution and define 
subproblems that need to be solved in order to get the 
optimal solution

• establish the relationship between the optimal solution and
those subproblems (construct the recurrence relation)

• compute the optimal values of subproblems, save them in a 
table (memoization), then compute the optimal values of 
larger subproblems, and eventually compute the optimal 
value of the original problem
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• define subproblems
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Weighted Interval Scheduling

• first sort all the intervals according to their finishing 
time :  i1, i2, … , in such that f1 ≤ f2 ≤ ... ≤ fn

• define subproblems

OPT (j) : value of the optimal solution for

the first j intervals 1, … , j

• construct the recurrence relation

fj
jsj

J-1

Two cases :
(1) either optimal solution does not
include interval j, then continue with 
OPT (j-1)

(2) or optimal solution includes interval j, 
then continue with  wj + OPT (p(j))  

OPT (j) = max { OPT (j-1),  wj + OPT (p(j)) } 



Weighted Interval Scheduling
OPT (n)
sort intervals according to
finishing time 
if n = 0

return 0
else

find p(n)
if OPT (n-1) ≥ wn + OPT(p(n))

return OPT (n-1)
else 

return wn + OPT (p(n)) 
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Weighted Interval Scheduling

Similar to stairs climbing, 
# of calls here also F(n) ≈ ϕn

Do Memoization

OPT (n)
sort intervals according to
finishing time 
if n = 0

return 0
else

find p(n)
if OPT (n-1) ≥ wn + OPT(p(n))

return OPT (n-1)
else 

return wn + OPT (p(n)) 

OPT (n)
sort intervals according
to finishing time 
initialize a memory M
compute p(1), ... , p(n) 
M[0] = 0
for (i=1 to n)

M[i] = max { wi + M[p(i)], M[i-1] }

Bottom-Up

Top-Down
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Longest Common Subsequence
• given two sequence x[1…m] and y[1…n], find a longest 

subsequence common to both of them 
(doesn’t need to be unique)

x : A  B C B  D  A B
LCS(x,y) = BCAB 

y : B D  C A B A

these subsets don’t need to be continuous 



Longest Common Subsequence
Brute-Force



Longest Common Subsequence
Brute-Force

• check every subsequence of x[1…m] whether it is a 
subsequence of y[1…n]



Longest Common Subsequence
Brute-Force

• check every subsequence of x[1…m] whether it is a 
subsequence of y[1…n]

• each check takes O(n) time



Longest Common Subsequence
Brute-Force

• check every subsequence of x[1…m] whether it is a 
subsequence of y[1…n]

• each check takes O(n) time

• 2m subsequence of x (each bit-vector defines a 
subsequence). 



Longest Common Subsequence
Brute-Force

• check every subsequence of x[1…m] whether it is a 
subsequence of y[1…n]

• each check takes O(n) time

• 2m subsequence of x (each bit-vector defines a 
subsequence). 

• total running time will be O(2m.n)
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Longest Common Subsequence
Simplified Version

• rather than directly calculating LCS(x,y), calculate the length of 
LCS(x,y) (c[i,j] = LCS(x,y) )

• define subproblems

consider the prefix x[1…i] of x and the prefix y[1…j] of y 

c[i,j] = LCS(x[1…i], y[1…j]) : length of the longest
common subsequence of the 
prefixes x[1…i] and y[1…j] 
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Longest Common Subsequence
• construct recurrence relation

i

j

n

m

x

y
Two cases :
(1) if x[i] = y[j], then continue with
c[i-1,j-1] + 1

(2) otherwise continue with
max { c[i,j-1], c[i-1,j] }

c[i,j] = 
c[i-1,j-1] + 1 if x[i] = y[j] 

max { c[i,j-1], c[i-1,j] }    otherwise



Longest Common Subsequence

LCS (x,y,n,m)

if i = 0 and j = 0
return 0

if x[n] = y[m]  
c[n,m] = LCS(x,y,n-1,m-1) + 1   

else 
c[n,m] = max { LCS(x,y,n-1,m), LCS(x,y,n,m-1) }

return c[n,m]
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Longest Common Subsequence
Let’s check it for m = 6, n = 7

7,6

6,6 7,5

5,6 6,5 6,5 7,4

4,6 5,5 5,5 6,4 5,5 6,4 6,4 7,3

How many different subproblems are there? ( m.n ) 

Do Memoization

The height of the tree m + n,
So the running time will be O(2m+n)
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initialize a memory M 
M[0,0] = 0
if M[n,m] = null

if x[n] = y[m]  
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LCS (x,y,n,m) (with Memoization)

initialize a memory M 
M[0,0] = 0
if M[n,m] = null

if x[n] = y[m]  
M[n,m] = LCS(x,y,n-1,m-1) + 1   

else 
M[n,m] = max { LCS(x,y,n-1,m), LCS(x,y,n,m-1) }

return M[n,m]

Top-Down

running time : O(m.n)
space : O(m.n)
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for i=0 to n
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Bottom-up

initialize a memory M 
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j] 
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else 
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return M[n,m]
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Longest Common Subsequence

Bottom-up

initialize a memory M 
for i=0 to n
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initialize a memory M 
for i=0 to n

M[i,0] = 0
for i=1 to m
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for j=1 to m
if x[i] = y[j] 
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else 
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return M[n,m]
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for i=0 to n

M[i,0] = 0
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for i=1 to n
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if x[i] = y[j] 

M[i,j] = M[i-1,j-1] + 1
else 

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]
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C 0 0 1 2 2 2

A 0 1 1 2 2 3

i = 4

j = 5
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for i=0 to n
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for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j] 

M[i,j] = M[i-1,j-1] + 1
else 

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1 1

D 0 0 1 1 1 1

C 0 0 1 2 2 2

A 0 1 1 2 2 3

i = 4

j = 5

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!
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Bottom-up

initialize a memory M 
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j] 

M[i,j] = M[i-1,j-1] + 1
else 

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]
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Longest Common Subsequence

Bottom-up

initialize a memory M 
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j] 

M[i,j] = M[i-1,j-1] + 1
else 

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]
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We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!
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Longest Common Subsequence

Bottom-up

initialize a memory M 
for i=0 to n

M[i,0] = 0
for i=1 to m

M[0,i] = 0
for i=1 to n

for j=1 to m
if x[i] = y[j] 

M[i,j] = M[i-1,j-1] + 1
else 

M[i,j] = max { M[i-1,j], M[i,j-1] }
return M[n,m]

A B C B A

0 0 0 0 0 0

B 0 0 1 1 1 1

D 0 0 1 1 1 1

C 0 0 1 2 2 2

A 0 1 1 2 2 3

i = 4

j = 5

We can reconstruct LCS by tracing backwards
Whenever we have a diagonal, we have a match!

B C A
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• given a rod of length n with the prices p1,…,pn where
pi is the price of a rod of length i, find an optimal way
of cutting the given rod that maximizes the profit
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Rod Cutting

• given a rod of length n with the prices p1,…,pn where
pi is the price of a rod of length i, find an optimal way
of cutting the given rod that maximizes the profit

length 1 2 3 4

price 1 5 8 9
4 1
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c(i) : max profit for the first length i part

• construct recurrence relation

• focus on last cutting 
• find best j maximizing

the profit<-------- i – j --------> <-- j -->

c(i) = max { pj +



Rod Cutting

• define subproblems

c(i) : max profit for the first length i part

• construct recurrence relation

• focus on last cutting 
• find best j maximizing

the profit
• recursively continue 

on the remaining part

<-------- i – j --------> <-- j -->

c(i) = max { pj + c(i-j) }



Rod Cutting

input : ( n ; p1 , p2 , ... , pn )

initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
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initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

M[1] = - ∞
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initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
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i = 4

j = 4

2
5

3

q = M[1] + p3

q = 9

q = M[0] + p4

q = 9

2

input : ( n ; p1 , p2 , ... , pn )

initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n] q = M[3] + p1

q = 9

q = M[2] + p2

q = 10

M[4] = 10



Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 1

2
5

3 2

input : ( n ; p1 , p2 , ... , pn )

initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[5] = - ∞



Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 1

q = M[4] + p1

q = 11

2
5

3 2

input : ( n ; p1 , p2 , ... , pn )

initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[5] = - ∞



Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 1

q = M[4] + p1

q = 11

2
5

3 2

input : ( n ; p1 , p2 , ... , pn )

initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[5] = 11



Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 2

q = M[4] + p1

q = 11

q = M[3] + p2

q = 13

2
5

3 2

input : ( n ; p1 , p2 , ... , pn )

initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[5] = 11



Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 2

q = M[4] + p1

q = 11

q = M[3] + p2

q = 13

2
5

3 2

input : ( n ; p1 , p2 , ... , pn )

initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[5] = 13



Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 3

q = M[4] + p1

q = 11

q = M[3] + p2

q = 13

q = M[2] + p3

q = 13

2
5

3 2

input : ( n ; p1 , p2 , ... , pn )

initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]
M[5] = 13



Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 4

2
5

3 2

q = M[1] + p4

q = 10

input : ( n ; p1 , p2 , ... , pn )

initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n] q = M[4] + p1

q = 11

q = M[3] + p2

q = 13

q = M[2] + p3

q = 13

M[5] = 13



Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10

i = 5

j = 5

2
5

3 2

q = M[1] + p4

q = 10

q = M[0] + p5

q = 10

input : ( n ; p1 , p2 , ... , pn )

initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n] q = M[4] + p1

q = 11

q = M[3] + p2

q = 13

q = M[2] + p3

q = 13

M[5] = 13



Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10 13

i = 5

j = 5

2
5

3 2

q = M[1] + p4

q = 10

q = M[0] + p5

q = 10

2

input : ( n ; p1 , p2 , ... , pn )

initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n] q = M[4] + p1

q = 11

q = M[3] + p2

q = 13

q = M[2] + p3

q = 13

M[5] = 13



Rod Cutting

1 2 3 4 5

pi 1 5 8 9 10

M[i] 1 5 8 10 13

i = 5

j = 5

2
5

3 2 2

input : ( n ; p1 , p2 , ... , pn )

initialize a memory M 
M[0] = 0
for i=1 to n

M[i] = - ∞
for j=1 to i

q = M[i-j] + pj

if q > M[i]
M[i] = q

return M[n]

3

2



Matrix Chain Multiplication

• given bunch of matrices A0,…,An-1, find an optimal
parenthesization that minimizes the cost of
multiplication



Matrix Chain Multiplication

• given bunch of matrices A0,…,An-1, find an optimal
parenthesization that minimizes the cost of
multiplication

𝑐𝑖𝑗 =



Matrix Chain Multiplication

• given bunch of matrices A0,…,An-1, find an optimal
parenthesization that minimizes the cost of
multiplication

𝑎𝑖1 𝑎𝑖2 . . .   𝑎𝑖𝑛

𝑏1𝑗
𝑏2𝑗
.
.
.

𝑏𝑛𝑗

𝑐𝑖𝑗 =



Matrix Chain Multiplication

• given bunch of matrices A0,…,An-1, find an optimal
parenthesization that minimizes the cost of
multiplication

𝑎𝑖1 𝑎𝑖2 . . .   𝑎𝑖𝑛

𝑏1𝑗
𝑏2𝑗
.
.
.

𝑏𝑛𝑗

𝑐𝑖𝑗 = 𝑎𝑖1. 𝑏1𝑗 + 𝑎𝑖2. 𝑏2𝑗 +⋯+ 𝑎𝑖𝑛. 𝑏𝑛𝑗



Matrix Chain Multiplication

• given bunch of matrices A0,…,An-1, find an optimal
parenthesization that minimizes the cost of
multiplication

• for each cij, n multiplications and n-1 additions;
O(n) operations

• m.k entries in C, thus total O(m.n.k) operations
(simply m.n.k) operations.

𝑐𝑖𝑗 = 𝑎𝑖1. 𝑏1𝑗 + 𝑎𝑖2. 𝑏2𝑗 +⋯+ 𝑎𝑖𝑛. 𝑏𝑛𝑗



Matrix Chain Multiplication

𝑛 × 1 1 × 𝑛 𝑛 × 1

𝑛 × 1 𝑛 × 11 × 𝑛



Matrix Chain Multiplication

𝑛 × 1 1 × 𝑛 𝑛 × 1

𝑛 × 1 𝑛 × 11 × 𝑛



Matrix Chain Multiplication

𝑛 × 1 1 × 𝑛 𝑛 × 𝑛 𝑛 × 1𝑛 × 1

𝑛 × 1 𝑛 × 1 𝑛 × 1 1x11 × 𝑛



Matrix Chain Multiplication

𝑛 × 1 1 × 𝑛 𝑛 × 𝑛 𝑛 × 1 𝑛 × 1𝑛 × 1

𝑛 × 1 𝑛 × 1𝑛 × 1 𝑛 × 1 1x11 × 𝑛



Matrix Chain Multiplication

𝑛 × 1 1 × 𝑛 𝑛 × 𝑛 𝑛 × 1 𝑛 × 1𝑛 × 1

n2 n2 2n2

𝑛 × 1 𝑛 × 1𝑛 × 1 𝑛 × 1 1x11 × 𝑛



Matrix Chain Multiplication

𝑛 × 1 1 × 𝑛 𝑛 × 𝑛 𝑛 × 1 𝑛 × 1𝑛 × 1

n2 n2 2n2

𝑛 × 1 𝑛 × 1𝑛 × 1

n n 2n

𝑛 × 1 1x11 × 𝑛



Matrix Chain Multiplication

paranthesization

total cost

A1

axb
A2

bxc
A3

cxd
A4

dxe



Matrix Chain Multiplication

paranthesization

total cost

A1

axb
A2

bxc
A3

cxd
A4

dxe

A1 A2  A3 A4



Matrix Chain Multiplication

paranthesization

total cost

A1

axb
A2

bxc
A3

cxd
A4

dxe

A1 (A2 (A3 A4)))



Matrix Chain Multiplication

cde +

paranthesization

total cost

A1

axb
A2

bxc
A3

cxd
A4

dxe

A1 (A2 (A3 A4)))



Matrix Chain Multiplication

cde + bce +

paranthesization

total cost

A1

axb
A2

bxc
A3

cxd
A4

dxe

A1 (A2 (A3 A4))) = A1 (A2 B)



Matrix Chain Multiplication

cde + bce + abe

paranthesization

total cost

A1

axb
A2

bxc
A3

cxd
A4

dxe

A1 (A2 (A3 A4))) = A1 (A2 B) = A1 C 



Matrix Chain Multiplication

• define subproblems
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(last parenthesization)
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• construct recurrence relation

( Ai . . . Ak ) ( Ak+1 . . . Aj )

• focus on last move 
(last parenthesization)

• find best k minimizing 
the cost
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• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj-1

• construct recurrence relation

( Ai . . . Ak ) ( Ak+1 . . . Aj )

• focus on last move 
(last parenthesization)

• find best k minimizing 
the cost

• recursively continue 
on left and right  



Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj-1

• construct recurrence relation

( Ai . . . Ak ) ( Ak+1 . . . Aj )

• focus on last move 
(last parenthesization)

• find best k minimizing 
the cost

• recursively continue 
on left and right  

OPT(i,j) =min { OPT(i,k) + OPT(k+1,j) + 
cost of (Ai…Ak) (Ak+1…Aj) }

A1

axb
A2

bxc
A3

cxd
A4

dxe



Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj-1

• construct recurrence relation

( Ai . . . Ak ) ( Ak+1 . . . Aj )

• focus on last move 
(last parenthesization)

• find best k minimizing 
the cost

• recursively continue 
on left and right  

OPT(i,j) =min { OPT(i,k) + OPT(k+1,j) + 
cost of (Ai…Ak) (Ak+1…Aj) }

• dimensions of (A1A2A3A4) will be axe

A1

axb
A2

bxc
A3

cxd
A4

dxe



Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj-1

• construct recurrence relation

( Ai . . . Ak ) ( Ak+1 . . . Aj )

• focus on last move 
(last parenthesization)

• find best k minimizing 
the cost

• recursively continue 
on left and right  

OPT(i,j) =min { OPT(i,k) + OPT(k+1,j) + 
cost of (Ai…Ak) (Ak+1…Aj) }

• dimensions of (A1A2A3A4) will be axe

A1

axb
A2

bxc
A3

cxd
A4

dxe

• dimension of each matrix Ai : pixpi+1

• dimensions of (Ai…Ak) : pixpk+1



Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj-1

• construct recurrence relation

( Ai . . . Ak ) ( Ak+1 . . . Aj )

• focus on last move 
(last parenthesization)

• find best k minimizing 
the cost

• recursively continue 
on left and right  

OPT(i,j) =min { OPT(i,k) + OPT(k+1,j) + 
cost of (Ai…Ak) (Ak+1…Aj) }

• dimensions of (A1A2A3A4) will be axe

A1

axb
A2

bxc
A3

cxd
A4

dxe

• dimension of each matrix Ai : pixpi+1

• dimensions of (Ai…Ak) : pixpk+1

• cost of (Ai…Ak) (Ak+1…Aj) : pixpk+1xpj+1



Matrix Chain Multiplication

• define subproblems

OPT(i,j) : optimal parenthesization of Ai,…,Aj-1

• construct recurrence relation

( Ai . . . Ak ) ( Ak+1 . . . Aj )

• focus on last move 
(last parenthesization)

• find best k minimizing 
the cost

• recursively continue 
on left and right  

OPT(i,j) =min { OPT(i,k) + OPT(k+1,j) + 
cost of (Ai…Ak) (Ak+1…Aj) }

OPT(i,i) = 0 for all i



Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M 
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1 

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]



Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M 
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1 

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1

2

3

4

5

A1 ,   A2 ,   A3 ,   A4   ,   A5

4x5 ,  5x3 ,  3x6  ,  6x2  , 2x3



Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M 
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1 

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0

2 0

3 0

4 0

5 0

A1 ,   A2 ,   A3 ,   A4   ,   A5

4x5 ,  5x3 ,  3x6  ,  6x2  , 2x3



Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M 
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1 

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60

2 0

3 0

4 0

5 0

A1 ,   A2 ,   A3 ,   A4   ,   A5

4x5 ,  5x3 ,  3x6  ,  6x2  , 2x3

i = 1

j = 2
l = 2

OPT(1,2) = OPT(1,1) + OPT(2,2) + p1 p2 p3

OPT(1,2) = 60

k = 1

1



Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M 
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1 

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60

2 0 90

3 0

4 0

5 0

A1 ,   A2 ,   A3 ,   A4   ,   A5

4x5 ,  5x3 ,  3x6  ,  6x2  , 2x3

i = 2

j = 3
l = 2

OPT(2,3) = OPT(2,2) + OPT(3,3) + p2 p3 p4

OPT(2,3) = 90

k = 2

2

1



Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M 
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1 

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60

2 0 90

3 0 36

4 0

5 0

A1 ,   A2 ,   A3 ,   A4   ,   A5

4x5 ,  5x3 ,  3x6  ,  6x2  , 2x3

i = 3

j = 4
l = 2

OPT(3,4) = OPT(3,3) + OPT(4,4) + p3 p4 p5

OPT(3,4) = 36

k = 3

2

1

3



Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M 
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1 

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60

2 0 90

3 0 36

4 0 36

5 0

A1 ,   A2 ,   A3 ,   A4   ,   A5

4x5 ,  5x3 ,  3x6  ,  6x2  , 2x3

i = 4

j = 5
l = 2

OPT(4,5) = OPT(4,4) + OPT(5,5) + p4 p5 p6

OPT(4,5) = 36

k = 4

2

1

3

4



Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M 
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1 

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60

2 0 90

3 0 36

4 0 36

5 0

A1 ,   A2 ,   A3 ,   A4   ,   A5

4x5 ,  5x3 ,  3x6  ,  6x2  , 2x3

i = 1

j = 3
l = 3

OPT(1,3) = OPT(1,1) + OPT(2,3) + p1 p2 p4

OPT(1,3) = 90 + 120 = 210

k = 1

2

1

3

4



Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M 
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1 

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60

2 0 90

3 0 36

4 0 36

5 0

A1 ,   A2 ,   A3 ,   A4   ,   A5

4x5 ,  5x3 ,  3x6  ,  6x2  , 2x3

i = 1

j = 3
l = 3

OPT(1,3) = OPT(1,1) + OPT(2,3) + p1 p2 p4

OPT(1,3) = 90 + 120 = 210

k = 1

OPT(1,3) = OPT(1,2) + OPT(3,3) + p1 p3 p4

OPT(1,3) = 60 + 72 = 132

k = 2

2

1

3

4



Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M 
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1 

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60 132

2 0 90

3 0 36

4 0 36

5 0

A1 ,   A2 ,   A3 ,   A4   ,   A5

4x5 ,  5x3 ,  3x6  ,  6x2  , 2x3

i = 1

j = 3
l = 3

OPT(1,3) = OPT(1,1) + OPT(2,3) + p1 p2 p4

OPT(1,3) = 90 + 120 = 210

k = 1

OPT(1,3) = OPT(1,2) + OPT(3,3) + p1 p3 p4

OPT(1,3) = 60 + 72 = 132

k = 2

2

2

1

3

4



Matrix Chain Multiplication

input : A1,A2,...,An with
p1xp2, p2xp3,..., pnxpn+1

initialize a memory M 
for i=1 to n

M[i,i] = 0
for l=2 to n

for i=1 to n-l+1
j = i + l – 1
M[i,j] = ∞
for k=i to j-1 

q = M[i,k] + M[k+1,j] + pi-1 pk pj

if q < M[i,j]
M[i,j] = q

return M[1,n]

1 2 3 4 5

1 0 60 132 106 130

2 0 90 66 96

3 0 36 54

4 0 36

5 0

A1 ,   A2 ,   A3 ,   A4   ,   A5

4x5 ,  5x3 ,  3x6  ,  6x2  , 2x3

i = 1

j = 5
l = 5

2

2
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Subset Sum
• define subproblems

OPT(i,j) :  it is possible to find a subset of {a1,...,ai} such that
the sum is j   

• construct recurrence relation

Two cases

(1) if the subset contains ai, then continue with

OPT(i - 1, j – ai)

(2) if it doesn’t,, then continue with

OPT(i – 1, j) 

combine them with ‘OR’

Base cases
OPT(m,0) = TRUE     for all m
OPT(0,N) = FALSE   for all N
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characters.  

• you insert line breaks that partition these words into lines such that 
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• define subproblems

OPT(j) :  the cost of the optimal partition for the first j words

• construct recurrence relation

Base case
OPT(0) = 0

S[i,i] = L – ci for all i
S[i,j] = S[i,j-1] – (ci + 1)
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n books (𝒑𝟏, 𝒑𝟐,…, 𝒑𝒏) and k workers

• construct recurrence relation

n books

i books

𝑀 𝑛, 𝑘 = 𝑚𝑖𝑛𝑖=1
𝑛 max(𝑀 𝑖, 𝑘 − 1 , ෍

𝑗=𝑖+1

𝑛

𝑝𝑗)

optimum number of pages
of the largest share

𝑀 1, 𝑘 = 𝑝1

𝑀 𝑛, 1 =෍𝑝𝑖

Base cases



Dynamic Programming

• analyze structure of the optimal solution and define 
subproblems that need to be solved in order to get the 
optimal solution

• establish the relationship between the optimal solution and
those subproblems (construct the recurrence relation)

• compute the optimal values of subproblems, save them in a 
table (memoization), then compute the optimal values of 
larger subproblems, and eventually compute the optimal 
value of the original problem


