Greedy Algorithms

Murat Osmanoglu

- given a set of intervals $(I_1, I_2, ..., I_n)$
- each interval I_i has a starting time s_i , a finishing time f_i
- your task is to find the largest subset of mutually non-overlapping intervals

- given a set of intervals $(I_1, I_2, ..., I_n)$
- each interval I_i has a starting time s_i , a finishing time f_i
- your task is to find the largest subset of mutually non-overlapping intervals
 - Suppose there are n meetings requests for a meeting room.
 - Each meeting i has a starting time \mathbf{s}_i and an ending time $\mathbf{t}_i.$
 - We have a constraint : no two meetings can not be scheduled at same time.
 - Our goal is to schedule as many meetings as possible

- given a set of intervals $(I_1, I_2, ..., I_n)$
- each interval I_i has a starting time s_i , a finishing time f_i
- your task is to find the largest subset of mutually non-overlapping intervals

- given a set of intervals $(I_1, I_2, ..., I_n)$
- each interval I_i has a starting time s_i , a finishing time f_i
- your task is to find the largest subset of mutually non-overlapping intervals

Dynamic Programming Solution

Dynamic Programming Solution

Can we get a simpler solution?

• solve the problem in myopic fashion

(don't pay attention the global situaton - don't consider all possible solutions)

make desicion at each step based on improving local state

(use greedy approach - pick the one available to you at the moment based on some fixed and simple priority rules)

- choose the first interval as the one having the earliest start time
- remove all intervals not compatible with the chosen one

- choose the first interval as the one having the earliest start time
- remove all intervals not compatible with the chosen one

- choose the first interval as the shortest one
- remove all intervals not compatible with the chosen one

- choose the first interval as the shortest one
- remove all intervals not compatible with the chosen one

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one


```
<u>input</u> : n interval (I_1, ..., I_n) together
with their start time and finish time
```

```
--sort intervals according to their finish time (f_1 \le f_2 \le ... \le f_n)
--initialize an empty set S
```

```
for (i=1 to n)
if interval I_i is compatible with S
S = S \cup \{I_i\}
return S
```

<u>Theorem</u> (Greedy-choice property): The interval having earliest finish time (first interval) will be part of some optimal solution set. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

<u>Theorem</u> (Greedy-choice property): The interval having earliest finish time (first interval) will be part of some optimal solution set. (Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not contain the first interval I_1 .

<u>Theorem</u> (Greedy-choice property): The interval having earliest finish time (first interval) will be part of some optimal solution set. (Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not contain the first interval I_1 .

Let I_i^* be the interval in S having earliest finish time.

<u>Theorem</u> (Greedy-choice property): The interval having earliest finish time (first interval) will be part of some optimal solution set. (Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not contain the first interval I_1 .

Let I_i^* be the interval in S having earliest finish time.

Since I_1 has the earliest finish time for all, $f_1 \leq f_i$.

<u>Theorem</u> (Greedy-choice property): The interval having earliest finish time (first interval) will be part of some optimal solution set. (Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not contain the first interval I_1 .

Let I_i^* be the interval in S having earliest finish time.

Since I_1 has the earliest finish time for all, $f_1 \leq f_i$.

 $S^* = S - \{ I_i^* \} \cup \{ I_1 \}$ such that $|S^*| = |S|$

<u>Theorem</u> (Greedy-choice property): The interval having earliest finish time (first interval) will be part of some optimal solution set. (Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not contain the first interval I_1 .

Let I_i^* be the interval in S having earliest finish time.

Since I_1 has the earliest finish time for all, $f_1 \leq f_i$.

$$S^* = S - \{ I_i^* \} \cup \{ I_1 \}$$
 such that $|S^*| = |S|$

This is a contradiction!

Greedy Algorithms

- solve the problem by breaking it a sequence of subproblems
- make the best local choice among all feasible one available on that moment (one choice at a time)
 - your choice does not depend on any future choices or any past choices you have made
- prove that the Greedy Choice Property satisfies. A sequence of locally optimal choices yields a global optimal solution

<u>Cashier's Problem</u>

- given a certain amount of money, M cents, and a set of denominations of coins c_1 , ... , c_m
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

<u>Cashier's Problem</u>

- given a certain amount of money, M cents, and a set of denominations of coins c_1 , ... , c_m
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

<u>147 cents</u>

(25,10,5,1)

Cashier's Problem

- given a certain amount of money, M cents, and a set of denominations of coins c_1 , ... , c_m
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

<u>147 cents</u>

(25,10,5,1)
- given a certain amount of money, M cents, and a set of denominations of coins c_1 , ... , c_m
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

- given a certain amount of money, M cents, and a set of denominations of coins c_1 , ... , c_m
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

- given a certain amount of money, M cents, and a set of denominations of coins c_1 , ... , c_m
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

- given a certain amount of money, M cents, and a set of denominations of coins c_1 , ... , c_m
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

- given a certain amount of money, M cents, and a set of denominations of coins c_1 , ... , c_m
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

- given a certain amount of money, M cents, and a set of denominations of coins c_1 , ... , c_m
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)


```
<u>input</u> : an amount of money M
a set of denominations (c<sub>1</sub>, ... , c<sub>n</sub>)
```

```
sort denominations

c_1 \ge ... \ge c_n

totalw = M

j=1

k=0

while (j \le n)

if (c_j \le totalw )

totalw = totalw - c_j

k = k +1

else

j = j +1

return k
```


<u>Theorem</u> (Greedy-choice property): Let (10, 5, 1) be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_j \leq M$. (Our greedy approach yields us an optimal solution) *Proof*

<u>Theorem</u> (Greedy-choice property): Let (10, 5, 1) be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_j \leq M$.

(Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume S is an optimal solution for M, and 10 \leq M. But S does not contain any 10.

<u>Theorem</u> (Greedy-choice property): Let (10, 5, 1) be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_j \leq M$.

(Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume S is an optimal solution for M, and 10 \leq M. But S does not contain any 10.

M = a.5 + b.1 (total a + b coins)

<u>Theorem</u> (Greedy-choice property): Let (10, 5, 1) be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_i \leq M$.

(Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume S is an optimal solution for M, and 10 \leq M. But S does not contain any 10.

$$M = a.5 + b.1$$
 (total $a + b$ coins)

M can be written as

$$M = a.5 + b.1 = 10 - 10 + a.5 + b.1$$

<u>Theorem</u> (Greedy-choice property): Let (10, 5, 1) be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_j \leq M$.

(Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume S is an optimal solution for M, and 10 \leq M. But S does not contain any 10.

$$M = a.5 + b.1$$
 (total $a + b$ coins)

M can be written as

$$M = a.5 + b.1 = 10 - 10 + a.5 + b.1$$
$$= 1.10 + (a - 2).5 + b.1$$

<u>Theorem</u> (Greedy-choice property): Let (10, 5, 1) be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_i \leq M$.

(Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume S is an optimal solution for M, and 10 \leq M. But S does not contain any 10.

$$M = a.5 + b.1$$
 (total $a + b$ coins)

M can be written as

$$M = a.5 + b.1 = 10 - 10 + a.5 + b.1$$

= 1.10 + (a - 2).5 + b.1 (total a + b - 1 coins)

<u>Theorem</u> (Greedy-choice property): Let (10, 5, 1) be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_i \leq M$.

(Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume S is an optimal solution for M, and 10 \leq M. But S does not contain any 10.

$$M = a.5 + b.1$$
 (total $a + b$ coins)

M can be written as

$$M = a.5 + b.1 = 10 - 10 + a.5 + b.1$$

= 1.10 + (a - 2).5 + b.1 (total a + b - 1 coins)

This is contradiction.

Will the Greedy Technique give an optimal solution for all denomination set?

M = 24

Will the Greedy Technique give an optimal solution for all denomination set?

use dynamic programming

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- you are allowed to get a fraction x_i of an item i that yields a profit $x_i.p_i$ where $0 \le x_i \le 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- you are allowed to get a fraction x_i of an item i that yields a profit $x_i p_i$ where $0 \le x_i \le 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

$$w_1=20$$

 $P_1=10$ $w_2=5$
 $p_2=5$ $w_1=15$
 $p_1=5$ $w_1=5$
 $p_1=15$ $M=25$ pearlgoldsilverdiamonds

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- you are allowed to get a fraction x_i of an item i that yields a profit $x_i.p_i$ where $0 \le x_i \le 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

$$w_1=20$$

 $P_1=10$ $w_2=5$
 $p_2=5$ $w_1=15$
 $p_1=5$ $w_1=5$
 $p_1=15$ pearlgoldsilverdiamonds $p_1/w_1=1/2$ $p_2/w_2=1$ $p_3/w_3=1/3$ $p_4/w_4=3$

M = 25

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- you are allowed to get a fraction x_i of an item i that yields a profit $x_i.p_i$ where $0 \le x_i \le 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

$$w_1=20$$

 $P_1=10$ $w_2=5$
 $p_2=5$ $w_1=15$
 $p_1=5$ $w_1=5$
 $p_1=15$ pearlgoldsilverdiamonds $p_1/w_1=1/2$ $p_2/w_2=1$ $p_3/w_3=1/3$ $p_4/w_4=3$

<u>M = 25</u>

M = 25

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- you are allowed to get a fraction x_i of an item i that yields a profit $x_i.p_i$ where $0 \le x_i \le 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

$$w_1=20$$

 $P_1=10$ $w_2=5$
 $p_2=5$ $w_1=15$
 $p_1=5$ $w_1=5$
 $p_1=15$ $M=25$ pearl
 $p_1/w_1=1/2$ gold
 $p_2/w_2=1$ silver
 $p_3/w_3=1/3$ diamonds
 $p_4/w_4=3$

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- you are allowed to get a fraction x_i of an item i that yields a profit $x_i.p_i$ where $0 \le x_i \le 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

$$w_1=20$$

 $P_1=10$ $w_2=5$
 $p_2=5$ $w_1=15$
 $p_1=5$ $w_1=5$
 $p_1=15$ pearlgoldsilverdiamonds $p_1/w_1=1/2$ $p_2/w_2=1$ $p_3/w_3=1/3$ $p_4/w_4=3$

M = 25

M = 20 3.5+1.5

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- you are allowed to get a fraction x_i of an item i that yields a profit $x_i.p_i$ where $0 \le x_i \le 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

$$w_1=20$$

 $P_1=10$ $w_2=5$
 $p_2=5$ $w_1=15$
 $p_1=5$ $w_1=5$
 $p_1=15$ pearlgoldsilverdiamonds $p_1/w_1=1/2$ $p_2/w_2=1$ $p_3/w_3=1/3$ $p_4/w_4=3$

<u>M = 25</u>

M = 15 3 . 5 + 1 . 5 + (1/2) . 15

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- you are allowed to get a fraction x_i of an item i that yields a profit $x_i p_i$ where $0 \le x_i \le 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

$$w_1=20$$

 $P_1=10$ $w_2=5$
 $p_2=5$ $w_1=15$
 $p_1=5$ $w_1=5$
 $p_1=15$ pearlgoldsilverdiamonds $p_1/w_1=1/2$ $p_2/w_2=1$ $p_3/w_3=1/3$ $p_4/w_4=3$

M = 25

M = 0 3 . 5 + 1 . 5 + (1/2) . 15 = 27.5

<u>input</u> : n items together with their prices p_i and weight w_i , and a knapsack with the capacity M

```
sort items according to the ratio (p_i/w_i)
(p_1/w_1) \leq \dots \leq (p_n/w_n)
totalw = M
j=1
while (totalw > 0)
     if (w<sub>i</sub> > totalw)
         add totalw fraction of item j to the knapsack
         totalw = 0
     else
         add item j to the knapsack
         totalw = totalw - w<sub>i</sub>
         j = j + 1
return knapsack
```

<u>Theorem</u> (Greedy-choice property): Let j be the item with the maximum ratio p_i/w_i . There exists an optimal solution that contains item j as much as possible.

(Our greedy approach yields us an optimal solution)

<u>Proof</u>

<u>Theorem</u> (Greedy-choice property): Let j be the item with the maximum ratio p_i/w_i . There exists an optimal solution that contains item j as much as possible.

(Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume S is an optimal solution with the full knapsack of capacity M and total profit U.

<u>Theorem</u> (Greedy-choice property): Let j be the item with the maximum ratio p_i/w_i . There exists an optimal solution that contains item j as much as possible.

(Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume S is an optimal solution with the full knapsack of capacity M and total profit U.

Assume S does not contain the item j as much as possible.

There must exist some item k such that $k \neq j$ and $(p_k / w_k) < (p_j / w_j)$

<u>Theorem</u> (Greedy-choice property): Let j be the item with the maximum ratio p_i/w_i . There exists an optimal solution that contains item j as much as possible.

(Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume S is an optimal solution with the full knapsack of capacity M and total profit U.

Assume S does not contain the item j as much as possible.

There must exist some item k such that $k \neq j$ and $(p_k / w_k) < (p_j / w_j)$

We take out some amount of item k, (suppose α) and

put same amount of item j.

 $S^* = S - \{\alpha \text{ of item } k\} \cup \{\alpha \text{ of item } j\}$

<u>Theorem</u> (Greedy-choice property): Let j be the item with the maximum ratio p_i/w_i . There exists an optimal solution that contains item j as much as possible.

(Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume S is an optimal solution with the full knapsack of capacity M and total profit U.

Assume S does not contain the item j as much as possible.

There must exist some item k such that k \neq j and (p_k / w_k) < (p_j / w_j) We take out some amount of item k, (suppose α) and

put same amount of item j.

 $S^* = S - \{\alpha \text{ of item } k\} \cup \{\alpha \text{ of item } j\}$

Let U* be the profit of S*. Then,

 $U^* = U - \alpha.(p_k / w_k) + \alpha.(p_j / w_j)$

<u>Theorem</u> (Greedy-choice property): Let j be the item with the maximum ratio p_i/w_i . There exists an optimal solution that contains item j as much as possible.

(Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume S is an optimal solution with the full knapsack of capacity M and total profit U.

Assume S does not contain the item j as much as possible.

There must exist some item k such that $k \neq j$ and $(p_k / w_k) < (p_j / w_j)$ We take out some amount of item k, (suppose α) and put same amount of item j.

 $S^* = S - \{\alpha \text{ of item } k\} \cup \{\alpha \text{ of item } j\}$

Let U^{*} be the profit of S^{*}. Then,

$$U^* = U - \alpha.(p_k / w_k) + \alpha.(p_j / w_j)$$

Since $(p_k / w_k) < (p_j / w_j), U^* > U$.
Fractional Knapsack

<u>Theorem</u> (Greedy-choice property): Let j be the item with the maximum ratio p_i/w_i . There exists an optimal solution that contains item j as much as possible.

(Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume S is an optimal solution with the full knapsack of capacity M and total profit U.

Assume S does not contain the item j as much as possible.

There must exist some item k such that $k \neq j$ and $(p_k / w_k) < (p_j / w_j)$ We take out some amount of item k, (suppose α) and put same amount of item j.

 $S^* = S - \{\alpha \text{ of item } k\} \cup \{\alpha \text{ of item } j\}$

Let U* be the profit of S*. Then,

 $U^* = U - \alpha.(p_k / w_k) + \alpha.(p_j / w_j)$ Since $(p_k / w_k) < (p_j / w_j), U^* > U.$

This is contradiction!

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- your goal is to get a filling that maximizes the profit under the weight constraint M

(You cannot take fraction of an item, you take the item or not)

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- your goal is to get a filling that maximizes the profit under the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- your goal is to get a filling that maximizes the profit under the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

$$w_1=10$$

 $p_1=60$ $w_2=20$
 $p_2=100$ $w_3=30$
 $p_3=120$ $M = 50$ $p_1/w_1=6$ $p_2/w_2=5$ $p_3/w_3=4$

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- your goal is to get a filling that maximizes the profit under the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

$$w_1=10$$

 $p_1=60$ $w_2=20$
 $p_2=100$ $w_3=30$
 $p_3=120$ $M = 50$ $p_1/w_1=6$ $p_2/w_2=5$ $p_3/w_3=4$

M = 50 ↔ 60

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- your goal is to get a filling that maximizes the profit under the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

$$w_1=10$$

 $p_1=60$ $w_2=20$
 $p_2=100$ $w_3=30$
 $p_3=120$ $M = 50$ $p_1/w_1=6$ $p_2/w_2=5$ $p_3/w_3=4$

M = 40 \iff 60 + 100

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- your goal is to get a filling that maximizes the profit under the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

$$w_1=10$$

 $p_1=60$ $w_2=20$
 $p_2=100$ $w_3=30$
 $p_3=120$ $M = 50$ $p_1/w_1=6$ $p_2/w_2=5$ $p_3/w_3=4$

M = 20 \iff 60 + 100 = 160

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- your goal is to get a filling that maximizes the profit under the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

$$w_1=10$$

 $p_1=60$ $w_2=20$
 $p_2=100$ $w_3=30$
 $p_3=120$ $M=50$ $p_1/w_1=6$ $p_2/w_2=5$ $p_3/w_3=4$

M = 20 \longleftrightarrow 60 + 100 = 160

100 + 120 = 220

- given n items and a knapsack with the capacity M
- each item i has a weight w_i , and a value p_i
- your goal is to get a filling that maximizes the profit under the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

$$w_1=10$$

 $p_1=60$ $w_2=20$
 $p_2=100$ $w_3=30$
 $p_3=120$ $M = 50$ $p_1/w_1=6$ $p_2/w_2=5$ $p_3/w_3=4$

M = 20 🛶 60 + 100 = 160

100 + 120 = 220

use dynamic programming

- given a computer and n processes $p_1,\,...\,,\,p_n$ such that each of them has a completion time t_i
- find an optimal order of processes that has the minimum average finishing time

- given a computer and n processes $p_1,\,...\,,\,p_n$ such that each of them has a completion time t_i
- find an optimal order of processes that has the minimum average finishing time

If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.

- given a computer and n processes $p_1, \, ... \, , \, p_n$ such that each of them has a completion time t_i
- find an optimal order of processes that has the minimum average finishing time

If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.

Our goal is to minimize $(\Sigma_{i=1..n} C_i)/n$

- Given t_1 , ..., t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\sum_{i=1..n} C_i)/n$

$$t_1 = 4$$
 $t_2 = 2$ $t_3 = 5$ $t_4 = 3$

- Given t_1 , ..., t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\sum_{i=1..n} C_i)/n$

- Given t_1 , ..., t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\Sigma_{i=1..n} C_i)/n$

- Given t_1, \dots, t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\sum_{i=1..n} C_i)/n$

- Given t_1, \dots, t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\Sigma_{i=1..n} C_i)/n$

- Given t_1, \dots, t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\Sigma_{i=1..n} C_i)/n$

- Given t_1, \dots, t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\Sigma_{i=1..n} C_i)/n$

- Given t_1, \dots, t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\Sigma_{i=1..n} C_i)/n$

this part is constant

- Given t_1, \dots, t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\sum_{i=1..n} C_i)/n$

- Given t_1 , ..., t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\sum_{i=1..n} C_i)/n$

- Given t_1 , ..., t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\sum_{i=1..n} C_i)/n$

- Given t_1 , ..., t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\sum_{i=1..n} C_i)/n$

- Given t_1 , ..., t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\sum_{i=1..n} C_i)/n$

- Given t_1 , ..., t_n
- If we define the finishing time C_i of the process i as $C_i = \sum_{j=1..i} t_j$, then the average finishing time will be $(\sum_{i=1..n} C_i)/n$.
- Our goal is to minimize $(\sum_{i=1..n} C_i)/n$

<u>Proof</u>

Assume there is an optimal sequence S^* in which the processes have not been sorted.

Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that i < j and $t_j < t_i$

Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that i < j and $t_j < t_i$

Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that i < j and $t_j < t_i$

<u>Theorem</u> (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution) <u>Proof</u>

Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that i < j and $t_j < t_i$

- finishing time of the processes up to i-1 not changing (C₁, ..., C_{i-1} remain same)
- finishing time of the processes after j not changing (C_j, ..., C_n remain same)

<u>Theorem</u> (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution) <u>Proof</u>

Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that i < j and $t_j < t_i$

- finishing time of the processes up to i-1 not changing (C₁, ..., C_{i-1} remain same)
- finishing time of the processes after j not changing
 (C, ..., C, remain same)

• Let
$$\Delta = t_i - t_i$$
.

<u>Theorem</u> (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution) <u>Proof</u>

Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that i < j and $t_j < t_i$

- finishing time of the processes up to i-1 not changing (C₁, ..., C_{i-1} remain same)
- finishing time of the processes after j not changing
 (C __________________________________)

$$(C_j, ..., C_n \text{ remain same})$$

Let
$$\Delta = t_i - t_j$$
. Then $C_i^* = C_i - \Delta$

<u>Theorem</u> (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution) <u>Proof</u>

Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that i < j and $t_j < t_i$

- finishing time of the processes up to i-1 not changing (C₁, ..., C_{i-1} remain same)
- finishing time of the processes after j not changing

$$(C_j, ..., C_n \text{ remain same})$$

Let
$$\Delta = t_i - t_j$$
. Then
 $C_i^* = C_i - \Delta$
 $C_{i+1}^* = C_{i+1} - \Delta$

$$C_{j-1}^* = C_{j-1} - \Delta$$

<u>Theorem</u> (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution) <u>Proof</u>

Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that i < j and $t_j < t_i$

What happens if we swap i and j?

- finishing time of the processes up to i-1 not changing (C₁, ..., C_{i-1} remain same)
- finishing time of the processes after j not changing

$$(C_j, ..., C_n \text{ remain same})$$

Let
$$\Delta = t_i - t_j$$
. Then
 $C_i^* = C_i - \Delta$
 $C_{i+1}^* = C_{i+1} - \Delta$
 \vdots
 $C_i^* = C_{i-1} - \Delta$

• $\Sigma_{i=1..n} C_i$ decreasing
Process Scheduling

<u>Theorem</u> (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution) <u>Proof</u>

Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that i < j and $t_j < t_i$

What happens if we swap i and j?

- finishing time of the processes up to i-1 not changing (C₁, ..., C_{i-1} remain same)
- finishing time of the processes after j not changing

Let
$$\Delta = t_i - t_j$$
. Then
 $C_i^* = C_i - \Delta$
 $C_{i+1}^* = C_{i+1} - \Delta$
 \vdots
 $C_{i-1}^* = C_{i-1} - \Delta$

this is a contradiction

 $\Sigma_{i=1..n} C_i$ decreasing

- given a computer and n processes $p_1, ..., p_n$ such that each of them has a processing time t_i and a deadline d_i
- find an optimal order of processes that minimizes the maximum lateness

- given a computer and n processes $p_1, ..., p_n$ such that each of them has a processing time t_i and a deadline d_i
- find an optimal order of processes that minimizes the maximum lateness

If we define the finishing time f_i of the process i as $f_i = \Sigma_{j=1..i} t_j$, then the lateness of the process i will be $l_i = max \{0, f_i - d_i\}$

- given a computer and n processes $p_1, ..., p_n$ such that each of them has a processing time t_i and a deadline d_i
- find an optimal order of processes that minimizes the maximum lateness

If we define the finishing time f_i of the process i as $f_i = \Sigma_{j=1..i} t_j$, then the lateness of the process i will be $l_i = max \{0, f_i - d_i\}$

Our goal is to minimize $L = \max_{i} I_{i}$

- Given t_1 , ..., t_n
- If we define the finishing time f_i of the process i as $f_i = \sum_{j=1..i} t_j$, then the lateness of the process i will be $l_i = \max \{0, f_i d_i\}$
- Our goal is to minimize $L = \max_i I_i$

- Given t_1, \dots, t_n
- If we define the finishing time f_i of the process i as $f_i = \sum_{j=1..i} t_j$, then the lateness of the process i will be $l_i = \max \{0, f_i d_i\}$
- Our goal is to minimize $L = \max_i I_i$

	1	2	3	4
† _i	4	2	5	3
d _i	6	4	10	8

- Given t_1 , ..., t_n
- If we define the finishing time f_i of the process i as $f_i = \sum_{j=1..i} t_j$, then the lateness of the process i will be $l_i = \max \{0, f_i d_i\}$
- Our goal is to minimize $L = \max_i I_i$

	1	2	3	4
† _i	4	2	5	3
d _i	6	4	10	8

- Given t_1 , ..., t_n
- If we define the finishing time f_i of the process i as $f_i = \sum_{j=1..i} t_j$, then the lateness of the process i will be $l_i = \max \{0, f_i - d_i\}$
- Our goal is to minimize $L = \max_i I_i$

- Given t_1 , ..., t_n
- If we define the finishing time f_i of the process i as $f_i = \sum_{j=1..i} t_j$, then the lateness of the process i will be $l_i = \max \{0, f_i d_i\}$
- Our goal is to minimize $L = \max_i I_i$

- Given t_1 , ..., t_n
- If we define the finishing time f_i of the process i as $f_i = \sum_{j=1..i} t_j$, then the lateness of the process i will be $l_i = \max \{0, f_i d_i\}$
- Our goal is to minimize $L = \max_i I_i$

How do we sort the processes ?

How do we sort the processes ?

	1	2
† _i	1	5
d _i	12	5

How do we sort the processes ?

$$t_1 = 1$$
 $t_2 = 5$ $L = 1$
 $L_1 = 0$ $L_2 = 1$

How do we sort the processes ?

	1	2
† _i	1	5
d _i	12	5

$$\begin{array}{c|c} t_1 = 1 & t_2 = 5 \\ L_1 = 0 & L_2 = 1 \\ t_2 = 5 & t_1 = 1 \\ L_1 = 0 & L_2 = 0 \end{array}$$

$$\begin{array}{c|c} L = 1 \\ L = 0 \\ L_1 = 0 \\ L_2 = 0 \end{array}$$

How do we sort the processes ?

• according to their slack time $d_i - t_i$

How do we sort the processes ?

• according to their slack time $d_i - t_i$

	1	2
† _i	1	5
di	2	5

How do we sort the processes ?

• according to their slack time $d_i - t_i$

How do we sort the processes ?

• according to their slack time $d_i - t_i$

	1	2
† _i	1	5
d _i	2	5

$$t_2 = 5$$
 $t_1 = 1$ $L = 4$
 $L_1 = 0$ $L_2 = 4$ $L = 1$

 $L_1 = 0$ $L_2 = 1$

How do we sort the processes ?

• according to their deadlines d_i

How do we sort the processes ?

• according to their deadlines d_i

	1	2	3	4
† _i	4	2	5	3
d _i	6	4	10	8

$$t_2 = 2$$
 $t_1 = 4$ $t_4 = 3$ $t_3 = 5$ $L = 4$
 $L_1 = 0$ $L_2 = 0$ $L_3 = 1$ $L_4 = 4$

<u>Theorem</u> (Greedy-choice property): Let S be a sequence of processes ordered according to the deadline. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)

<u>Theorem</u> (Greedy-choice property): Let S be a sequence of processes ordered according to the deadline. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that i < j and $d_j < d_i$

<u>Theorem</u> (Greedy-choice property): Let S be a sequence of processes ordered according to the deadline. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that i < j and $d_j < d_i$

What happens if we swap i and j?

Encode them using 3-bit strings

• $B(T, \{ f_c \}) = \Sigma f_c.I_c$

 freq

 A
 5

 B
 2

 R
 2

 C
 1

 D
 1

- $B(T, \{ f_c \}) = \Sigma f_c.I_c$
- try to minimize the function B

 freq

 A
 5

 B
 2

 R
 2

 C
 1

 D
 1

- $B(T, \{f_c\}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

freq					
Α	i	5	ł	0	
В		2		1	
R		2	ł	01	
С		1	ł	10	
D	į.	1	ł	11	

- $B(T, \{ f_c \}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

freq			<u>cost</u>
A	5	0	5
В	2	1	2
R	2	01	4
С	1	10	2
D	1	11	2
			15

- $B(T, \{f_c\}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

freq			<u>cost</u>
A	5	0	5
В	2	1	2
R	2	01	4
С	1	10	2
D	1	11	2
			15

- $B(T, \{f_c\}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?

freq			<u>cost</u>
A	5	0	5
B R	2	01	2 4
С	1	10	2
D	1	11	15

- $B(T, \{f_c\}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?

00110110

freq			<u>cost</u>
Α	5	0	5
В	2	1	2
R	2	01	4
С	1	10	2
D	1	11	2
			15

- $B(T, \{f_c\}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?

00110110

<u>freq</u>			<u>cost</u>
A	5	0	5
В	2	1	2
R	2	01	4
С	1	10	2
D	1	11	2
			15

- $B(T, \{f_c\}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?

00110110 AADRC

freq			<u>cost</u>
Α	5	0	5
В	2	1	2
R	2	01	4
С	1	10	2
D	1	11	2
			15

- $B(T, \{f_c\}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?

freq			<u>cost</u>
Α	5	0	5
В	2	1	2
R	2	01	4
С	1	10	2
D	1	11	2
			15

- $B(T, \{f_c\}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?

0 0 1 1 0 1 1 0 AADRC A A BBA D A ARBRC

<u>freq</u>			<u>cost</u>
A	5	0	5
В	2	1	2
R	2	01	4
С	1	10	2
D	1	11	2
			15

- $B(T, \{f_c\}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?

00110110 A A BBA D A AADRC ARBRC AABBADA

freq			<u>cost</u>
Α	5	0	5
В	2	1	2
R	2	01	4
С	1	10	2
D	1	11	2
			15

- $B(T, \{f_c\}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?

00110110 A A BBA D A AADRC ARBRC AABBADA

freq			<u>cost</u>
A B	5 2 2	01	5 2
к С D	2 1 1	10 10 11	4 2 2
			15

- $B(T, \{ f_c \}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?

00110110 A A BBA D A

AADRC ARBRC AABBADA

decoding is not unique

freq			<u>cost</u>
Α	5	0	5
В	2	1	2
R	2	01	4
	1	10	2
D	T	11	2
			15

- $B(T, \{f_c\}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?

00110110 A A BBA D A

AADRC ARBRC AABBADA

decoding is not unique

to get unique decoding, coding should be 'prefix-free'

freq			<u>cost</u>
A	5	0	5
В	2	1	2
R	2	01	4
С	1	10	2
D	1	11	2
			15

- $B(T, \{f_c\}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

to get unique decoding, coding should be 'prefix-free'

- $B(T, \{ f_c \}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

to get unique decoding, coding should be 'prefix-free'

Coding is called 'prefix free' if for any i, j; encoding c_i is not prefix of encoding c_j

- $B(T, \{ f_c \}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

to get unique decoding, coding should be 'prefix-free'

Coding is called 'prefix free' if for any i, j; encoding c_i is not prefix of encoding c_j

encoding of B -1- is prefix of encoding of C -10- 10

- $B(T, \{ f_c \}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

to get unique decoding, coding should be 'prefix-free'

Coding is called 'prefix free' if for any i, j; encoding c_i is not prefix of encoding c_j

encoding of B -1- is prefix of encoding of C -10- 1010 = C

- $B(T, \{ f_c \}) = \Sigma f_c.I_c$
- try to minimize the function B
- use smaller length encoding for the character having larger frequency

to get unique decoding, coding should be 'prefix-free'

Coding is called 'prefix free' if for any i, j; encoding c_i is not prefix of encoding c_j

encoding of B -1- is prefix of encoding of C -10- 10 10 = C10 = BA

• If you have a prefix-free code, you can uniquely decode it

- If you have a prefix-free code, you can uniquely decode it
- encoding for each char ends with '0'
- use different length encoding for each char

freqA250E1810M13110B101110K711110T5111110U2111110L11111110

- If you have a prefix-free code, you can uniquely decode it
- encoding for each char ends with '0'
- use different length encoding for each char

- If you have a prefix-free code, you can uniquely decode it
- encoding for each char ends with '0'
- use different length encoding for each char

- If you have a prefix-free code, you can uniquely decode it
- encoding for each char ends with '0'
- use different length encoding for each char

1100111100111111010

- If you have a prefix-free code, you can uniquely decode it
- encoding for each char ends with '0'
- use different length encoding for each char

1100111100111111010 MAKALE

- If you have a prefix-free code, you can uniquely decode it
- encoding for each char ends with '0'
- use different length encoding for each char

• for '1', create a left child for '0', create a right child

• for '1', create a left child for '0', create a right child

• for '1', create a left child for '0', create a right child

• for '1', create a left child for '0', create a right child

• for '1', create a left child for '0', create a right child

• for '1', create a left child for '0', create a right child

 for '1', create a left child for '0', create a right child

to get an optimal encoding, create an optimal tree

to get an optimal encoding, create an optimal tree

optimal encoding = optimal tree

Lemma : Optimal tree is full. (every node has either two children or no child)

Proof:

Lemma : Optimal tree is full. (every node has either two children or no child)

Lemma : Optimal tree is full. (every node has either two children or no child)

Lemma : Optimal tree is full. (every node has either two children or no child)

Lemma : Optimal tree is full. (every node has either two children or no child)

Lemma : Optimal tree is full. (every node has either two children or no child)

Lemma : Optimal tree is full. (every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

Because all characters in subtree B of T* have encodings 1 bit shorter than encodings in subtree B of T,

 $B(T) > B(T^*)$

• sort all frequencies in decreasing order

• sort all frequencies in decreasing order

- sort all frequencies in decreasing order
- start with lowest two frequencies

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

<u>Huffman Coding</u>

cost

sort all frequencies in decreasing order

start with lowest two frequencies combine them in one one, rearrange to preserve the order

sort all frequencies in decreasing order

٠

<u>Huffman Coding</u>

cost

• sort all frequencies in decreasing order

<u>Huffman Coding</u>

cost

• sort all frequencies in decreasing order

sort all frequencies in decreasing order

٠

<u>Huffman Coding</u>

cost

sort all frequencies in decreasing order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

٠

sort all frequencies in decreasing order

٠

sort all frequencies in decreasing order

٠

sort all frequencies in decreasing order

٠

sort all frequencies in decreasing order

٠

sort all frequencies in decreasing order

٠

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

 Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

- Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T
- Since f_x and f_y are the smallest frequencies,

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

- Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T
- Since f_x and f_y are the smallest frequencies,

 f_x , $f_y \leq f_a$, f_b

swap x and a

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

• Since f_x and f_y are the smallest frequencies,

 f_x , $f_y \leq f_a$, f_b

swap x and a

Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

- Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T
- Since f_x and f_y are the smallest frequencies,

 f_x , $f_y \leq f_a$, f_b

• B(T) =

•

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

- Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T
- Since f_x and f_y are the smallest frequencies,

 f_x , $f_y \leq f_a$, f_b

• B(T) = C +

•

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

- Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T
- Since f_x and f_y are the smallest frequencies,

 f_x , $f_y \leq f_a$, f_b

•
$$B(T) = C + f_x \cdot I_x + f_a \cdot I_a$$

٠

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

- Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T
- Since f_x and f_y are the smallest frequencies,

$$B(T) = C + f_x \cdot I_x + f_a \cdot I_a$$

•
$$B(T') = C + f_x I_a + f_a I_x$$

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

- Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T
- Since f_x and f_y are the smallest frequencies,

•
$$B(T) = C + f_x \cdot I_x + f_a \cdot I_a$$

•
$$B(T') = C + f_x \cdot I_a + f_a \cdot I_x$$

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

- Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T
- Since f_x and f_y are the smallest frequencies,

•
$$B(T) = C + f_x \cdot I_x + f_a \cdot I_a$$

•
$$B(T') = C + \hat{f}_x \hat{I}_a + \tilde{f}_a \hat{I}_x$$

•
$$B(T) - B(T') = f_x (I_x - I_a) + f_a (I_a - I_x)$$

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

- Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T
- Since f_x and f_y are the smallest frequencies,

•
$$B(T) = C + f_x \cdot I_x + f_a \cdot I_a$$

• $B(T') = C + f_x \cdot I_a + f_a \cdot I_x$
• $B(T) - B(T') = f_x (I_x - I_a) + f_a (I_a - I_x)$
 $= (I_a - I_x) (f_a - f_x) \ge 0$

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

 Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T

• Since f_x and f_y are the smallest frequencies,

 f_x , $f_y \leq f_a$, f_b

•
$$B(T) = C + f_x \cdot I_x + f_a \cdot I_a$$

• $B(T') = C + f_x \cdot I_a + f_a \cdot I_x$
• $B(T) - B(T') = f_x (I_x - I_a) + f_a (I_a - I_x)$
 $= (I_a - I_x) (f_a - f_x) \ge 0$

swap y and b

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

swap y and b

- Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T
- Since f_x and f_y are the smallest frequencies,

•
$$B(T) = C + f_x \cdot I_x + f_a \cdot I_a$$

• $B(T') = C + f_x \cdot I_a + f_a \cdot I_x$
• $B(T) - B(T') = f_x (I_x - I_a) + f_a (I_a - I_x)$
 $= (I_a - I_x) (f_a - f_x) \ge 0$

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

- Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T
- Since $\dot{f}_{\rm x}$ and $f_{\rm y}$ are the smallest frequencies,

 f_x , $f_y \leq f_a$, f_b

$$B(T) = C + f_x I_x + f_a I_a$$

•
$$B(T) - B(T') = f_x (I_x - I_a) + f_a (I_a - I_x)$$

= $(I_a - I_x) (f_a - f_x) \ge 0$

• B(T') - B(T") ≥ 0

<u>Theorem</u> (Greedy-choice property): Let x and y be twe symbols with the smallest frequencies f_x and f_y . There exists an optimal tree where x and y are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

<u>Proof</u>

Assume there is an optimal tree T where x and y are not siblings.

- Because T is a full tree, there should be two symbols a and b that are siblings placed at the lowest level in T
- Since f_x and f_y are the smallest frequencies,

 f_x , $f_y \leq f_a$, f_b

•
$$B(T) = C + f_x \cdot I_x + f_a \cdot I_a$$

• $B(T') = C + f_x \cdot I_a + f_a \cdot I_x$
• $B(T) - B(T') = f_x (I_x - I_a) + f_a (I_a - I_x)$
 $= (I_a - I_x) (f_a - f_x) \ge 0$

• B(T ') - B(T") ≥ 0

Greedy Algorithms

- solve the problem by breaking it a sequence of subproblems
- make the best local choice among all feasible one available on that moment (one choice at a time)
 - your choice does not depend on any future choices or any past choices you have made
- prove that the Greedy Choice Property satisfies. A sequence of locally optimal choices yields a global optimal solution