Dynamic Programming

Murat Osmanoglu

Dynamic Programming

- 'programming' here not refering software. The word itself older than computer. 'programming' means any tabular method to accomplish a task.

Dynamic Programming

- 'programming' here not refering software. The word itself older than computer. 'programming' means any tabular method to accomplish a task.
- introduced by Richard Bellman in 1949. He developed the method with Lester Ford to find the shortest path in a graph.

Dynamic Programming

- from "Eye of the Hurricane : an Autobiography" by Richard Bellman

Abstract

"An interesting question is, 'Where did the name, dynamic programming, come from?' The 1950 s were not good years for mathematical research. We had a very interesting gentleman in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word, research. I'm not using the term lightly; I'm using it precisely. His face would suffuse, he would turn red, and he would get violent if people used the term, research, in his presence. You can imagine how he felt, then, about the term, mathematical. The RAND Corporation was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what name, could I choose? In the first place I was interested in planning, in decision making, in thinking. But planning, is not a good word for various reasons. I decided therefore to use the word, 'programming.' I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying - I thought, let's kill two birds with one stone. Let's take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is it's impossible to use the word, dy- namic, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible. This, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities".

Dynamic Programming

- DP can be considered as brute force search all posibilities but do it in a smart way to get the optimal solution

Dynamic Programming

- DP can be considered as brute force search all posibilities but do it in a smart way to get the optimal solution

For what type of problems DP is useful?

Dynamic Programming

- DP can be considered as brute force search all posibilities but do it in a smart way to get the optimal solution

For what type of problems DP is useful?

the problems that can be broken into subproblems

Dynamic Programming

- DP can be considered as brute force search all posibilities but do it in a smart way to get the optimal solution

For what type of problems DP is useful?
the problems that can be broken into subproblems

Divide \& Conquer
Dynamic Programming

Dynamic Programming

- DP can be considered as brute force search all posibilities but do it in a smart way to get the optimal solution

For what type of problems DP is useful?

the problems that can be broken into subproblems

Divide \& Conquer Dynamic Programming

you deal with independent
subproblems

Dynamic Programming

- DP can be considered as brute force search all posibilities but do it in a smart way to get the optimal solution

For what type of problems DP is useful?

the problems that can be broken into subproblems

Divide \& Conquer
you deal with independent subproblems

Dynamic Programming
you deal with overlapping
subproblems

Stairs Climbing

Stairs Climbing

You take one step or two steps at a time.

Stairs Climbing

You take one step or two steps at a time. How many possible ways to climb n stairs?

Stairs Climbing

You take one step or two steps at a time. How many possible ways to climb n stairs?

$$
\begin{array}{llllll}
1 & 1 & 1 & \ldots & 1 & 1 \\
2 & 2 & 2 & \ldots & 2 & 2 \\
1 & 1 & 1 & \ldots & 1 & 2 \\
& & \vdots \\
& & & & \\
2 & 1 & 2 & \ldots & 1 & 2 \\
1 & 2 & 1 & \ldots & 2 & 1
\end{array}
$$

Stairs Climbing

You take one step or two steps at a time. How many possible ways to climb n stairs?

Stairs Climbing

$T(n)=\#$ of ways to climb n stairs

Stairs Climbing

$T(n)=\#$ of ways to climb n stairs
$T(n)=T(n-1)+T(n-2)$

Stairs Climbing

$T(n)=\#$ of ways to climb n stairs

$$
T(n)=T(n-1)+T(n-2)
$$

finding \# of $=$ solving this different ways recurrence relation

Stairs Climbing

$T(n)=\#$ of ways to climb n stairs

$$
T(n)=T(n-1)+T(n-2)
$$

finding \# of = solving this different ways recurrence relation

Fibonacci number

$$
T(n)=F(n)=\phi^{n}
$$

Stairs Climbing

$S C(n)$
if $n \leq 1$
return 1
else
return SC ($n-1$) $+S C(n-2)$

Stairs Climbing

Stairs Climbing

$S C(n)$
if $n \leq 1$ return 1
else
return SC (n-1) + SC ($n-2$)

In order to calculate $S C(4)$, the program makes 9 recursive calls; 5 for SC(3) + 3 for SC(2)

Stairs Climbing

$S C(n)$
if $n \leq 1$ return 1
else
return $S C(n-1)+S C(n-2)$

In order to calculate $S C(4)$, the program makes 9 recursive calls; 5 for SC(3) + 3 for SC(2)
\# of calls for $\operatorname{SC}(n)=$ \# of calls for $\operatorname{SC}(n-1)+\#$ of calls for $\operatorname{SC}(n-2)$ $\#$ of calls for $\operatorname{SC}(n)=F(n) \approx \phi^{n}$; nth Fibonacci number So the running time will be exponential $O\left(\phi^{n}\right)$

Stairs Climbing

- We deal with the overlapping subproblems

Stairs Climbing

- We deal with the overlapping subproblems
- Whenever computing subproblems, keep them in a table to avoid recomputation, and refer them whenever they are needed

Stairs Climbing

- We deal with the overlapping subproblems
- Whenever computing subproblems, keep them in a table to avoid recomputation, and refer them whenever they are needed

Stairs Climbing


```
SC (n)
initialize a memory M
if n\leq1
    return 1
if M contains n
    return M[n]
else
    A=SC(n-1)+SC(n-2)
    M[n] = A
    return A
```

- We deal with the overlapping subproblems
- Whenever computing subproblems, keep them in a table to avoid recomputation, and refer them whenever they are needed

Stairs Climbing

- We deal with the overlapping subproblems

```
SC (n)
    initialize a memory M
    if }n\leq
        return 1
if M contains n
        return M[n]
    else
    A=SC(n-1)+SC(n-2)
    M[n] = A
    return A
```

Top-Down

- Whenever computing subproblems, keep them in a table to avoid recomputation, and refer them whenever they are needed

Stairs Climbing

Can we come up with simpler program ?

Stairs Climbing

Can we come up with simpler program?

get rid of recursion
use a simple for loop

Stairs Climbing

Can we come up with simpler program ?
get rid of recursion
use a simple for loop

Stairs Climbing

SC (n)
initialize a memory M $M[0]=1$
$M[1]=1$
for ($i=2$ to n) $M[i]=M[i-1]+M[i-2]$ return $M[n]$

Can we come up with simpler program ?
get rid of recursion
use a simple for loop

Dynamic Programming

- analyze structure of the optimal solution and define subproblems that need to be solved in order to get the optimal solution

Dynamic Programming

- analyze structure of the optimal solution and define subproblems that need to be solved in order to get the optimal solution
- establish the relationship between the optimal solution and those subproblems (construct the recurrence relation)

Dynamic Programming

- analyze structure of the optimal solution and define subproblems that need to be solved in order to get the optimal solution
- establish the relationship between the optimal solution and those subproblems (construct the recurrence relation)
- compute the optimal values of subproblems, save them in a table (memoization), then compute the optimal values of larger subproblems, and eventually compute the optimal value of the original problem

Weighted Interval Scheduling

- given a set of intervals $\left(I_{1}, I_{2}, \ldots, I_{n}\right)$
- each interval I_{i} has a starting time s_{i}, a finishing time f_{i}, and a weight w_{i}
- your task is to find a subset of intervals (pairwise nonoverlapping) such that the total weight of intervals is maximized

Weighted Interval Scheduling

- given a set of intervals $\left(I_{1}, I_{2}, \ldots, I_{n}\right)$
- each interval I_{i} has a starting time s_{i}, a finishing time f_{i}, and a weight w_{i}
- your task is to find a subset of intervals (pairwise nonoverlapping) such that the total weight of intervals is maximized

Weighted Interval Scheduling

- given a set of intervals $\left(I_{1}, I_{2}, \ldots, I_{n}\right)$
- each interval I_{i} has a starting time s_{i}, a finishing time f_{i}, and a weight w_{i}
- your task is to find a subset of intervals (pairwise nonoverlapping) such that the total weight of intervals is maximized

Weighted Interval Scheduling

- first sort all the intervals according to their finishing time: $i_{1}, i_{2}, \ldots, i_{n}$ such that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$

Weighted Interval Scheduling

- first sort all the intervals according to their finishing time: $i_{1}, i_{2}, \ldots, i_{n}$ such that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$
- define subproblems

OPT (j) : value of the optimal solution for the first j intervals $1, \ldots, j$

Weighted Interval Scheduling

- first sort all the intervals according to their finishing time: $i_{1}, i_{2}, \ldots, i_{n}$ such that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$
- define subproblems

OPT (j) : value of the optimal solution for the first j intervals $1, \ldots, j$

- construct the recurrence relation

Weighted Interval Scheduling

- first sort all the intervals according to their finishing time: $i_{1}, i_{2}, \ldots, i_{n}$ such that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$
- define subproblems

> OPT (j) : value of the optimal solution for the first j intervals $1, \ldots, j$

- construct the recurrence relation

Weighted Interval Scheduling

- first sort all the intervals according to their finishing time: $i_{1}, i_{2}, \ldots, i_{n}$ such that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$
- define subproblems

OPT (j) : value of the optimal solution for the first j intervals $1, \ldots$, j

- construct the recurrence relation

Weighted Interval Scheduling

- first sort all the intervals according to their finishing time: $i_{1}, i_{2}, \ldots, i_{n}$ such that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$
- define subproblems

OPT (j) : value of the optimal solution for the first j intervals $1, \ldots$, j

- construct the recurrence relation

Two cases:
(1) either optimal solution does not include interval j, then continue with OPT (j-1)
(2) or optimal solution includes interval j , then continue with $w_{j}+$

Weighted Interval Scheduling

- first sort all the intervals according to their finishing time: $i_{1}, i_{2}, \ldots, i_{n}$ such that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$
- define subproblems

OPT (j) : value of the optimal solution for the first j intervals $1, \ldots$, j

- construct the recurrence relation

Weighted Interval Scheduling

- first sort all the intervals according to their finishing time: $i_{1}, i_{2}, \ldots, i_{n}$ such that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$
- define subproblems

OPT (j) : value of the optimal solution for the first j intervals $1, \ldots$, j

- construct the recurrence relation

Two cases:
(1) either optimal solution does not include interval j, then continue with OPT (j-1)
(2) or optimal solution includes interval j, then continue with $w_{j}+$ OPT $(p(j))$
$p(j)$: largest index i such that $i<j$ and $f_{i}<s_{j}$

Weighted Interval Scheduling

- first sort all the intervals according to their finishing time: $i_{1}, i_{2}, \ldots, i_{n}$ such that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$
- define subproblems

OPT (j) : value of the optimal solution for the first j intervals $1, \ldots$, j

- construct the recurrence relation

Two cases:
(1) either optimal solution does not include interval j, then continue with OPT (j-1)
(2) or optimal solution includes interval j, then continue with $w_{j}+$ OPT $(p(j))$

$$
O P T(j)=\max \left\{O P T(j-1), w_{j}+O P T(p(j))\right\}
$$

Weighted Interval Scheduling

OPT (n)
sort intervals according to
finishing time
if $n=0$
return 0
else
find $p(n)$
if OPT $(n-1) \geq w_{n}+\operatorname{OPT}(p(n))$ return OPT ($n-1$)
else
return $w_{n}+O P T(p(n))$

Weighted Interval Scheduling

OPT (n)
sort intervals according to finishing time
if $n=0$
return 0
else
find $p(n)$
if OPT $(n-1) \geq w_{n}+\operatorname{OPT}(p(n))$ return OPT ($n-1$)
else
return $w_{n}+O P T(p(n))$

Similar to stairs climbing, \# of calls here also $F(n) \approx \phi^{n}$

Weighted Interval Scheduling

OPT (n)
sort intervals according to finishing time
if $n=0$
return 0
else
find $p(n)$
if OPT $(n-1) \geq w_{n}+\operatorname{OPT}(p(n))$ return OPT ($n-1$)
else
return $w_{n}+O P T(p(n))$

Similar to stairs climbing, \# of calls here also $F(n) \approx \phi^{n}$

Weighted Interval Scheduling

OPT (n)
sort intervals according to finishing time
if $n=0$
return 0
else
find $p(n)$
if OPT $(n-1) \geq w_{n}+\operatorname{OPT}(p(n))$ return OPT ($n-1$)
else
return $w_{n}+$ OPT $(p(n))$

Similar to stairs climbing, \# of calls here also $F(n) \approx \phi^{n}$

Do Memoization

OPT (n)
sort intervals according
to finishing time initialize a memory M
compute $p(1), \ldots, p(n)$ $M[0]=0$
for ($i=1$ to n)

$$
M[i]=\max \left\{w_{i}+M[p(i)], M[i-1]\right\}
$$

Weighted Interval Scheduling

OPT (n)
sort intervals according to finishing time
if $n=0$
return 0
else
find $p(n)$
if OPT $(n-1) \geq w_{n}+\operatorname{OPT}(p(n))$ return OPT ($n-1$)
else
return $w_{n}+$ OPT $(p(n))$

Top-Down

Similar to stairs climbing, $\#$ of calls here also $F(n) \approx \phi^{n}$

Do Memoization

OPT (n)
sort intervals according
to finishing time
initialize a memory M
compute $p(1), \ldots, p(n)$
$M[0]=0$
for ($\mathrm{i}=1$ to n)

$$
M[i]=\max \left\{w_{i}+M[p(i)], M[i-1]\right\}
$$

Bottom-Up

Longest Common Subsequence

- given two sequence $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to both of them (doesn't need to be unique)
$x: A B C B D A B$
$y: B D C A B A$

Longest Common Subsequence

- given two sequence $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to both of them (doesn't need to be unique)
$x: A \underline{B} \underline{C} B D \underline{A} \underline{B}$
$\} \operatorname{LCS}(x, y)=B C A B$

Longest Common Subsequence

- given two sequence $\times[1 \ldots m]$ and $y[1 \ldots n]$, find a longes \dagger subsequence common to both of them (doesn't need to be unique)
$x: A \underline{B} \underline{C} B D \underline{A} \underline{B}$

these subsets don't need to be continuous

Longest Common Subsequence

Brute-Force

Longest Common Subsequence

Brute-Force

- check every subsequence of $x[1 . . \mathrm{m}]$ whether it is a subsequence of $y[1 \ldots n]$

Longest Common Subsequence

Brute-Force

- check every subsequence of $x[1 . . \mathrm{m}]$ whether it is a subsequence of $y[1 \ldots . . n]$
- each check takes $O(n)$ time

Longest Common Subsequence

Brute-Force

- check every subsequence of $x[1 \ldots \mathrm{~m}]$ whether it is a subsequence of y[1...n]
- each check takes $O(n)$ time
- 2^{m} subsequence of x (each bit-vector defines a subsequence).

Longest Common Subsequence

Brute-Force

- check every subsequence of $x[1 \ldots \mathrm{~m}]$ whether it is a subsequence of $y[1 . . . n]$
- each check takes $O(n)$ time
- 2^{m} subsequence of x (each bit-vector defines a subsequence).
- total running time will be $O\left(2^{m} . n\right)$

Longest Common Subsequence

Simplified Version

- rather than directly calculating LCS (x, y), calculate the length of $\operatorname{LCS}(x, y)(c[i, j]=|\operatorname{LCS}(x, y)|)$

Longest Common Subsequence

Simplified Version

- rather than directly calculating LCS (x, y), calculate the length of $\operatorname{LCS}(x, y)(c[i, j]=|\operatorname{LCS}(x, y)|)$
- define subproblems

Longest Common Subsequence

Simplified Version

- rather than directly calculating LCS (x, y), calculate the length of $\operatorname{LCS}(x, y)(c[i, j]=|\operatorname{LCS}(x, y)|)$
- define subproblems
consider the prefix $x[1 \ldots i]$ of x and the prefix $y[1 \ldots j]$ of y

Longest Common Subsequence

Simplified Version

- rather than directly calculating LCS (x, y), calculate the length of $\operatorname{LCS}(x, y)(c[i, j]=|\operatorname{LCS}(x, y)|)$
- define subproblems
consider the prefix $x[1 \ldots i]$ of x and the prefix $y[1 \ldots j]$ of y
$c[i, j]=|\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])|$: length of the longest common subsequence of the prefixes $x[1 \ldots i]$ and $y[1 \ldots j]$

Longest Common Subsequence

- construct recurrence relation

Longest Common Subsequence

- construct recurrence relation

Two cases:

Longest Common Subsequence

- construct recurrence relation

Two cases :
(1) if $x[i]=y[j]$, then continue with $c[i-1, j-1]+1$

Longest Common Subsequence

- construct recurrence relation

Two cases:
(1) if $x[i]=y[j]$, then continue with $c[i-1, j-1]+1$
(2) otherwise continue with $\max \{c[i, j-1], c[i-1, j]\}$

Longest Common Subsequence

- construct recurrence relation

Two cases :
(1) if $x[i]=y[j]$, then continue with $c[i-1, j-1]+1$
(2) otherwise continue with $\max \{c[i, j-1], c[i-1, j]\}$

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j] \\ \max \{c[i, j-1], c[i-1, j]\} & \text { otherwise }\end{cases}
$$

Longest Common Subsequence

```
LCS (x,y,n,m)
if i=0 and j=0
    return 0
if }x[n]=y[m
    c[n,m]=LCS(x,y,n-1,m-1)+1
else
    c[n,m]=max { LCS(x,y,n-1,m), LCS(x,y,n,m-1)}
return c[n,m]
```


Longest Common Subsequence

Let's check it for $m=6, n=7$

The height of the tree $m+n$,

Longest Common Subsequence

Let's check it for $m=6, n=7$

The height of the tree $m+n$, So the running time will be $O\left(2^{m+n}\right)$

Longest Common Subsequence

Let's check it for $m=6, n=7$

Longest Common Subsequence

Let's check it for $m=6, n=7$

Longest Common Subsequence

Let's check it for $m=6, n=7$

Longest Common Subsequence

Let's check it for $m=6, n=7$

How many different subproblems are there? (m.n)
Do Memoization

Longest Common Subsequence

LCS (x,y,n,m) (with Memoization)

initialize a memory M
$M[0,0]=0$
if $M[n, m]=$ null
if $x[n]=y[m]$ $M[n, m]=\operatorname{LCS}(x, y, n-1, m-1)+1$
else

$$
M[n, m]=\max \{\operatorname{LCS}(x, y, n-1, m), \operatorname{LCS}(x, y, n, m-1)\}
$$

return $M[n, m]$

Longest Common Subsequence

$\operatorname{LCS}(x, y, n, m)$ (with Memoization)

initialize a memory M
$M[0,0]=0$
running time: $O(m . n)$
space $: O(m . n)$
if $M[n, m]=n u l l$
if $x[n]=y[m]$
$M[n, m]=\operatorname{LCS}(x, y, n-1, m-1)+1$
else

$$
M[n, m]=\max \{\operatorname{LCS}(x, y, n-1, m), \operatorname{LCS}(x, y, n, m-1)\}
$$

return $M[n, m]$

Longest Common Subsequence

$\operatorname{LCS}(x, y, n, m)$ (with Memoization)

initialize a memory M
$M[0,0]=0$
if $M[n, m]=$ null
if $x[n]=y[m]$
$M[n, m]=\operatorname{LCS}(x, y, n-1, m-1)+1$
else

$$
M[n, m]=\max \{\operatorname{LCS}(x, y, n-1, m), \operatorname{LCS}(x, y, n, m-1)\}
$$

return $M[n, m]$

Top-Down

Longest Common Subsequence

```
Bottom-up
initialize a memory M
for i=0 to n
    M[i,0]=0
for i=1 to m
    M[0,i]=0
for i=1 to n
    for j=1 to m
        if x[i] = y[j]
            M[i,j] = M[i-1,j-1] + 1
        else
            M[i,j] = max { M[i-1,j],M[i,j-1]}
return M[n,m]
```


Longest Common Subsequence

```
Bottom-up
initialize a memory M
for i=0 to n
    M[i,0]=0
for i=1 to m
    M[0,i]=0
for i=1 to n
    for j=1 to m
        if x[i] = y[j]
        M[i,j] = M[i-1,j-1] + 1
        else
        M[i,j]=\operatorname{max}{M[i-1,j],M[i,j-1]}
return M[n,m]
```

		A	B	C	B	A
	0	0	0	0	0	0
B	0					
D	0					
C	0					
A	0					

Longest Common Subsequence

Bottom-up

initialize a memory M
for $\mathrm{i}=0$ to n
$M[i, 0]=0$
for $i=1$ to m
$M[0, i]=0$
for $\mathrm{i}=1$ to n
for $j=1$ to m
if $x[i]=y[j]$
$M[i, j]=M[i-1, j-1]+1$
else
$M[i, j]=\max \{M[i-1, j], M[i, j-1]\}$
return $M[n, m]$

Longest Common Subsequence

Bottom-up

initialize a memory M
for $\mathrm{i}=0$ to n
$M[i, 0]=0$
for $i=1$ to m
$M[0, i]=0$
for $\mathrm{i}=1$ to n
for $j=1$ to m
if $x[i]=y[j]$
$M[i, j]=M[i-1, j-1]+1$
else
$M[i, j]=\max \{M[i-1, j], M[i, j-1]\}$
return $M[n, m]$

Longest Common Subsequence

Bottom-up

initialize a memory M
for $\mathrm{i}=0$ to n
$M[i, 0]=0$
for $i=1$ to m
$M[0, i]=0$
for $\mathrm{i}=1$ to n
for $j=1$ to m
if $x[i]=y[j]$
$M[i, j]=M[i-1, j-1]+1$

else
$M[i, j]=\max \{M[i-1, j], M[i, j-1]\}$
return $M[n, m]$

Longest Common Subsequence

Bottom-up

initialize a memory M
for $\mathrm{i}=0$ to n
$M[i, 0]=0$
for $i=1$ to m
$M[0, i]=0$
for $\mathrm{i}=1$ to n
for $j=1$ to m
if $x[i]=y[j]$
$M[i, j]=M[i-1, j-1]+1$

else
$M[i, j]=\max \{M[i-1, j], M[i, j-1]\}$
return $M[n, m]$

Longest Common Subsequence

Bottom-up

initialize a memory M
for $\mathrm{i}=0$ to n
$M[i, 0]=0$
for $i=1$ to m
$M[0, i]=0$
for $\mathrm{i}=1$ to n
for $j=1$ to m
if $x[i]=y[j]$
$M[i, j]=M[i-1, j-1]+1$

else
$M[i, j]=\max \{M[i-1, j], M[i, j-1]\}$
return $M[n, m]$

Longest Common Subsequence

Bottom-up

initialize a memory M
for $\mathrm{i}=0$ to n
$M[i, 0]=0$
for $i=1$ to m
$M[0, i]=0$
for $\mathrm{i}=1$ to n
for $j=1$ to m
if $x[i]=y[j]$
$M[i, j]=M[i-1, j-1]+1$
else

$$
M[i, j]=\max \{M[i-1, j], M[i, j-1]\}
$$

return $M[n, m]$

Longest Common Subsequence

```
Bottom-up
initialize a memory M
for i=0 to n
    M[i,0]=0
for i=1 to m
    M[0,i]=0
for i=1 to n
    for j=1 to m
        if x[i] = y[j]
            M[i,j] = M[i-1,j-1] + 1
            else
                M[i,j] = max { M[i-1,j],M[i,j-1]}
return M[n,m]
```


Longest Common Subsequence

```
Bottom-up
initialize a memory M
for i=0 to n
    M[i,0]=0
for i=1 to m
    M[0,i]=0
for i=1 to n
    for j=1 to m
        if x[i] = y[j]
            M[i,j] = M[i-1,j-1] + 1
            else
                M[i,j] = max { M[i-1,j],M[i,j-1]}
return M[n,m]
```


Longest Common Subsequence


```
Bottom-up
```

Bottom-up
initialize a memory M
initialize a memory M
for i=0 to n
for i=0 to n
M[i,0]=0
M[i,0]=0
for i=1 to m
for i=1 to m
M[0,i]=0
M[0,i]=0
for i=1 to n
for i=1 to n
for j=1 to m
for j=1 to m
if x[i] = y[j]
if x[i] = y[j]
M[i,j] = M[i-1,j-1] + 1
M[i,j] = M[i-1,j-1] + 1
else
else
M[i,j] = max { M[i-1,j],M[i,j-1]}
M[i,j] = max { M[i-1,j],M[i,j-1]}
return M[n,m]

```
return M[n,m]
```


Longest Common Subsequence

Bottom-up

initialize a memory M
for $\mathrm{i}=0$ to n
$M[i, 0]=0$
for $i=1$ to m
$M[0, i]=0$
for $\mathrm{i}=1$ to n
for $j=1$ to m
if $x[i]=y[j]$
$M[i, j]=M[i-1, j-1]+1$

else
$M[i, j]=\max \{M[i-1, j], M[i, j-1]\}$
return $M[n, m]$

Longest Common Subsequence

```
Bottom-up
initialize a memory M
for i=0 to n
    M[i,0]=0
for i=1 to m
    M[0,i]=0
for i=1 to n
    for j=1 to m
        if x[i] = y[j]
            M[i,j] = M[i-1,j-1] + 1
            else
                M[i,j] = max { M[i-1,j],M[i,j-1]}
return M[n,m]
```


Longest Common Subsequence

```
Bottom-up
initialize a memory M
for i=0 to n
    M[i,0]=0
for i=1 to m
    M[0,i]=0
for i=1 to n
    for j=1 to m
        if x[i] = y[j]
            M[i,j] = M[i-1,j-1] + 1
        else
        M[i,j] = max { M[i-1,j],M[i,j-1]}
return M[n,m]
```


Longest Common Subsequence

```
Bottom-up
initialize a memory M
for i=0 to n
    M[i,0]=0
for i=1 to m
    M[0,i]=0
for i=1 to n
    for j=1 to m
        if x[i] = y[j]
            M[i,j] = M[i-1,j-1] + 1
            else
                M[i,j] = max { M[i-1,j],M[i,j-1]}
return M[n,m]
```


Longest Common Subsequence

$$
j=5
$$

```
Bottom-up
initialize a memory \(M\)
for \(\mathrm{i}=0\) to n
    \(M[i, 0]=0\)
for \(i=1\) to \(m\)
    \(M[0, i]=0\)
for \(\mathrm{i}=1\) to n
    for \(j=1\) to \(m\)
        if \(x[i]=y[j]\)
            \(M[i, j]=M[i-1, j-1]+1\)
        else
        \(M[i, j]=\max \{M[i-1, j], M[i, j-1]\}\)
return \(M[n, m]\)
```

		A	B	C	B	A
	0	0	0	0	0	0
B	0	0	1	1	1	1
D	0	0	1	1	1	1
C	0	0	1	2	2	2
A	0	1	1	2	2	3

We can reconstruct LCS by tracing backwards Whenever we have a diagonal, we have a match!

Longest Common Subsequence

$$
j=5
$$

```
Bottom-up
initialize a memory \(M\)
for \(\mathrm{i}=0\) to n
    \(M[i, 0]=0\)
for \(i=1\) to \(m\)
    \(M[0, i]=0\)
for \(\mathrm{i}=1\) to n
    for \(j=1\) to \(m\)
        if \(x[i]=y[j]\)
            \(M[i, j]=M[i-1, j-1]+1\)
        else
        \(M[i, j]=\max \{M[i-1, j], M[i, j-1]\}\)
return \(M[n, m]\)
```

		A	B	C	B	A
	0	0	0	0	0	0
B	0	0	1	1	1	1
D	0	0	1	1	1	1
C	0	0	1	2	2	2
A	0	1	1	2	2	3

We can reconstruct LCS by tracing backwards Whenever we have a diagonal, we have a match!

Longest Common Subsequence

$$
j=5
$$

```
Bottom-up
initialize a memory \(M\)
for \(\mathrm{i}=0\) to n
    \(M[i, 0]=0\)
for \(i=1\) to \(m\)
    \(M[0, i]=0\)
for \(\mathrm{i}=1\) to n
    for \(j=1\) to \(m\)
        if \(x[i]=y[j]\)
            \(M[i, j]=M[i-1, j-1]+1\)
        else
        \(M[i, j]=\max \{M[i-1, j], M[i, j-1]\}\)
return \(M[n, m]\)
```

		A	B	C	B	A
	0	0	0	0	0	0
B	0	0	1	1	1	1
D	0	0	1	1	1	1
C	0	0	1	2	2	2
A	0	1	1	2	2	3

We can reconstruct LCS by tracing backwards Whenever we have a diagonal, we have a match!

Longest Common Subsequence

$$
j=5
$$

```
Bottom-up
initialize a memory \(M\)
for \(\mathrm{i}=0\) to n
    \(M[i, 0]=0\)
for \(i=1\) to \(m\)
    \(M[0, i]=0\)
for \(\mathrm{i}=1\) to n
    for \(j=1\) to \(m\)
        if \(x[i]=y[j]\)
            \(M[i, j]=M[i-1, j-1]+1\)
        else
        \(M[i, j]=\max \{M[i-1, j], M[i, j-1]\}\)
return \(M[n, m]\)
```

		A	B	C	B	A
	0	0	0	0	0	0
B	0	0	1	1	1	1
D	0	0	1	1	1	1
C	0	0	1	2	2	2
A	0	1	1	2	2	3

We can reconstruct LCS by tracing backwards Whenever we have a diagonal, we have a match!

Longest Common Subsequence

$$
j=5
$$

Bottom-up

```
initialize a memory M
for i=0 to n
    M[i,0]=0
for i=1 to m
    M[0,i]=0
for i=1 to n
    for j=1 to m
        if x[i] = y[j]
            M[i,j]= M[i-1,j-1] + 1
        else
        M[i,j] = max { M[i-1,j],M[i,j-1]}
return M[n,m]
```

		A	B	C	B	A
	0	0	0	0	0	0
B	0	0	1	1	1	1
D	0	0	1	1	1	1
C	0	0	1	2	2	2
A	0	1	1	2	2	3

We can reconstruct LCS by tracing backwards Whenever we have a diagonal, we have a match!

Longest Common Subsequence

$$
j=5
$$

```
Bottom-up
initialize a memory \(M\)
for \(\mathrm{i}=0\) to n
    \(M[i, 0]=0\)
for \(i=1\) to \(m\)
    \(M[0, i]=0\)
for \(\mathrm{i}=1\) to n
    for \(j=1\) to \(m\)
        if \(x[i]=y[j]\)
            \(M[i, j]=M[i-1, j-1]+1\)
        else
        \(M[i, j]=\max \{M[i-1, j], M[i, j-1]\}\)
return \(M[n, m]\)
```

		A	B	C	B	A
	0	0	0	0	0	0
B	0	0	1	1	1	1
D	0	0	1	1	1	1
C	0	0	1	2	2	2
A	0	1	1	2	2	3

We can reconstruct LCS by tracing backwards Whenever we have a diagonal, we have a match!

Rod Cutting

- given a rod of length n with the prices p_{1}, \ldots, p_{n} where p_{i} is the price of a rod of length i, find an optimal way of cutting the given rod that maximizes the profit

Rod Cutting

- given a rod of length n with the prices p_{1}, \ldots, p_{n} where p_{i} is the price of a rod of length i, find an optimal way of cutting the given rod that maximizes the profit

length	1	2	3	4
price	1	5	8	9

Rod Cutting

- given a rod of length n with the prices p_{1}, \ldots, p_{n} where p_{i} is the price of a rod of length i, find an optimal way of cutting the given rod that maximizes the profit

length	1	2	3	4
price	1	5	8	9

Rod Cutting

- given a rod of length n with the prices p_{1}, \ldots, p_{n} where p_{i} is the price of a rod of length i, find an optimal way of cutting the given rod that maximizes the profit

Rod Cutting

- define subproblems

Rod Cutting

- define subproblems
$c(i)$: max profit for the first length i part

Rod Cutting

- define subproblems

$c(i):$ max profit for the first length i part

- construct recurrence relation

Rod Cutting

- define subproblems

$c(i):$ max profit for the first length i part

- construct recurrence relation
\square

$$
c(i)=
$$

Rod Cutting

- define subproblems

$c(i)$: max profit for the first length i part

- construct recurrence relation

- focus on last cutting
$c(i)=$

Rod Cutting

- define subproblems

$c(i)$: max profit for the first length i part

- construct recurrence relation

- focus on last cutting
- find best j maximizing the profit

$$
c(i)=\max \left\{p_{j}+\right.
$$

Rod Cutting

- define subproblems

$c(i):$ max profit for the first length i part

- construct recurrence relation

$$
c(i)=\max \left\{p_{j}+c(i-j)\right\}
$$

- focus on last cutting
- find best j maximizing the profit
- recursively continue on the remaining part

Rod Cutting

```
input:(n; pr , p 2, .., pn )
initialize a memory M
M[0] = 0
for i=1 to n
    M[i] = - \infty
    for j=1 to i
        q=M[i-j]+ pj
        if q > M[i]
            M[i] =q
return M[n]
```


Rod Cutting

$$
\begin{aligned}
& \text { input: }\left(n ; p_{1}, p_{2}, \ldots, p_{n}\right) \\
& \text { initialize a memory } M \\
& M[0]=0 \\
& \text { for } i=1 \text { to } n \\
& M[i]=-\infty \\
& \text { for } j=1 \text { to } i \\
& q=M[i-j]+p_{j} \\
& \text { if } q>M[i] \\
& M[i]=q \\
& \text { return } M[n]
\end{aligned}
$$

Rod Cutting

Rod Cutting

Rod Cutting

input: (n; p_{1}, p_{2}, \ldots			j =				
initialize a memory M			1	2	3	4	5
$M[0]=0$	5	p_{i}	1	5	8	9	10
for $\mathrm{i}=1$ to n $M[i]=-\infty$		M $[$ [$]$	1				
for $\mathrm{j}=1$ to i							
$\begin{aligned} q & =M[i-j]+p_{j} \\ \text { if } q & >M[i] \end{aligned}$			$i=$				
$M[i]=q$	$M[1]=1$						
return M[n]		$\begin{aligned} & q=M[0]+p_{1} \\ & q=1 \end{aligned}$					

Rod Cutting

Rod Cutting

Rod Cutting

Rod Cutting

$$
\begin{aligned}
& \text { input: }\left(n ; p_{1}, p_{2}, \ldots, p_{n}\right) \\
& \text { initialize a memory } M \\
& \mathrm{M}[\mathrm{O}]=0 \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \\
& M[i]=-\infty \\
& \text { for } \mathrm{j}=1 \text { to } \mathrm{i} \\
& q=M[i-j]+p_{j} \\
& \text { if } q>M[i] \\
& M[i]=q \\
& \text { return } M[n]
\end{aligned}
$$

Rod Cutting

$$
\begin{aligned}
& \text { input: }\left(n ; p_{1}, p_{2}, \ldots, p_{n}\right) \\
& \text { initialize a memory } M \\
& \mathrm{M}[\mathrm{O}]=0 \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \\
& M[i]=-\infty \\
& \text { for } \mathrm{j}=1 \text { to } \mathrm{i} \\
& q=M[i-j]+p_{j} \\
& \text { if } q>M[i] \\
& M[i]=q \\
& \text { return } M[n] \\
& j=2 \\
& \uparrow_{i=2} \\
& M[2]=5 \\
& q=M[1]+p_{1} \\
& q=2 \\
& q=M[0]+p_{2} \\
& q=5
\end{aligned}
$$

Rod Cutting

$$
\begin{aligned}
& \text { input: }\left(n ; p_{1}, p_{2}, \ldots, p_{n}\right) \\
& \text { initialize a memory } M \\
& \mathrm{M}[\mathrm{O}]=0 \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \\
& M[i]=-\infty \\
& \text { for } \mathrm{j}=1 \text { to } \mathrm{i} \\
& q=M[i-j]+p_{j} \\
& \text { if } q>M[i] \\
& M[i]=q \\
& \text { return } M[n] \\
& j=2 \\
& { }_{i=2} \\
& M[2]=5 \\
& \begin{array}{l}
q=M[1]+p_{1} \\
q=2
\end{array} \\
& q=M[0]+p_{2} \\
& q=5
\end{aligned}
$$

Rod Cutting

Rod Cutting

input : $\left(n ; p_{1}, p_{2}, \ldots\right.$,	,$\left.p_{n}\right)$		$=1$				
initialize a memory M			1	2	3	4	5
$M[0]=0$	5	p_{i}	1	5	8	9	10
for $\mathrm{i}=1$ to n $M[i]=-\infty$		M[i]	1	5^{2}			
for $\mathrm{j}=1$ to i							
$\begin{aligned} & q=M[i-j]+p_{j} \\ & \text { if } q>M[i] \end{aligned}$					=		
$M[i]=q$	$M[3]=-\infty$						
return M[n]		$\begin{aligned} & q=M[2]+p_{1} \\ & q=6 \end{aligned}$					

Rod Cutting

Rod Cutting

$$
\begin{aligned}
& \text { input: }\left(n ; p_{1}, p_{2}, \ldots, p_{n}\right) \\
& \text { initialize a memory } M \\
& \mathrm{M}[\mathrm{O}]=0 \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \\
& M[i]=-\infty \\
& \text { for } \mathrm{j}=1 \text { to } \mathrm{i} \\
& q=M[i-j]+p_{j} \\
& \text { if } q>M[i] \\
& M[i]=q \quad M[3]=6 \\
& \text { return } M[n] \\
& q=M[2]+p_{1} \\
& q=6 \\
& q=M[1]+p_{2} \\
& q=6
\end{aligned}
$$

Rod Cutting

$j=3$					
	1	2	3	4	5
p_{i}	1	5	8	9	10
$M[i]$	1	5^{2}			

$$
\begin{aligned}
& q=M[2]+p_{1} \\
& q=6 \\
& q=M[1]+p_{2} \\
& q=6 \\
& q=M[0]+p_{3} \\
& q=M \\
& q=8
\end{aligned}
$$

Rod Cutting

$$
\begin{aligned}
& \text { for } j=1 \text { to } i \\
& q=M[i-j]+p_{j} \\
& \text { if } q>M[i] \\
& M[i]=q \quad M[3]=8
\end{aligned}
$$

return $M[n]$

$j=3$					
	1	2	3	4	5
p_{i}	1	5	8	9	10
$M[i]$	1	5^{2}			

$$
\begin{aligned}
& q=M[2]+p_{1} \\
& q=6 \\
& q=M[1]+p_{2} \\
& q=6 \\
& q=6 \\
& q=M[0]+p_{3} \\
& q=8
\end{aligned}
$$

Rod Cutting

$$
\begin{aligned}
& q=M[1]+p_{2} \\
& q=6 \\
& q=M[0]+p_{3} \\
& q=8
\end{aligned}
$$

Rod Cutting

Rod Cutting

Rod Cutting

input: $\left(n ; p_{1}, p_{2}, \ldots, p_{n}\right)$		$=1$				
initialize a memory M		1	2	3	4	5
$M[0]=05$	p_{i}	1	5	8	9	10
for $\mathrm{i}=1$ to n $M[i]=-\infty$	$M[i]$	1	5^{2}	8^{3}		
for $\mathrm{j}=1$ to i						
$\begin{aligned} & q=M[i-j]+p_{j} \\ & \text { if } q>M[i] \end{aligned}$					=	
$M[i]=q \quad M[4]=9$						
return $M[n]$	$\begin{aligned} & q=M[3]+p_{1} \\ & q=9 \end{aligned}$					

Rod Cutting

Rod Cutting

Rod Cutting

$$
\begin{aligned}
& \text { for } j=1 \text { to } i \\
& q=M[i-j]+p_{j} \\
& \text { if } q>M[i] \\
& M[i]=q
\end{aligned} \quad M[4]=10
$$

$j=3$					
	1	2	3	4	5
P_{i}	1	5	8	9	10
$M[i]$	1	5^{2}	8^{3}		

$$
\begin{array}{ll}
q=M[3]+p_{1} & q=M[1]+p_{3} \\
q=9 & q=9 \\
q=M[2]+p_{2} & \\
q=10 &
\end{array}
$$

Rod Cutting

```
input:(n; p1, p , ..., pn)
initialize a memory M
M[0] = 0
for i=1 to n
    M[i] =-\infty
    for j=1 to i
        q=M[i-j]+ pj
        if q>M[i]
                M[i]=q M[4]=10
return M[n]
```

	$j=4$				
	1	2	3	4	5
p_{i}	1	5	8	9	10
$M[i]$	1	5^{2}	8^{3}		

$$
\begin{array}{ll}
q=M[3]+p_{1} & q=M[1]+p_{3} \\
q=9 & q=9 \\
q=M[2]+p_{2} & q=M[0]+p_{4} \\
q=10 & q=9
\end{array}
$$

Rod Cutting

```
input:(n; p1, p , ..., pn)
initialize a memory M
M[0] = 0
for i=1 to n
    M[i] =- \infty
    for j=1 to i
        q=M[i-j]+ pj
        if q>M[i]
                M[i]=q M[4]=10
return M[n]
```

	$j=4$				
	1	2	3	\downarrow	5
p_{i}	1	5	8	9	10
$M[i]$	1	5^{2}	8^{3}	10^{2}	
				\uparrow	
				$i=4$	

$$
\begin{array}{ll}
q=M[3]+p_{1} & q=M[1]+p_{3} \\
q=9 & q=9 \\
q=M[2]+p_{2} & q=M[0]+p_{4} \\
q=10 & q=9
\end{array}
$$

Rod Cutting

Rod Cutting

input : $\left(n ; p_{1}, p_{2}, \ldots, p_{n}\right)$		$=1$				
initialize a memory M		1	2	3	4	5
$M[0]=0 \quad 5$	p_{i}	1	5	8	9	10
for $\mathrm{i}=1$ to n $M[i]=-\infty$ for $\mathrm{j}=1$ to i	M[i]	1	5^{2}	8^{3}	10^{2}	+
$\begin{aligned} & q=M[i-j]+p_{j} \\ & \text { if } q>M[i] \end{aligned}$						$i=5$
$M[i]=q \quad M[5]=-\infty$						
return $M[n]$	$\begin{aligned} & q=M[4]+p_{1} \\ & q=11 \end{aligned}$					

Rod Cutting

input : $\left(n ; p_{1}, p_{2}, \ldots, p_{n}\right)$		$=1$				
initialize a memory M		1	2	3	4	5
$M[0]=0 \quad 5$	p_{i}	1	5	8	9	10
for $\mathrm{i}=1$ to n $M[i]=-\infty$ for $\mathrm{j}=1$ to i	$M[i]$	1	5^{2}	8^{3}	10^{2}	\uparrow
$\begin{aligned} & q=M[i-j]+p_{j} \\ & \text { if } q>M[i] \end{aligned}$						$i=5$
$M[i]=q \quad M[5]=11$						
return $M[n]$	$\begin{aligned} q & =M[4]+p_{1} \\ q & =11 \end{aligned}$					

Rod Cutting

$$
\begin{aligned}
& \text { input: }\left(n ; p_{1}, p_{2}, \ldots, p_{n}\right) \\
& \text { initialize a memory } M \\
& \mathrm{M}[\mathrm{O}]=0 \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \\
& M[i]=-\infty \\
& \text { for } \mathrm{j}=1 \text { to } \mathrm{i} \\
& q=M[i-j]+p_{j} \\
& \text { if } q>M[i] \\
& M[i]=q \quad M[5]=11 \\
& \text { return } M[n] \\
& q=M[4]+p_{1} \\
& q=11 \\
& q=M[3]+p_{2} \\
& q=13
\end{aligned}
$$

Rod Cutting

$$
\begin{aligned}
& \text { input: }\left(n ; p_{1}, p_{2}, \ldots, p_{n}\right) \\
& \text { initialize a memory } M \\
& \mathrm{M}[\mathrm{O}]=0 \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \\
& M[i]=-\infty \\
& \text { for } \mathrm{j}=1 \text { to } \mathrm{i} \\
& q=M[i-j]+p_{j} \\
& \text { if } q>M[i] \\
& M[i]=q \quad M[5]=13 \\
& \text { return } M[n] \\
& q=M[4]+p_{1} \\
& q=11 \\
& q=M[3]+p_{2} \\
& q=13
\end{aligned}
$$

Rod Cutting

$$
\begin{aligned}
& \text { input: }\left(n ; p_{1}, p_{2}, \ldots, p_{n}\right) \\
& \text { initialize a memory } M \\
& \mathrm{M}[\mathrm{O}]=0 \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \\
& M[i]=-\infty \\
& \text { for } \mathrm{j}=1 \text { to } \mathrm{i} \\
& q=M[i-j]+p_{j} \\
& \text { if } q>M[i] \\
& M[i]=q \quad M[5]=13 \\
& \text { return } M[n] \\
& q=M[4]+p_{1} \\
& q=11 \\
& q=M[3]+p_{2} \\
& q=13 \\
& q=M[2]+p_{3} \\
& q=13
\end{aligned}
$$

Rod Cutting

```
input:(n; p1, p , ..., pn)
initialize a memory M
M[0] = 0
for i=1 to n
    M[i] = - \infty
    for j=1 to i
        q=M[i-j]+ pj
        if q>M[i]
                M[i]=q}M[5]=1
return M[n]
```

	$j=4$				
	1	2	3	4	5
p_{i}	1	5	8	9	10
$M[i]$	1	5^{2}	8^{3}	10^{2}	

$$
i=5
$$

$$
\begin{array}{ll}
q=M[4]+p_{1} & q=M[1]+p_{4} \\
q=11 & q=10
\end{array}
$$

$$
q=M[3]+p_{2}
$$

$$
q=13
$$

$$
q=M[2]+p_{3}
$$

$$
q=13
$$

Rod Cutting

Rod Cutting

Rod Cutting

Matrix Chain Multiplication

- given bunch of matrices A_{0}, \ldots, A_{n-1}, find an optimal parenthesization that minimizes the cost of multiplication

Matrix Chain Multiplication

- given bunch of matrices A_{0}, \ldots, A_{n-1}, find an optimal parenthesization that minimizes the cost of multiplication

$$
\begin{gathered}
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right) \cdot\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 k} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n k}
\end{array}\right)=\left(\begin{array}{ccc}
c_{11} & \cdots & c_{1 k} \\
\vdots & \ddots & \vdots \\
c_{m 1} & \cdots & c_{m k}
\end{array}\right) \\
c_{i j}=
\end{gathered}
$$

Matrix Chain Multiplication

- given bunch of matrices A_{0}, \ldots, A_{n-1}, find an optimal parenthesization that minimizes the cost of multiplication

$$
\left.\begin{array}{c}
\left(\begin{array} { c c c }
{ a _ { 1 1 } } & { \cdots } & { a _ { 1 n } } \\
{ \begin{array} { c c c c }
{ a _ { i 1 } } & { a _ { i 2 } } & { \cdots } & { a _ { i n } } \\
{ a _ { m 1 } } & { \cdots } & { a _ { m n } }
\end{array}) }
\end{array} \cdot \left(\begin{array}{c}
b_{11} \\
\vdots \\
b_{n 1} \\
c_{i j}= \\
\vdots \\
\cdot \\
b_{n j}
\end{array}\right.\right. \\
b_{n k}
\end{array}\right)=\left(\begin{array}{ccc}
b_{1 j} \\
b_{2 j} \\
b_{11} & \cdots & c_{1 k} \\
\vdots & \ddots & \vdots \\
c_{m 1} & \cdots & c_{m k}
\end{array}\right)
$$

Matrix Chain Multiplication

- given bunch of matrices A_{0}, \ldots, A_{n-1}, find an optimal parenthesization that minimizes the cost of multiplication

$$
\begin{gathered}
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
a_{i 1} & a_{i 2} & \ldots \\
a_{m 1} & \cdots & a_{i n}
\end{array}\right) \cdot\left(\begin{array}{cc}
b_{11} \\
\vdots \\
b_{n 1} & \begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
\vdots \\
b_{n j}
\end{array} \\
b_{1 k} & \vdots \\
b_{n k}
\end{array}\right)=\left(\begin{array}{ccc}
c_{11} & \cdots & c_{1 k} \\
\vdots & \ddots & \vdots \\
c_{m 1} & \cdots & c_{m k}
\end{array}\right) \\
c_{i j}=a_{i 1} \cdot b_{1 j}+a_{i 2} \cdot b_{2 j}+\cdots+a_{i n} \cdot b_{n j}
\end{gathered}
$$

Matrix Chain Multiplication

- given bunch of matrices A_{0}, \ldots, A_{n-1}, find an optimal parenthesization that minimizes the cost of multiplication

$$
\begin{gathered}
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right) \cdot\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 k} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n k}
\end{array}\right)=\left(\begin{array}{ccc}
c_{11} & \cdots & c_{1 k} \\
\vdots & \ddots & \vdots \\
c_{m 1} & \cdots & c_{m k}
\end{array}\right) \\
c_{i j}=a_{i 1} \cdot b_{1 j}+a_{i 2} \cdot b_{2 j}+\cdots+a_{i n} \cdot b_{n j}
\end{gathered}
$$

- for each $c_{i j}, n$ multiplications and $n-1$ additions; $O(n)$ operations
- m.k entries in C, thus total O (m.n.k) operations (simply m.n.k) operations.

Matrix Chain Multiplication

Matrix Chain Multiplication

paranthesization
total cost

Matrix Chain Multiplication

paranthesization $\quad A_{1} \quad A_{2} \quad A_{3} A_{4}$
total cost

Matrix Chain Multiplication

paranthesization $\left.A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right)$
total cost

Matrix Chain Multiplication

paranthesization $\left.A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right)$
total cost
cde +

Matrix Chain Multiplication

paranthesization $\left.\quad A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right)=A_{1}\left(A_{2} B\right)$
total cost
code + bice +

Matrix Chain Multiplication

paranthesization $\left.\quad A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right)=A_{1}\left(A_{2} B\right)=A_{1} C$
total cost cde + bce + abe

Matrix Chain Multiplication

- define subproblems

Matrix Chain Multiplication

- define subproblems

OPT (i, j) : optimal parenthesization of A_{i}, \ldots, A_{j}

Matrix Chain Multiplication

- define subproblems

$$
\text { OPT }(i, j) \text { : optimal parenthesization of } A_{i}, \ldots, A_{j}
$$

- construct recurrence relation

Matrix Chain Multiplication

- define subproblems

$$
\text { OPT }(i, j) \text { : optimal parenthesization of } A_{i}, \ldots, A_{j}
$$

- construct recurrence relation

$$
\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{j}\right)
$$

- focus on last move (last parenthesization)

Matrix Chain Multiplication

- define subproblems

$$
\text { OPT }(i, j) \text { : optimal parenthesization of } A_{i}, \ldots, A_{j-1}
$$

- construct recurrence relation

$$
\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{j}\right)
$$

- focus on last move (last parenthesization)
- find best k minimizing the cost

Matrix Chain Multiplication

- define subproblems

$$
\text { OPT }(i, j) \text { : optimal parenthesization of } A_{i}, \ldots, A_{j-1}
$$

- construct recurrence relation

$$
\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{j}\right)
$$

- focus on last move (last parenthesization)
- find best k minimizing the cost
- recursively continue on left and right

Matrix Chain Multiplication

- define subproblems

OPT(i,j) : optimal parent

- construct recurrence relation

$$
\left(A_{i} \ldots A_{k}\right)\left(A_{k+1}\right.
$$

- focus on last move (last parenthesization)
- find best k minimizing the cost
- recursively continue on left and right

$$
\begin{aligned}
\operatorname{OPT}(i, j)=\min \{ & \text { OPT }(i, k)+\operatorname{OPT}(k+1, j)+ \\
& \left.\operatorname{cost} \text { of }\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{j}\right)\right\}
\end{aligned}
$$

Matrix Chain Multiplication

- define subproblems

OPT(i,j) : optimal parentr $\underbrace{$\begin{tabular}{c}
A_{1}

$a \times b$

}$_{\text {dimensions of }\left(A_{1} A_{2} A_{3} A_{4}\right) \text { will be axe }}$

A_{2}
$b x c$

A_{3}
$c \times d$

A_{4}
$d x e$

\hline
\end{tabular}

- construct recurrence relation

$$
\left(A_{i} \ldots A_{k}\right)\left(A_{k+1}\right.
$$

- focus on last move (last parenthesization)
- find best k minimizing the cost
- recursively continue on left and right

$$
\begin{aligned}
O P T(i, j)=\min \{ & \operatorname{OPT}(i, k)+\operatorname{OPT}(k+1, j)+ \\
& \left.\operatorname{cost} \text { of }\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{j}\right)\right\}
\end{aligned}
$$

Matrix Chain Multiplication

- define subproblems

- dimensions of $\left(A_{1} A_{2} A_{3} A_{4}\right)$ will be axe
- construct recurrence relation
- dimension of each matrix $A_{i}: p_{i} \times p_{i+1}$

$$
\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \cdot \text { dimensions of }\left(A_{i} \ldots A_{k}\right): p_{i} \times p_{k+1}\right.
$$

- focus on last move (last parenthesization)
- find best k minimizing the cost
- recursively continue on left and right

$$
\begin{aligned}
O P T(i, j)=\min \{ & O P T(i, k)+\operatorname{OPT}(k+1, j)+ \\
& \left.\operatorname{cost} \text { of }\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{j}\right)\right\}
\end{aligned}
$$

Matrix Chain Multiplication

- define subproblems

$$
\text { OPT }(i, j) \text { : optimal parenth }
$$

A_{1}	A_{2}	A_{3}	A_{4}
$a \times b$	$b x c$	$c x d$	$d x e$

- dimensions of $\left(A_{1} A_{2} A_{3} A_{4}\right)$ will be axe
- construct recurrence relation

$$
\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \cdot \operatorname{dimensions~of~}\left(A_{i} \ldots A_{k}\right): p_{i} \times p_{k+1}\right.
$$

- focus on last move (last parenthesization)
- find best k minimizing the cost
- recursively continue on left and right

$$
\begin{aligned}
O P T(i, j)=\min \{ & O P T(i, k)+O P T(k+1, j)+ \\
& \left.\operatorname{cost} \text { of }\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{j}\right)\right\}
\end{aligned}
$$

Matrix Chain Multiplication

- define subproblems

$$
\text { OPT }(i, j) \text { : optimal parenthesization of } A_{i}, \ldots, A_{j-1}
$$

- construct recurrence relation

$$
\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{j}\right)
$$

- focus on last move (last parenthesization)
- find best k minimizing the cost
- recursively continue on left and right

$$
\begin{aligned}
\operatorname{OPT}(i, j)=\min \{ & \{P T(i, k)+O P T(k+1, j)+ \\
& \left.\operatorname{cost} \text { of }\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{j}\right)\right\}
\end{aligned}
$$

$\operatorname{OPT}(i, i)=0$ for all i

Matrix Chain Multiplication

```
input: }\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{}\mathrm{ with
    p
initialize a memory M
for i=1 to n
    M[i,i] = 0
forl=2 to n
    for i=1 to n-l+1
    j=i+l-1
    M[i,j]=\infty
    for k=i to j-1
            q=M[i,k]+M[k+1,j]+ pi-1 pk pj
            if q<M[i,j]
            M[i,j] = q
return M[1,n]
```


Matrix Chain Multiplication

```
input : A }\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{}\mathrm{ with
        p
```

initialize a memory M
for $\mathrm{i}=1$ to n
$M[i, i]=0$
for $1=2$ to n
for $i=1$ to $n-1+1$
$j=i+1-1$
$M[i, j]=\infty$
for $k=i$ to $j-1$
$q=M[i, k]+M[k+1, j]+p_{i-1} p_{k} p_{j}$
if $q<M[i, j]$
$M[i, j]=q$
return $M[1, n]$
$A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ $4 \times 5,5 \times 3,3 \times 6,6 \times 2,2 \times 3$

Matrix Chain Multiplication

```
input : A }\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{}\mathrm{ with
    p
```

initialize a memory M
for $i=1$ to n
$M[i, i]=0$
for $1=2$ to n
for $\mathrm{i}=1$ to $\mathrm{n}-\mathrm{l}+1$
$j=i+1-1$
$M[i, j]=\infty$
for $k=i$ to $j-1$
$q=M[i, k]+M[k+1, j]+p_{i-1} p_{k} p_{j}$
if $q<M[i, j]$
$M[i, j]=q$
return $M[1, n]$
$A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ $4 \times 5,5 \times 3,3 \times 6,6 \times 2,2 \times 3$

	1	2	3	4	5
1	0				
2		0			
3			0		
4				0	
5					0

Matrix Chain Multiplication

$$
\begin{align*}
& \text { input : } A_{1}, A_{2}, \ldots, A_{n} \text { with } \\
& p_{1} \times p_{2}, p_{2} \times p_{3}, \ldots, p_{n} \times p_{n+1} \\
& \text { initialize a memory } M \\
& 4 \times 5,5 \times 3,3 x 6,6 x 2,2 x 3 \\
& \operatorname{OPT}(1,2)=\operatorname{OPT}(1,1)+\operatorname{OPT}(2,2)+p_{1} p_{2} p_{3} \\
& \operatorname{OPT}(1,2)=60
\end{align*}
$$

Matrix Chain Multiplication

$$
\begin{aligned}
& A_{1}, A_{2}, A_{3}, A_{4}, A_{5} \\
& 4 \times 5,5 \times 3, \\
& 3 \times 6, \\
& 6 \times 2
\end{aligned}, 2 \times 3
$$

$$
\begin{aligned}
& 4 \times 5,5 \times 3,3 \times 6,6 \times 2,2 \times 3 \\
& \text { input : } A_{1}, A_{2}, \ldots, A_{n} \text { with } \\
& p_{1} \times p_{2}, p_{2} \times p_{3}, \ldots, p_{n} \times p_{n+1} \\
& \text { initialize a memory } M
\end{aligned}
$$

Matrix Chain Multiplication

$$
A_{1}, A_{2}, A_{3}, A_{4}, A_{5}
$$

$$
\begin{aligned}
& \text { input : } A_{1}, A_{2}, \ldots, A_{n} \text { with } \\
& p_{1} \times p_{2}, p_{2} \times p_{3}, \ldots, p_{n} \times p_{n+1} \\
& 4 \times 5,5 \times 3,3 x 6,6 x 2,2 x 3 \\
& I=2 \\
& \text { initialize a memory } M
\end{aligned}
$$

Matrix Chain Multiplication

$$
\begin{aligned}
& A_{1}, \\
& 4 \times 5, \\
& 4 \times 3, \\
& \hline
\end{aligned}, \frac{A_{3}}{3}, \frac{A_{4},}{}, A_{5}
$$

$$
\begin{aligned}
& \text { input: } A_{1}, A_{2}, \ldots, A_{n} \text { with } \\
& p_{1} \times p_{2}, p_{2} \times p_{3}, \ldots, p_{n} \times p_{n+1} \\
& 4 \times 5,5 \times 3,3 x 6,6 x 2,2 \times 3 \\
& \text { initialize a memory } M
\end{aligned}
$$

Matrix Chain Multiplication

$$
A_{1}, A_{2}, A_{3}, A_{4}, A_{5}
$$

$$
\begin{aligned}
& \text { input : } A_{1}, A_{2}, \ldots, A_{n} \text { with } \\
& p_{1} \times p_{2}, p_{2} \times p_{3}, \ldots, p_{n} \times p_{n+1} \\
& \text { initialize a memory } M \\
& 4 \times 5,5 \times 3,3 x 6,6 x 2,2 x 3 \\
& I=3 \\
& \mathrm{k}=1 \\
& j=3 \\
& \operatorname{OPT}(1,3)=\operatorname{OPT}(1,1)+\operatorname{OPT}(2,3)+p_{1} p_{2} p_{4} \\
& \operatorname{OPT}(1,3)=90+120=210
\end{aligned}
$$

Matrix Chain Multiplication

$$
\begin{aligned}
& \text { input : } A_{1}, A_{2}, \ldots, A_{n} \text { with } \\
& p_{1} \times p_{2}, p_{2} \times p_{3}, \ldots, p_{n} \times p_{n+1} \\
& \text { initialize a memory } M
\end{aligned}
$$

 \(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\)

Matrix Chain Multiplication

$$
\begin{aligned}
& \text { input : } A_{1}, A_{2}, \ldots, A_{n} \text { with } \\
& p_{1} \times p_{2}, p_{2} \times p_{3}, \ldots, p_{n} \times p_{n+1} \\
& \text { initialize a memory } M
\end{aligned}
$$

 \(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\)

Matrix Chain Multiplication

```
input: }\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{}\mathrm{ with
    p
initialize a memory M
for i=1 to n
    M[i,i] = 0
forl=2 to n
    for i=1 to n-l+1
    j=i+l-1
    M[i,j]=\infty
    for k=i to j-1
        q=M[i,k]+M[k+1,j]+ pi-1 pk pj
        if q<M[i,j]
            M[i,j]=q
return M[1,n]
```


Matrix Chain Multiplication

$$
A_{1}, A_{2}, A_{3}, A_{4}, A_{5}
$$

$$
\begin{aligned}
& \text { input : } A_{1}, A_{2}, \ldots, A_{n} \text { with } \\
& p_{1} \times p_{2}, p_{2} \times p_{3}, \ldots, p_{n} \times p_{n+1} \\
& 4 \times 5,5 \times 3,3 x 6,6 x 2,2 x 3 \\
& I=5 \\
& \text { initialize a memory } M \\
& A_{1} \cdot A_{2} \cdot A_{3} \cdot A_{4} \cdot A_{5}
\end{aligned}
$$

Matrix Chain Multiplication

$$
\begin{align*}
& \text { input : } A_{1}, A_{2}, \ldots, A_{n} \text { with } \\
& p_{1} \times p_{2}, p_{2} \times p_{3}, \ldots, p_{n} \times p_{n+1} \\
& 4 \times 5,5 \times 3,3 x 6,6 x 2,2 x 3 \\
& A_{1} \cdot A_{2} \cdot A_{3} \cdot A_{4} \cdot A_{5} \\
& k=4 \rightarrow \operatorname{OPT}(1,4) \text { and } \operatorname{OPT}(5,5)
\end{align*}
$$

Matrix Chain Multiplication

$$
\begin{aligned}
& \text { input : } A_{1}, A_{2}, \ldots, A_{n} \text { with } \\
& p_{1} \times p_{2}, p_{2} \times p_{3}, \ldots, p_{n} \times p_{n+1} \\
& \left(A_{1} \cdot A_{2} \cdot A_{3} \cdot A_{4}\right) \cdot A_{5} \\
& k=4 \rightarrow \operatorname{OPT}(1,4) \text { and } \operatorname{OPT}(5,5)
\end{aligned}
$$

Matrix Chain Multiplication

```
input : A }\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{}\mathrm{ with
    p
initialize a memory M
for i=1 to n
    M[i,i] = 0
forl=2 to n
    for i=1 to n-l+1
    j =i + | - 1
        M[i,j]=\infty
        for k=i to j-1
            q=M[i,k]+M[k+1,j]+ pi-1 pk pj
        if q<M[i,j]
            M[i,j] = q
return M[1,n]
\[
\begin{aligned}
& \left(A_{1} \cdot A_{2} \cdot A_{3} \cdot A_{4}\right) \cdot A_{5} \\
k=4 & \rightarrow \\
& \operatorname{OPTT}(1,4) \text { and } \operatorname{OPT}(5,5) \\
k=1 & \rightarrow \quad \operatorname{OPT}(1,1) \text { and } \operatorname{OPT}(2,4)
\end{aligned}
\]
```


Matrix Chain Multiplication

$$
A_{1}, A_{2}, A_{3}, A_{4}, A_{5}
$$

$$
\begin{align*}
& \text { input : } A_{1}, A_{2}, \ldots, A_{n} \text { with } \\
& p_{1} \times p_{2}, p_{2} \times p_{3}, \ldots, p_{n} \times p_{n+1} \\
& 4 \times 5,5 \times 3,3 x 6,6 x 2,2 x 3 \\
& \left(A_{1} \cdot\left(A_{2} \cdot A_{3} \cdot A_{4}\right)\right) . A_{5} \\
& k=4 \rightarrow \operatorname{OPT}(1,4) \text { and } \operatorname{OPT}(5,5) \\
& k=1 \rightarrow \operatorname{OPT}(1,1) \text { and } \operatorname{OPT}(2,4)
\end{align*}
$$

Matrix Chain Multiplication

$$
\begin{aligned}
& \text { input : } A_{1}, A_{2}, \ldots, A_{n} \text { with } \\
& p_{1} \times p_{2}, p_{2} \times p_{3}, \ldots, p_{n} \times p_{n+1} \\
& \left(A_{1} \cdot\left(A_{2} \cdot A_{3} \cdot A_{4}\right)\right) \cdot A_{5} \\
& \mathrm{k}=4 \rightarrow \operatorname{OPT}(1,4) \text { and } \operatorname{OPT}(5,5) \\
& \mathrm{k}=1 \rightarrow \operatorname{OPT}(1,1) \text { and } \operatorname{OPT}(2,4) \\
& \mathrm{k}=2 \rightarrow \operatorname{OPT}(2,2) \text { and } \operatorname{OPT}(3,4)
\end{aligned}
$$

Matrix Chain Multiplication

```
input : A }\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{}\mathrm{ with
    p
initialize a memory M
for i=1 to n
    M[i,i] = 0
forl=2 to n
    for i=1 to n-l+1
    j=i+l-1
        M[i,j]=\infty
        for k=i to j-1
            q=M[i,k]+M[k+1,j]+ pi-1 pk p
        if q<M[i,j]
            M[i,j]=q
return M[1,n] \(4 \times 5,5 \times 3,3 x 6,6 x 2,2 x 3\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & 1 & 2 & 3 & 4 & 5 \\
\hline \(i=1 \longrightarrow\) & 1 & 0 & \({ }^{1} 60\) & 132 & 1106 & :130 \\
\hline & 2 & & 0 & 90 & 66 & 46 \\
\hline & 3 & & & 0 & 36 & 54 \\
\hline & 4 & & & & 0 & 36 \\
\hline & 5 & & & & & 0 \\
\hline
\end{tabular}
\[
\begin{aligned}
&\left(A_{1} \cdot\left(A_{2} \cdot\left(A_{3} \cdot A_{4}\right)\right)\right) \cdot A_{5} \\
& k=4 \rightarrow \operatorname{OPT}(1,4) \text { and } \operatorname{OPT}(5,5) \\
& k=1 \rightarrow \operatorname{OPT}(1,1) \text { and } \operatorname{OPT}(2,4) \\
& k=2 \rightarrow \rightarrow \operatorname{OPT}(2,2) \text { and } \operatorname{OPT}(3,4)
\end{aligned}
\]
```


Subset Sum

- given a set of M positive integers $A=\left\{a_{1}, a_{2}, \ldots, a_{M}\right\}$, a predefined number N, find out whether it is possible to find a subset of A such that the sum of the elements in this subset is N

Subset Sum

- given a set of M positive integers $A=\left\{a_{1}, a_{2}, \ldots, a_{M}\right\}$, a predefined number N, find out whether it is possible to find a subset of A such that the sum of the elements in this subset is N

$$
A=\{1,4,12,20,9\} \text { and } N=14
$$

Subset Sum

- given a set of M positive integers $A=\left\{a_{1}, a_{2}, \ldots, a_{M}\right\}$, a predefined number N, find out whether it is possible to find a subset of A such that the sum of the elements in this subset is N

$$
A=\{1,4,12,20,9\} \text { and } N=14
$$

for the subset $\{1,4,9\}$, the sum is $1+4+9=14$

Subset Sum

- given a set of M positive integers $A=\left\{a_{1}, a_{2}, \ldots, a_{M}\right\}$, a predefined number N, find out whether it is possible to find a subset of A such that the sum of the elements in this subset is N
$A=\{1,4,12,20,9\}$ and $N=14$
for the subset $\{1,4,9\}$, the sum is $1+4+9=14$
your program should output true for this input.

Subset Sum

- define subproblems

Subset Sum

- define subproblems
$\operatorname{OPT}(\mathrm{i}, \mathrm{j})$: it is possible to find a subset of $\left\{a_{1}, \ldots, a_{i}\right\}$ such that the sum is j

Subset Sum

- define subproblems

$$
\begin{aligned}
& \text { OPT }(i, j): \text { it is possible to find a subset of }\left\{a_{1}, \ldots, a_{i}\right\} \text { such that } \\
& \text { the sum is } j
\end{aligned}
$$

- construct recurrence relation

Two cases

Subset Sum

- define subproblems

$$
\begin{aligned}
& \text { OPT }(i, j) \text { : it is possible to find a subset of }\left\{a_{1}, \ldots, a_{i}\right\} \text { such that } \\
& \text { the sum is } j
\end{aligned}
$$

- construct recurrence relation

Two cases
(1)
(2)

Subset Sum

- define subproblems

$$
\begin{aligned}
& \text { OPT }(i, j) \text { : it is possible to find a subset of }\left\{a_{1}, \ldots, a_{i}\right\} \text { such that } \\
& \text { the sum is } j
\end{aligned}
$$

- construct recurrence relation

Two cases
(1) if the subset contains a_{i}, then continue with

$$
\operatorname{OPT}\left(i-1, j-a_{i}\right)
$$

(2)

Subset Sum

- define subproblems

$$
\begin{aligned}
& \text { OPT }(i, j) \text { : it is possible to find a subset of }\left\{a_{1}, \ldots, a_{i}\right\} \text { such that } \\
& \text { the sum is } j
\end{aligned}
$$

- construct recurrence relation

Two cases
(1) if the subset contains a_{i}, then continue with

$$
\operatorname{OPT}\left(i-1, j-a_{i}\right)
$$

(2) if it doesn't, then continue with

$$
\operatorname{OPT}(i-1, j)
$$

Subset Sum

- define subproblems

$$
\begin{aligned}
& \text { OPT }(i, j) \text { : it is possible to find a subset of }\left\{a_{1}, \ldots, a_{i}\right\} \text { such that } \\
& \text { the sum is } j
\end{aligned}
$$

- construct recurrence relation

Two cases
(1) if the subset contains a_{i}, then continue with

$$
\operatorname{OPT}\left(i-1, j-a_{i}\right)
$$

(2) if it doesn't, then continue with

$$
\text { OPT }(i-1, j)
$$

Subset Sum

- define subproblems

$$
\begin{aligned}
& \text { OPT }(i, j) \text { : it is possible to find a subset of }\left\{a_{1}, \ldots, a_{i}\right\} \text { such that } \\
& \text { the sum is } j
\end{aligned}
$$

- construct recurrence relation

Two cases
(1) if the subset contains a_{i}, then continue with

$$
\operatorname{OPT}\left(i-1, j-a_{i}\right)
$$

(2) if it doesn't, then continue with

$$
\operatorname{OPT}(i-1, j)
$$

$$
\begin{aligned}
& \text { Base cases } \\
& \begin{array}{ll}
\text { OPT }(m, 0)=\text { TRUE } & \text { for all } m \\
\operatorname{OPT}(0, N)=\text { FALSE for all } N
\end{array}
\end{aligned}
$$

Partition into Lines

- given a sequence of N words $w_{1}, w_{2}, \ldots, w_{N}$ where each w_{i} contains c_{i} characters.
- you insert line breaks that partition these words into lines such that the total number of characters in each line is at mos $\dagger L$
(you also have to put one space between each pair of words to separate them)

Partition into Lines

- given a sequence of N words $w_{1}, w_{2}, \ldots, w_{N}$ where each w_{i} contains c_{i} characters.
- you insert line breaks that partition these words into lines such that the total number of characters in each line is at most L
(you also have to put one space between each pair of words to separate them)
- the slack of a line containing c characters is defined to be $L-c$

Partition into Lines

- given a sequence of N words $w_{1}, w_{2}, \ldots, w_{N}$ where each w_{i} contains c_{i} characters.
- you insert line breaks that partition these words into lines such that the total number of characters in each line is at most L
(you also have to put one space between each pair of words to separate them)
- the slack of a line containing c characters is defined to be L-c
- Your task is to find a partition such that the sum of the squares of the slacks of all lines is minimized.

Partition into Lines

- given a sequence of N words $w_{1}, w_{2}, \ldots, w_{N}$ where each w_{i} contains c_{i} characters.
- you insert line breaks that partition these words into lines such that the total number of characters in each line is at most L
(you also have to put one space between each pair of words to separate them)
- the slack of a line containing c characters is defined to be L-c
- Your task is to find a partition such that the sum of the squares of the slacks of all lines is minimized.
\{computer, music, discrete, linear\}, $\{8,5,8,6\}, L=18$

Partition into Lines

- given a sequence of N words $w_{1}, w_{2}, \ldots, w_{N}$ where each w_{i} contains c_{i} characters.
- you insert line breaks that partition these words into lines such that the total number of characters in each line is at most L
(you also have to put one space between each pair of words to separate them)
- the slack of a line containing c characters is defined to be L-c
- Your task is to find a partition such that the sum of the squares of the slacks of all lines is minimized.
\{computer, music, discrete, linear\}, $\{8,5,8,6\}, L=18$
computer
music
discrete
linear

Partition into Lines

- given a sequence of N words $w_{1}, w_{2}, \ldots, w_{N}$ where each w_{i} contains c_{i} characters.
- you insert line breaks that partition these words into lines such that the total number of characters in each line is at most L
(you also have to put one space between each pair of words to separate them)
- the slack of a line containing c characters is defined to be L-c
- Your task is to find a partition such that the sum of the squares of the slacks of all lines is minimized.
\{computer, music, discrete, linear\}, $\{8,5,8,6\}, L=18$
computer 18-8
music 18-5
discrete 18-8
linear 18-6

Partition into Lines

- given a sequence of N words $w_{1}, w_{2}, \ldots, w_{N}$ where each w_{i} contains c_{i} characters.
- you insert line breaks that partition these words into lines such that the total number of characters in each line is at most L
(you also have to put one space between each pair of words to separate them)
- the slack of a line containing c characters is defined to be L-c
- Your task is to find a partition such that the sum of the squares of the slacks of all lines is minimized.
\{computer, music, discrete, linear\}, $\{8,5,8,6\}, L=18$
computer 18-8
music 18-5
discrete 18-8
linear 18-6
$100+169+100+144=513$

Partition into Lines

- given a sequence of N words $w_{1}, w_{2}, \ldots, w_{N}$ where each w_{i} contains c_{i} characters.
- you insert line breaks that partition these words into lines such that the total number of characters in each line is at most L
(you also have to put one space between each pair of words to separate them)
- the slack of a line containing c characters is defined to be L-c
- Your task is to find a partition such that the sum of the squares of the slacks of all lines is minimized.
\{computer, music, discrete, linear\}, $\{8,5,8,6\}, L=18$
computer 18-8
music $18-5$
discrete 18-8
linear 18-6
$100+169+100+144=513$
computer music discrete linear

Partition into Lines

- given a sequence of N words $w_{1}, w_{2}, \ldots, w_{N}$ where each w_{i} contains c_{i} characters.
- you insert line breaks that partition these words into lines such that the total number of characters in each line is at most L
(you also have to put one space between each pair of words to separate them)
- the slack of a line containing c characters is defined to be L-c
- Your task is to find a partition such that the sum of the squares of the slacks of all lines is minimized.
$\{$ computer, music, discrete, linear\}, $\{8,5,8,6\}, L=18$
computer 18-8
music $18-5$
discrete 18-8
linear 18-6
$100+169+100+144=513$
computer music 18-14
discrete linear 18-15

Partition into Lines

- given a sequence of N words $w_{1}, w_{2}, \ldots, w_{N}$ where each w_{i} contains c_{i} characters.
- you insert line breaks that partition these words into lines such that the total number of characters in each line is at most L
(you also have to put one space between each pair of words to separate them)
- the slack of a line containing c characters is defined to be L-c
- Your task is to find a partition such that the sum of the squares of the slacks of all lines is minimized.
$\{$ computer, music, discrete, linear\}, $\{8,5,8,6\}, L=18$
computer 18-8
music $18-5$
discrete 18-8
linear 18-6
$100+169+100+144=513$
computer music 18-14
discrete linear 18-15
$16+9=25$

Partition into Lines

- define subproblems

Partition into Lines

- define subproblems
$\operatorname{OPT}(\mathrm{j})$: the cost of the optimal partition for the first j words

Partition into Lines

- define subproblems
$\operatorname{OPT}(\mathrm{j})$: the cost of the optimal partition for the first j words
- construct recurrence relation

Partition into Lines

- define subproblems

$$
\operatorname{OPT}(j) \text { : the cost of the optimal partition for the first } j \text { words }
$$

- construct recurrence relation

$$
w_{1} w_{2} \ldots w_{i-1} w_{i} \ldots w_{j}
$$

Partition into Lines

- define subproblems

$$
\text { OPT }(j) \text { : the cost of the optimal partition for the first } j \text { words }
$$

- construct recurrence relation

$$
w_{1} w_{2} \ldots w_{i-1} w_{i} \ldots w_{j} \longrightarrow \begin{aligned}
& w_{1} w_{2} \ldots w_{i-1} \\
& w_{i} \ldots w_{j}
\end{aligned}
$$

Partition into Lines

- define subproblems

$$
\text { OPT(j): the cost of the optimal partition for the first } \mathrm{j} \text { words }
$$

- construct recurrence relation

$$
w_{1} w_{2} \ldots w_{i-1} w_{i} \ldots w_{j} \longrightarrow \begin{aligned}
& w_{1} w_{2} \ldots w_{i-1} \\
& w_{i} \ldots w_{j}
\end{aligned}
$$

$$
O P T(j)=\min \left\{O P T(i-1)+S[i, j]^{2}\right\} \text { where } S[i, j] \geq 0
$$

Partition into Lines

- define subproblems

$$
\text { OPT(j): the cost of the optimal partition for the first } j \text { words }
$$

- construct recurrence relation

$$
w_{1} w_{2} \ldots w_{i-1} w_{i} \ldots w_{j} \longrightarrow \begin{aligned}
& w_{1} w_{2} \ldots w_{i-1} \\
& w_{i} \ldots w_{j}
\end{aligned}
$$

$O P T(j)=\min \left\{O P T(i-1)+S[i, j]^{2}\right\}$ where $S[i, j] \geq 0$

Partition into Lines

- define subproblems

$$
\text { OPT }(j) \text { : the cost of the optimal partition for the first } j \text { words }
$$

- construct recurrence relation

$$
w_{1} w_{2} \ldots w_{i-1} w_{i} \ldots w_{j} \longrightarrow \begin{aligned}
& w_{1} w_{2} \ldots w_{i-1} \\
& w_{i} \ldots w_{j}
\end{aligned}
$$

$$
O P T(j)=\min \left\{O P T(i-1)+S[i, j]^{2}\right\} \text { where } S[i, j] \geq 0
$$

Dividing the Books

- Suppose you given a shelf of books, and your job is to divide them among k workers so that they scan the books to find some codes. You can divide the shelf into k regions and assign each region to a worker. (The books ordered according to the number of pages)

Dividing the Books

- Suppose you given a shelf of books, and your job is to divide them among k workers so that they scan the books to find some codes. You can divide the shelf into k regions and assign each region to a worker. (The books ordered according to the number of pages)
What will be the fairest way to divide the book among k workers?

Dividing the Books

- Suppose you given a shelf of books, and your job is to divide them among k workers so that they scan the books to find some codes. You can divide the shelf into k regions and assign each region to a worker. (The books ordered according to the number of pages)
What will be the fairest way to divide the book among k workers?
(the total number of pages each worker gets will be close to each other)

9 books and 3 workers

Dividing the Books

- Suppose you given a shelf of books, and your job is to divide them among k workers so that they scan the books to find some codes. You can divide the shelf into k regions and assign each region to a worker. (The books ordered according to the number of pages)
What will be the fairest way to divide the book among k workers?
(the total number of pages each worker gets will be close to each other)

9 books and 3 workers

Dividing the Books

- Suppose you given a shelf of books, and your job is to divide them among k workers so that they scan the books to find some codes. You can divide the shelf into k regions and assign each region to a worker. (The books ordered according to the number of pages)
What will be the fairest way to divide the book among k workers?
(the total number of pages each worker gets will be close to each other)

9 books and 3 workers

Dividing the Books

- Suppose you given a shelf of books, and your job is to divide them among k workers so that they scan the books to find some codes. You can divide the shelf into k regions and assign each region to a worker. (The books ordered according to the number of pages)
What will be the fairest way to divide the book among k workers?
(the total number of pages each worker gets will be close to each other)

9 books and 3 workers

Dividing the Books

- Suppose you given a shelf of books, and your job is to divide them among k workers so that they scan the books to find some codes. You can divide the shelf into k regions and assign each region to a worker. (The books ordered according to the number of pages)
What will be the fairest way to divide the book among k workers?
(the total number of pages each worker gets will be close to each other)

9 books and 3 workers

Dividing the Books

- Suppose you given a shelf of books, and your job is to divide them among k workers so that they scan the books to find some codes. You can divide the shelf into k regions and assign each region to a worker. (The books ordered according to the number of pages)
What will be the fairest way to divide the book among k workers?
(the total number of pages each worker gets will be close to each other)

9 books and 3 workers

Dividing the Books

- Suppose you given a shelf of books, and your job is to divide them among k workers so that they scan the books to find some codes. You can divide the shelf into k regions and assign each region to a worker. (The books ordered according to the number of pages)
What will be the fairest way to divide the book among k workers?
(the total number of pages each worker gets will be close to each other)

9 books and 3 workers

Dividing the Books

n books ($p_{1}, p_{2}, \ldots, p_{n}$) and k workers

- construct recurrence relation

$$
M[n, k]=
$$

Dividing the Books

n books ($p_{1}, p_{2}, \ldots, p_{n}$) and k workers

- construct recurrence relation

$M[n, k]=$
optimum number of pages of the largest share

Dividing the Books

n books ($p_{1}, p_{2}, \ldots, p_{n}$) and k workers

- construct recurrence relation

Dividing the Books

n books ($p_{1}, p_{2}, \ldots, p_{n}$) and k workers

- construct recurrence relation

Dividing the Books

n books ($p_{1}, p_{2}, \ldots, p_{n}$) and k workers

- construct recurrence relation

Dynamic Programming

- analyze structure of the optimal solution and define subproblems that need to be solved in order to get the optimal solution
- establish the relationship between the optimal solution and those subproblems (construct the recurrence relation)
- compute the optimal values of subproblems, save them in a table (memoization), then compute the optimal values of larger subproblems, and eventually compute the optimal value of the original problem

