Greedy Algorithms

Murat Osmanoglu

Interval Scheduling

+ given a set of intervals (I;, I,, ... , L,)

- each interval I, has a starting time s;, a finishing
time f,

* your task is to find the largest subset of mutually
non-overlapping intervals

Interval Scheduling

+ given a set of intervals (I;, I,, ... , L,)

- each interval I, has a starting time s;, a finishing
time f,

* your task is to find the largest subset of mutually
non-overlapping intervals

Suppose there are n meetings requests for a
meeting room.

« Each meeting i has a starting time s; and an
ending time t;.

- We have a constraint : no fwo meetings can
not be scheduled at same time.

* Our goal is to schedule as many meetings as
possible

Interval Scheduling

+ given a set of intervals (I;, I,, ... , L,)

- each interval I, has a starting time s;, a finishing
time f,

* your task is to find the largest subset of mutually
non-overlapping intervals

I
P I3 ° L
o—0
I ° Is °
—> 9o I, I
I, e—=e P ®

Interval Scheduling

+ given a set of intervals (I;, I,, ... , L,)

- each interval I, has a starting time s;, a finishing
time f,

* your task is to find the largest subset of mutually
non-overlapping intervals

|
|
° L3 PY | : I
. T ———o
I, ' oL
——e I,” 1
I, — @& o ®

R -
Ly
\J

Interval Scheduling

Dynamic Programming Solution

1

| .

SJ+ J ® fj

[
i
[
|
J-1 :
[

OPT (j) = max { OPT (j-1), 1+ OPT (p(j)) }

Interval Scheduling

Dynamic Programming Solution

1

| .

SJ+ J ® fj

[
i
[
|
J-1 :
[

OPT (j) = max { OPT (j-1), 1+ OPT (p(j)) }

Can we get a simpler solution?

Interval Scheduling

« solve the problem in myopic fashion

(don't pay attention the global situaton - don't consider
all possible solutions)

- make desicion at each step based on improving local
state

(use greedy approach - pick the one available to you at the
moment based on some fixed and simple priority rules)

Interval Scheduling

« What is the best option?
set the priority rules!

Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
start time
« remove all intervals not compatible with the chosen one

Interval Scheduling

« What is the best option?

set the priority rules!

choose the first interval as the one having the earliest
start time
remove all intervals not compatible with the chosen one

Interval Scheduling

« What is the best option?
set the priority rules!

 choose the first interval as the shortest one
+ remove all intervals not compatible with the chosen one

Interval Scheduling

« What is the best option?
set the priority rules!

 choose the first interval as the shortest one
+ remove all intervals not compatible with the chosen one

Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one

Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one

I
P I3 ° L
o—0
I ° Is °
—> 9o I, I
I, e—=e P ®

Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one

|
I
I o T
o ° 5 o
I | ° Ls ®
I,1 e——e P P

Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one

|
I
I o T
® ° —° o
I | ° Ls ®
I,1 &—e ® ®

Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one

| I,

| I8

: I ’ .
I, >

Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one

Li. I
| ‘—8.
I o Ls °
— - o I, I,

Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one

Li. I
| ‘—8.
I o Ls °
— - o I, I,

Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one

[I6

Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one

I

Ls

Ly
N

|

Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one

I

Ls

L
N

|

Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one

Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one

|

Interval Scheduling

input : ninterval (I, .., I,) fogether
with their start time and finish time

--sort intervals according to their
finish time (fi<f,<..<f,)
--initialize an empty set S

for (i=1 to n)
if interval I; is compatible with S
S=5SuU{TI)}
return S

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not
contain the first interval I,.

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not
contain the first interval I,.

Let I,” be the interval in S having earliest finish time.

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not
contain the first interval I,.

Let I,” be the interval in S having earliest finish time.
Since I; has the earliest finish time for all, f, < f; .

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not
contain the first interval I,.

Let I,” be the interval in S having earliest finish time.
Since I; has the earliest finish time for all, f, < f; .

S =5-{I"JU{I,} suchthatIS’=ISI

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not
contain the first interval I,.

Let I,” be the interval in S having earliest finish time.
Since I; has the earliest finish time for all, f, < f; .

S =5-{I"JU{I,} suchthatIS’=ISI

This is a contradiction!

Greedy Algorithms

* solve the problem by breaking it a sequence of
subproblems

« make the best local choice among all feasible one
available on that moment (one choice at a time)

* your choice does not depend on any future choices or
any past choices you have made

 prove that the Greedy Choice Property satisfies. A
sequence of locally optimal choices yields a global
optimal solution

Cashier's Problem

given a certain amount of money, M cents, and a set of
denominations of coins ¢, , ..., ¢,

make change for M cents using a minimum total humber of coins
(each denomination is available in unlimited quantity)

Cashier's Problem

given a certain amount of money, M cents, and a set of
denominations of coins ¢, , ..., ¢,

make change for M cents using a minimum total humber of coins
(each denomination is available in unlimited quantity)

147 cents

(25,105,1)

Cashier's Problem

* given a certain amount of money, M cents, and a set of
denominations of coins ¢y, ..., ¢,

 make change for M cents using a minimum total number of coins
(each denomination is available in unlimited quantity)

147 cents

(25,105,1)

Cashier's Problem

* given a certain amount of money, M cents, and a set of
denominations of coins ¢y, ..., ¢,

 make change for M cents using a minimum total number of coins
(each denomination is available in unlimited quantity)

147 cents

(25,105,1)

Cashier's Problem

* given a certain amount of money, M cents, and a set of
denominations of coins ¢y, ..., ¢,

 make change for M cents using a minimum total number of coins
(each denomination is available in unlimited quantity)

147 cents

(25,105,1)

Cashier's Problem

* given a certain amount of money, M cents, and a set of
denominations of coins ¢y, ..., ¢,

 make change for M cents using a minimum total number of coins
(each denomination is available in unlimited quantity)

147 cents

(25,105,1)

Cashier's Problem

* given a certain amount of money, M cents, and a set of
denominations of coins ¢y, ..., ¢,

 make change for M cents using a minimum total number of coins
(each denomination is available in unlimited quantity)

147 cents

(25,105,1)

Cashier's Problem

* given a certain amount of money, M cents, and a set of
denominations of coins ¢y, ..., ¢,

 make change for M cents using a minimum total number of coins
(each denomination is available in unlimited quantity)

147 cents

(25,105,1)

Cashier's Problem

* given a certain amount of money, M cents, and a set of
denominations of coins ¢y, ..., ¢,

 make change for M cents using a minimum total number of coins
(each denomination is available in unlimited quantity)

147 cents

(25,105,1)

Cashier's Problem

input : an amount of money M
a set of denominations (¢, ..., ¢,)

sort denominations
Ci2..2C,
totalw = M
j=1
k=0
while (j < n)
if (¢ < totalw)
totalw = totalw - C
k= k+1
else
J=j+l
return k

Cashier's Problem

Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination c; < M.

(Our greedy approach yields us an optimal solution)
Proof

Cashier's Problem

Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination c; < M.

(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution for M, and 10 < M. But S does not contain any
10.

Cashier's Problem

Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination c; < M.

(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution for M, and 10 < M. But S does not contain any
10.

M =ab +b.l (total a + b coins)

Cashier's Problem

Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination c; < M.

(Our greedy approach yields us an optimal solution)
Proof

Assume S is an optimal solution for M, and 10 < M. But S does not contain any
10.

M =ab +b.l (total a + b coins)

M can be written as
M=ab+b1=10-10+ab +b.1

Cashier's Problem

Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination c; < M.

(Our greedy approach yields us an optimal solution)
Proof

Assume S is an optimal solution for M, and 10 < M. But S does not contain any
10.

M =ab +b.l (total a + b coins)

M can be written as
M=ab+b1=10-10+ab +b.1
=110+ (a-2)5+b.1

Cashier's Problem

Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination c; < M.

(Our greedy approach yields us an optimal solution)
Proof

Assume S is an optimal solution for M, and 10 < M. But S does not contain any
10.

M =ab +b.l (total a + b coins)

M can be written as
M=ab+bl1=10-10+ab+b.1
=110+ (a-2)5+b.1 (tfotala+b -1 coins)

Cashier's Problem

Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination c; < M.

(Our greedy approach yields us an optimal solution)
Proof

Assume S is an optimal solution for M, and 10 < M. But S does not contain any
10.

M =ab +b.l (total a + b coins)

M can be written as
M=ab+b1=10-10+ab +b.1

=110+ (a-2)5+b.1 (tfotala+b -1 coins)
This is contradiction.

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?

Fractional Knapsack

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

you are allowed to get a fraction x; of an item i that yields
a profit x,.p; where O < x; < 1

your goal is to get a filling that maximizes the profit under
the weight constraint M

Fractional Knapsack

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

you are allowed to get a fraction x; of an item i that yields
a profit x;.p; where O < x; < 1

your goal is to get a filling that maximizes the profit under
the weight constraint M

O R

pearl gold silver diamonds

M =25

Fractional Knapsack

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

you are allowed to get a fraction x; of an item i that yields
a profit x,.p; where O < x; < 1

your goal is to get a filling that maximizes the profit under
the weight constraint M

O B @

pearl gold silver diamonds
p,/w;=1/2 p,/w, =1 p3/W3=1/3 ps/wy=3

M =25

Fractional Knapsack

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

you are allowed to get a fraction x; of an item i that yields
a profit x,.p; where O < x; < 1

your goal is to get a filling that maximizes the profit under
the weight constraint M

O B @

pearl gold silver diamonds
p,/w;=1/2 p,/w, =1 p3/W3=1/3 ps/wy=3

M =25

M =25

Fractional Knapsack

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

you are allowed to get a fraction x; of an item i that yields
a profit x,.p; where O < x; < 1

your goal is to get a filling that maximizes the profit under
the weight constraint M

O B @

pearl gold silver diamonds
p,/w;=1/2 p,/w, =1 p3/W3=1/3 ps/w,=3

M =25

M =25 3.5

Fractional Knapsack

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

you are allowed to get a fraction x; of an item i that yields
a profit x,.p; where O < x; < 1

your goal is to get a filling that maximizes the profit under
the weight constraint M

O B @

pearl gold silver diamonds
p,/w;=1/2 p,/w, =1 p3/W3=1/3 ps/wy=3

M =25

M =20 3.5+1.5

Fractional Knapsack

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

you are allowed to get a fraction x; of an item i that yields
a profit x,.p; where O < x; < 1

your goal is to get a filling that maximizes the profit under
the weight constraint M

O B @

pearl gold silver diamonds
pi/w;=1/2 p,/w, =1 p3/w3=1/3 ps/w,=3

M =25

M =15 3.5+1.5+(1/2).15

Fractional Knapsack

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

you are allowed to get a fraction x; of an item i that yields
a profit x,.p; where O < x; < 1

your goal is to get a filling that maximizes the profit under
the weight constraint M

O B @

pearl gold silver diamonds
p,/w;=1/2 p,/w, =1 p3/W3=1/3 ps/wy=3

M =25

M=0 3.5+1.5+(1/2).15=275

Fractional Knapsack

input : nitems together with their prices p;
and weight w;, and a knapsack with the capacity M

sort items according to the ratio (p,/w;)
(p1/Wy) ¢ ... < (pp/Wp)
totalw = M
j1
while (totalw > 0)
if (w;>totalw)
add fotalw fraction of item j to the knapsack
totalw = O
else
add item j to the knapsack
totalw = totalw - w,
J=j+1
return knapsack

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the

maximum ratio p,/w;. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)
Proof

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the
maximum ratio p,/w;. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution with the full knapsack of

capacity M and total profit U.

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the
maximum ratio p,/w;. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution with the full knapsack of

capacity M and total profit U.

Assume S does not contain the item j as much as possible.

There must exist some item k such that k # jand (p, / w,) < (p; / w;)

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the
maximum ratio p,/w;. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of
capacity M and total profit U.
Assume S does not contain the item j as much as possible.
There must exist some item k such that k # jand (p, / w,) < (p; / w;)
We take out some amount of item k, (suppose a) and
put same amount of item j.
S* =S - {a of item k}u{a of item j}

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the
maximum ratio p,/w;. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of
capacity M and total profit U.
Assume S does not contain the item j as much as possible.
There must exist some item k such that k # jand (p, / w,) < (p; / w;)
We take out some amount of item k, (suppose a) and
put same amount of item j.
S* =S - {a of item k}u{a of item j}
Let U” be the profit of S™. Then,
U= U-a.(pc/ w) +a.(p; / wy)

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the
maximum ratio p,/w;. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of
capacity M and total profit U.
Assume S does not contain the item j as much as possible.
There must exist some item k such that k # jand (p, / w,) < (p; / w;)
We take out some amount of item k, (suppose a) and
put same amount of item j.

S* =S - {a of item k}u{a of item j}
Let U” be the profit of S™. Then,

U= U-a.(pc/ w) +a.(p; / wy)
Since (px / w) < (p; / w;), U™ > U.

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the
maximum ratio p,/w;. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of
capacity M and total profit U.
Assume S does not contain the item j as much as possible.
There must exist some item k such that k # jand (p, / w,) < (p; / w;)
We take out some amount of item k, (suppose a) and
put same amount of item j.
S* =S - {a of item k}u{a of item j}
Let U” be the profit of S™. Then,
U= U-a.(pc/ w) +a.(p; / wy)
Since (px / w) < (p; / w;), U™ > U.
This is contradictionl

0/1 Knapsack Problem

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

your goal is to get a filling that maximizes the profit under
the weight constraint M

(You cannot take fraction of an item, you take the item or not)

0/1 Knapsack Problem

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

your goal is to get a filling that maximizes the profit under
the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

0/1 Knapsack Problem

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

your goal is to get a filling that maximizes the profit under
the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

B s

pl/wl =6 pZ/WZ =hH p3/W3 =4

M = 50

0/1 Knapsack Problem

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

your goal is to get a filling that maximizes the profit under
the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

B o

P/ Wy = ATE p3/wW3 =

M =50 «— 60

0/1 Knapsack Problem

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

your goal is to get a filling that maximizes the profit under
the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

B o

p /Wy = P,/ W, = p3/Wj =

M =40 «— 60+ 100

0/1 Knapsack Problem

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

your goal is to get a filling that maximizes the profit under
the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

B o

p /Wy = ATE p3/Wj =

M =20 «— 60+ 100 =160

0/1 Knapsack Problem

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

your goal is to get a filling that maximizes the profit under
the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

B o

p /Wy = ATE p3/Ws =

M =20 «— 60+100 =160 100 + 120 = 220

0/1 Knapsack Problem

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

your goal is to get a filling that maximizes the profit under
the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

B o

p /Wy = ATE p3/Ws =

M =20 «— 60+100 =160 100 + 120 = 220

use dynamic programming

Process Scheduling

given a computer and n processes p;, ... , p, such that each of
them has a completion time t;

find an optimal order of processes that has the minimum average
finishing time

Process Scheduling

given a computer and n processes p;, ... , p, such that each of
them has a completion time t;

find an optimal order of processes that has the minimum average
finishing time

If we define the finishing time C; of the processias C;= 2 1;,
then the average finishing time will be (., , C;)/n.

Process Scheduling

given a computer and n processes p;, ... , p, such that each of
them has a completion time t;

find an optimal order of processes that has the minimum average
finishing time

If we define the finishing time C; of the processias C;= 2 1;,
then the average finishing time will be (., , C;)/n.

Our goal is o minimize (£,.; , C))/n

Process Scheduling

Givent,, .., 1,

* If we define the finishing time C; of the processias C; = 2. ;t;
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n

LhE4 =20 L f=5 =3

J ’

Process Scheduling

Given t,, .., 1,

* If we define the finishing time C; of the processias ;= 2. ¥,
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n

J ’

Process Scheduling

Givent,, .., 1,

* If we define the finishing time C; of the processias C; = 2. ;t;
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n

LhE4 =20 L f=5 =3

L fi=4 1fp=2) t3=5 | 1,=3

[[
61:4 62:6 C3:11 C4:14

J ’

Process Scheduling

« Giventy, .., 1,

» If we define the finishing time C; of the processias C;= 2 1;,
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n
LhEdl 1220 LtEB (=3

L fi=4 1fp=2) t3=5 | 1,=3

| | | |
C=4 C,=6 C=11 C,=14 C* = (4+6+11+14)/4
C =875

Process Scheduling

« Giventy, .., 1,

» If we define the finishing time C; of the processias C;= 2 1;,
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n
ChE4 L fs2 L 35 h=3

S hE4 fe=2) 1335 1423

| | | |
C=4 C,=6 C=11 C,=14 C* = (4+6+11+14)/4
C =875

! i !

Process Scheduling

« Giventy, .., 1,

* If we define the finishing time C; of the processias C;= 2. ;1
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n
ChE4 L fs2 L 35 h=3

S hE4 (2] 1375 | 1,23

| | | |
C=4 C,=6 C=11 C,=14 C* = (4+6+11+14)/4
C =875

j '

C1:5 C2:9 C3:12 C4: 14

Process Scheduling

« Giventy, .., 1,

» If we define the finishing time C; of the processias C;= 2 1;,
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n

LhEdl a2 LtasB. Ltaz3l

[[[[
C=4 C,=6 C=11 C,=14 C* = (4+6+11+14)/4
C =875
i i ! i
[[[[
C1:5 C2:9 C3:12 C4: 14 g* = 15O+9+12+14)/4

Process Scheduling

« Giventy, .., t,

* If we define the finishing time C; of the processias C; = 2. ;t;
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n

this part is constant

J ’

Process Scheduling

« Giventy, .., t,

* If we define the finishing time C; of the processias C; = 2. ;t;
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n

J ’

Process Scheduling

« Giventy, .., 1,

* If we define the finishing time C; of the processias C; = 2. ;t;
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n

J ’

Process Scheduling

« Giventy, .., 1,

* If we define the finishing time C; of the processias C; = 2. ;t;
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n

J ’

Process Scheduling

« Giventy, .., 1,

* If we define the finishing time C; of the processias C; = 2. ;t
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n

j '

=1
C2:1'1+T2
C3=1‘1+'|'2+'|'3

Cn:T1+T2+T3+...+Tn

Zi=1..n Ci = nTI + (n'l)TZ + ...+ Tn

Process Scheduling

« Giventy, .., 1,

* If we define the finishing time C; of the processias C; = 2. ;t
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n

j '

=1
C,=t+1;
Co=t+t,+ 1

small t; makes the sum smaller

Cn:T1+T2+T3+...+Tn /

Zi=1..n Ci = nTI + (n'l)TZ + ...+ Tn

Process Scheduling

« Giventy, .., 1,

* If we define the finishing time C; of the processias C; = 2. ;t
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n

j '

C=ty
C,=1 +1, Greedy Approach : sort the processes according to
Cs=t +1,+1; the completion time in increasing order

small t; makes the sum smaller

Cn:T1+T2+T3+...+Tn /

Zi=1..n Ci = nTI + (n'l)TZ + ...+ Tn

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S™ in which the processes have not been
sorted.

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S™ in which the processes have not been
sorted. Then there should be indices i and j such that i< jand t; <t

i i

i-1 1 i LR

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S™ in which the processes have not been
sorted. Then there should be indices i and j such that i< jand t; <t

What happens if we swap i and j?

i-1 1 n\-/J 1+l

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S™ in which the processes have not been
sorted. Then there should be indices i and j such that i< jand t; <t

What happens if we swap i and j?

_/J Lol

|
i-1 1 i

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S™ in which the processes have not been
sorted. Then there should be indices i and j such that i< jand t; <t

What happens if we swap i and j?

)
o H H T « finishing time of the processes up

to i-1 not changing

!
i1 : ' :
= ! \/ VN (C;, .., Cis remain same)
 finishing time of the processes
i-1 J I | J+]_

after j not changing
(CJ- , .., C, remain same)

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S™ in which the processes have not been
sorted. Then there should be indices i and j such that i< jand t; <t

What happens if we swap i and j?

H H + finishing time of the processes up

joogd toi-1 no’r changing
\/ (¢, ..., Ciy remain same)
. flmshmg time of the processes
after j not changing
(CJ- , .., C, remain same)

IH H‘ Poberasuoy
-1y i g+l

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S™ in which the processes have not been
sorted. Then there should be indices i and j such that i< jand t; <t

What happens if we swap i and j?

H H + finishing time of the processes up

joogd toi-1 no’r changing
\/ (¢, ..., Ciy remain same)
. flmshmg time of the processes
after j not changing
(CJ- , .., C, remain same)

| i | o | i | * LetA=t; —t;. Then
. J : C/=C—A
-1y T

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S™ in which the processes have not been
sorted. Then there should be indices i and j such that i< jand t; <t

What happens if we swap i and j?

“ e H « finishing tfime of the processes up

| |
i-1 1 i joogd to i-1 not changing
\/ (¢, .., G4 remain same)
« finishing time of the processes
after j not changing
(CJ- , .., C, remain same)

IH H‘ Poberas b Then
. O . . Ci* = Ci —A
ey b Ciyr = Ciyr — A

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S™ in which the processes have not been
sorted. Then there should be indices i and j such that i< jand t; <t

What happens if we swap i and j?

“ e H « finishing tfime of the processes up

| |
i-1 1 i joogd to i-1 not changing
\/ (C;, .., Cis remain same)
« finishing time of the processes
after j not changing
(CJ- , .., C, remain same)

i i PoLerdmnnh, Then
5 o . Ci*=Ci_A
i-1 J I | J+]_

Ci1=Cipa—A

2.4 , C decreasing

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S™ in which the processes have not been
sorted. Then there should be indices i and j such that i< jand t; <t

What happens if we swap i and j?

“ e H « finishing tfime of the processes up

| |
i-1 1 i joogd to i-1 not changing
\/ (¢, .., G4 remain same)
« finishing time of the processes
after j not changing
(CJ- , .., C, remain same)

IH H‘ PoLerdmnnh, Then
5 o . Ci*=Ci_A
i-1 J I | J+1

Ci1=Cipa—A

Cj*—l == Cj—l - A
this is a contradiction «—— . 5. ¢ decreasing

Minimizing Lateness

given a computer and n processes p;, ... , p, such that each of
them has a processing time t; and a deadline d,

find an optimal order of processes that minimizes the maximum
lateness

Minimizing Lateness

given a computer and n processes p;, ... , p, such that each of
them has a processing time t; and a deadline d,

find an optimal order of processes that minimizes the maximum
lateness

If we define the finishing time f; of the processias f;= 2 t;,
then the lateness of the process i will be |, = max {0, f; - d;}

Minimizing Lateness

given a computer and n processes p;, ... , p, such that each of
them has a processing time t; and a deadline d,

find an optimal order of processes that minimizes the maximum
lateness

If we define the finishing time f; of the processias f;= 2 t;,
then the lateness of the process i will be |, = max {0, f; - d;}

Our goal is to minimize L = max; |,

Minimizing Lateness

Givent,, .., 1,

If we define the finishing time f; of the processias f; = 2 t;,
then the lateness of the process i will be I, = max {0, f; - d;}

Our goal is to minimize L = max; |.

Minimizing Lateness

Givent,, .., 1,

If we define the finishing time f; of the processias f;= Z;; 1,

JI

then the lateness of the process i will be I, = max {0, f; - d;}

Our goal is to minimize L = max; |.

112134
t,|4]|2]|5]3
d|6|4|10]38

Minimizing Lateness

Givent,, .., 1,

If we define the finishing time f; of the processias f; = 2 t;,
then the lateness of the process i will be |, = max {0, f; - d;}

Our goal is to minimize L = max; |.

112|134
t |4 |2]|5]3
d|6|4|10]s8

Minimizing Lateness

Givent,, .., 1,

If we define the finishing time f; of the processias f;= Z;; 1,

JI

then the lateness of the process i will be |, = max {0, f; - d;}

Our goal is to minimize L = max; |.

11234
t,|4]|2]|5]3
d|6|4|10]| 8

Minimizing Lateness

Givent,, .., 1,

If we define the finishing time f; of the processias f;= Z;; 1,

JI

then the lateness of the process i will be |, = max {0, f; - d;}

Our goal is to minimize L = max; |.

11234
t,|4]|2]|5]3
d|6|4|10]| 8

Minimizing Lateness

Givent,, .., 1,

If we define the finishing time f; of the processias f; = 2 t;,
then the lateness of the process i will be |, = max {0, f; - d;}

Our goal is to minimize L = max; |.

11234
t,|4]|2]|5]3
d|6|4|10]| 8

LI:O L2:3 L3:4 L4: 10

Minimizing Lateness

How do we sort the processes ?

* according to their process time ¥,

Minimizing Lateness

How do we sort the processes ?

* according to their process time ¥,

12

Minimizing Lateness

How do we sort the processes ?

* according to their process time ¥,

12

Minimizing Lateness

How do we sort the processes ?

* according to their process time ¥,

1
1| 1
d, | 12

Minimizing Lateness

How do we sort the processes ?

« according to their slack time d, - 1

Minimizing Lateness

How do we sort the processes ?

« according to their slack time d, - 1

Minimizing Lateness

How do we sort the processes ?

« according to their slack time d, - 1

Minimizing Lateness

How do we sort the processes ?

« according to their slack time d, - 1

Minimizing Lateness

How do we sort the processes ?

« according to their deadlines d,

Minimizing Lateness

How do we sort the processes ?

« according to their deadlines d,

50 L0 Ly L4

Minimizing Lateness

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according tfo the deadline. Then S is an optimal sequence.
(Our greedy approach yields us an optimal solution)

Minimizing Lateness

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according tfo the deadline. Then S is an optimal sequence.
(Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S™ in which the processes have not been
sorted. Then there should be indices i and j such that i< jand d; < d|

Minimizing Lateness

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according tfo the deadline. Then S is an optimal sequence.
(Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S™ in which the processes have not been
sorted. Then there should be indices i and j such that i< jand d; < d|

i-1 1 | I J 1+l

What happens if we swap i and j?

Huffman Coding

)

y (o @)F

“
=4

—

-

Encoding ABRACADABRA

B R A C A D A B R A

Huffman Coding

(@ o

Encoding ABRACADABRA

A B R A C A D A B R A
00O 001 010 OO0 011 000 100 OO0 001 010 000

 Encode them using 3-bit strings

Huffman Coding

(@ o

Encoding ABRACADABRA

A B R A C A D A B R A
OO0 001 010 000 011 000 100 000 001 o010 o000
freq

\ Encode them using 3-bit strings

number of times
the letter appears

OO0 ®>™

Huffman Coding

(@ o

Encoding ABRACADABRA

A B R A C A D A B R A

000 001 010 000 011 000 100 000 001 010 000
freq
 Encode them using 3-bit strings

OO0 wW>
= = PO

Huffman Coding

iYal.

Encoding ABRACADABRA

A B R A C A D A B R A

000 001 010 000 011 000 100 000 001 010 000
freq

A {51000 . o
32001 Encode them using 3-bit strings
Ri2i010
ci1ioill
Dilil100

Huffman Coding

(@ o

Encoding ABRACADABRA

A B R A C A D A B R A

OO0 001 010 OO0 011 o000 100 000 001 o010 o000

freq cost
i 00015
10016
i 010 | 6
: 011 § 3
1100 § 3

 Encode them using 3-bit strings

OO0 >
== N Ol

Huffman Coding

(@ o

Encoding ABRACADABRA

A B R A C A D A B R A

OO0 001 010 OO0 011 o000 100 000 001 o010 o000

freq cost
: 000:15
10016
i 010 | 6
: 011 § 3
1100 § 3

33

 Encode them using 3-bit strings
« Total 33 bits required to encode

OO0 >
== N Ol

Huffman Coding

(@ o

Encoding ABRACADABRA

A B R A C A D A B R A
00O 001 010 OO0 011 000 100 OO0 001 010 000

freq cost
Q g 88? 165 « Encode them using 3-bit strings
R 2 010 6 « Total 33 bits required to encode
Ci1iolli3 -
Di1i100: 3 Can we get better encoding:

33

Huffman Coding

(@ o

Encoding ABRACADABRA

A B R A C A D A B R A
00O 001 010 OO0 011 000 100 OO0 001 010 000

freq cost
Q g 88? 165 « Encode them using 3-bit strings
R 2 010 6 « Total 33 bits required to encode
Ci1iolli3 -
Di1i100: 3 Can we get better encoding:

33 100000001000010000

Huffman Coding

-
<
-
-

Encoding ABRACADABRA

A B R A C A D A B R A
00O 001 010 OO0 011 000 100 OO0 001 010 000

freq cost
2 g 88? 165 « Encode them using 3-bit strings
R 2 010 6 « Total 33 bits required to encode
cil1ioll i3 i
Dilil100: 3 Can we get better encoding:

? IOOOOOOOIOOOOIOOOO

Huffman Coding

-
<
-
-

Encoding ABRACADABRA

A B R A C A D A B R A
00O 001 010 OO0 011 000 100 OO0 001 010 000

freq cost
2 g 88? 165 « Encode them using 3-bit strings
R 2 010 6 « Total 33 bits required to encode
Ci1iolli3 i
Dilil100: 3 Can we get better encoding:
33 IOOOOOOOIOOOOIOOOO

D A B A R A

Huffman Coding

-
<
-
-

Encoding ABRACADABRA

A B R A C A D A B R A
00O 001 010 OO0 011 000 100 OO0 001 010 000

freq cost
2 g 88? 165 « Encode them using 3-bit strings
R 2 010 6 « Total 33 bits required to encode
Ci1iolli3 i
Dilil100: 3 Can we get better encoding:
33 IOOOOOOOIOOOOIOOOO

a unique decoding«— D A B A R A

Huffman Coding

OO0 ®>™

Huffman Coding

« B(T,{f.H=2Zf.l

OO0 ®>™

Huffman Coding

« B(T,{f.H=2f_l.

 try to minimize the function B

OO0 ®>™

Huffman Coding

B(T,{f.})=Zf.l,
 try to minimize the function B

* use smaller length encoding for the
character having larger frequency

OO0 ®>™

Huffman Coding

B(T,{f.})=Zf.l,
 try to minimize the function B

* use smaller length encoding for the
character having larger frequency

Huffman Coding

B(T,{f.})=Zf.l,
 try to minimize the function B

* use smaller length encoding for the
character having larger frequency

Huffman Coding

cost

5 B(T,{f.})=2Zf.l.
i « try to minimize the function B

g * use smaller length encoding for the
ETE character having larger frequency

Is there any problem for this encoding?

Huffman Coding

cost
5 B(T,{f.})=2Zf.l.
i « try to minimize the function B
: g * use smaller length encoding for the
? character having larger frequency

Is there any problem for this encoding?

00110110

Huffman Coding

cost
5 B(T,{f.})=2Zf.l.
i « try to minimize the function B
: g * use smaller length encoding for the
? character having larger frequency

Is there any problem for this encoding?

001110110

Huffman Coding

cost
5 B(T,{f.})=2Zf.l.
i « try to minimize the function B
: g * use smaller length encoding for the
? character having larger frequency

Is there any problem for this encoding?

001110110
AAD R C

Huffman Coding

cost
5 B(T,{f.})=2Zf.l.
i « try to minimize the function B
: g * use smaller length encoding for the
? character having larger frequency

Is there any problem for this encoding?

00110110 AADRC
ARBR C

Huffman Coding

cost
5 « B(T,{f.H=2f.l
i * try to minimize the function B
| g * use smaller length encoding for the
? character having larger frequency

Is there any problem for this encoding?

0:0i111:0i1 1.0 AADRC
e ARBRC
AABBA D A

Huffman Coding

freq cost
Ai5i 05 © BT.{fh=2fl
g g 011 i * try to minimize the function B
g i 11(1) g « use smaller length encoding for the
: ? character having larger frequency

Is there any problem for this encoding?

0:0i1i1i0i1 1i0 AADRC
A ARBRC
AABBA D A A ABBADA

Huffman Coding

freq cost
Ai5i 05 © BT.{fh=2fl
g g 011 i * try to minimize the function B
g i 11(1) g « use smaller length encoding for the
: ? character having larger frequency

Is there any problem for this encoding?

0:0i1i1i0i1 1i0 AADRC
A ARBRC
AABBA D A A ABBADA

Huffman Coding

cost
5 « B(T,{f.H=2f.l
i * try to minimize the function B
| g * use smaller length encoding for the
? character having larger frequency

Is there any problem for this encoding?

0i0i11i0i11:0 AADRC
A ARBRC
AABBA D A A ABBADA

decoding is not unique

Huffman Coding

freq cost
Ai5i 05 B(T, {fh=2fcl
g g 011 i * try to minimize the function B
g i ' 11(1) g « use smaller length encoding for the
? character having larger frequency

Is there any problem for this encoding?

0i0111:011 1.0 AADRC
JUULULIE ARBRC
AABBA D A AABBADA

decoding is not unique

to get unique decoding, coding should be 'prefix-free’

Huffman Coding

freq cost
Ai5i 05 B(T, {fh=2fcl
g g 011 i * try to minimize the function B
g i ' 11(1) g « use smaller length encoding for the
? character having larger frequency

to get unique decoding, coding should be 'prefix-free’

Huffman Coding

freq cost
Ai5i 05 B(T, {fh=2fcl
g g 011 i * try to minimize the function B
g i ' 11(1) g « use smaller length encoding for the
? character having larger frequency

to get unique decoding, coding should be 'prefix-free’

Coding is called 'prefix free' if for any i, j. encoding c; is
hot prefix of encoding c;

Huffman Coding

freq cost
Ai5i 05 B(T, {fh=2fcl
g g 011 i * try to minimize the function B
g i ' 11(1) g « use smaller length encoding for the
? character having larger frequency

to get unique decoding, coding should be 'prefix-free’

Coding is called 'prefix free' if for any i, j. encoding c; is
hot prefix of encoding c;

encoding of B -1- is prefix of encoding of C -10-

10

Huffman Coding

freq cost
Ai5i 05 B(T, {fh=2fcl
g g 011 i * try to minimize the function B
g i ' 11(1) g « use smaller length encoding for the
? character having larger frequency

to get unique decoding, coding should be 'prefix-free’

Coding is called 'prefix free' if for any i, j. encoding c; is
hot prefix of encoding c;

encoding of B -1- is prefix of encoding of C -10-

10

IO:C/

Huffman Coding

B(T,.{f.H=2f_l.

* use smaller length encoding for the

5
P 2
01i 4 * try to minimize the function B
2
L character having larger frequency

to get unique decoding, coding should be 'prefix-free’

Coding is called 'prefix free' if for any i, j. encoding c; is
hot prefix of encoding c;

encoding of B -1- is prefix of encoding of C -10-

10

10-= /\10 BA

Huffman Coding

:M. « If you have a prefix-free code, you
Ai25 can uniquely decode it
E:18
M:i 13

10

rCHAXA®
—= N O N

Huffman Coding

:fM If you have a prefix-free code, you
Ai25 can uniquely decode it
E 18
M: 13 - encoding for each char ends with 'O’

i 10
use different length encoding for
each char

rCHAXA®
—= N O N

freq

Ai25i0

E

18

M: 13

CFCHRA®

10
7

2
1}

10
110
1110

: 11110

111110
1111110
11111110

Huffman Coding

 If you have a prefix-free code, you
can uniquely decode it

encoding for each char ends with 0’

use different length encoding for
each char

freq cost
Ai25i0 i 25
Ei18i10 : 36
Mi13i110 {39
Bi10i1110 {40
Ki7i11110 i35
Ti 5 i111110 30
Ui 2 1111110 ; 14
L i 1 i11111110} 8

227

Huffman Coding

 If you have a prefix-free code, you
can uniquely decode it

encoding for each char ends with 0’

use different length encoding for
each char

freq cost
Ai25i0 i 25
Ei18i10 : 36
Mi13i110 {39
Bi10i1110 {40
Ki7i11110 i35
Ti 5 i111110 30
Ui 2 1111110 ; 14
L i 1 i11111110} 8
227

Huffman Coding

 If you have a prefix-free code, you
can uniquely decode it

« encoding for each char ends with 'O’

use different length encoding for
each char

11001111001111111010

freq cost
Ai25i0 i 25
Ei18i10 : 36
Mi13i110 {39
Bi10i1110 {40
Ki7i11110 i35
Ti 5 i111110 30
Ui 2 1111110 ; 14
L i 1 i11111110} 8
227

Huffman Coding

 If you have a prefix-free code, you
can uniquely decode it

« encoding for each char ends with 'O’

* use different length encoding for
each char

11001111001111111010

M A

K A L E

freq cost
Ai25i0 i 25
Ei18i10 : 36
Mi13i110 {39
Bi10i1110 {40
Ki7i11110 i35
Ti 5 i111110 30
Ui 2 1111110 ; 14
L i 1 i11111110} 8
227

Huffman Coding

 If you have a prefix-free code, you
can uniquely decode it

« encoding for each char ends with 'O’

* use different length encoding for
each char

11001111001111111010

M A

K A L E

transform this encoding to a binary tree

Huffman Coding

.M'. .CO—ST « for'l', create a left child
Ai25i0 : 25 for 'O’, create a right child
E:i18:10 i 36
M:i 13110 : 39
Bi10i1110 40
Ki 7 :i11110 35
T: 5 il111110 :30
Ui 2 1111110 ; 14
L i 1 i11111110; 8

227

transform this encoding to a binary tree

Huffman Coding

.M'. .CO—ST « for'l', create a left child
A 25:0 : 25 for 'O’, create a right child
E:18:10 i 36
M:i 13110 : 39
B 10 §1110 §4O 1
Ki 7 :i11110 35
T: 5 i111110 30
U 2 11111110 i 14
L1 §IIIIIIIO§ 8

227

transform this encoding to a binary tree

Huffman Coding

.M'. .CO—ST « for'l', create a left child
A 25:0 : 25 for 'O’, create a right child
E:18:10 i 36
M:i 13110 : 39
B 10 §1110 §4O 1 0
Ki 7 :i11110 35 7
T: 5 i111110 30
U 2 11111110 i 14
L1 §IIIIIIIO§ 8
227

transform this encoding to a binary tree

Huffman Coding

.M'. .CO—ST « for'l', create a left child
A 25:0 : 25 for 'O’, create a right child
E:18:i10 i 36
Mi13i110 39
B 10 11110 {40 1 0
Ki7i11110 {35 "
T: 5 i111110 {30 Q
U 2 i1111110 : 14 E
L i 1 i11111110; 8

227

transform this encoding to a binary tree

Huffman Coding

.M'. .CO—ST « for'l', create a left child
A 25:0 : 25 for 'O’, create a right child
E:18:i10 i 36
Mi13i110 39
B 10 11110 {40 1 0
Ki7i11110 {35 "
T: 5 i111110 {30 /"0
U 2 i1111110 : 14 0 E
L i 1 i11111110; 8 m

227

transform this encoding to a binary tree

Huffman Coding

:M': :CO—ST « for'l', create a left child
A:25i0 $ 29 for'0’, create a right child
Ei1gilo 36
Mi13i110 (39
B 101110 |40 1 A0
Ki7i11110 i35 "
T: 5i111110 {30 /"0
Ui 21111110 | 14 Ko [E
L i 1 :11111110; 8

. . OO O M

227

transform this encoding to a binary tree

freq cost
Ai25i0 i 25
E:18:10 : 36
Mi13i110 §39
B{10i1110 (40
Ki7:i11110 35
Ti 5111110 30
Ui 2 i1111110 ; 14
L i 1 11111110} 8
227

Huffman Coding

« for'l', create a left child
for '0', create a right child

L

—

characters will be
leaves of the tree

transform this encoding to a binary tree

Huffman Coding

freq cost
Ai25i0 i 25
E:18:10 : 36
Mi13i110 §39
B{10i1110 (40
Ki7:i11110 35
Ti 5111110 30
Ui 2 i1111110 ; 14
L i 1 11111110} 8
227

to get an optimal encoding,
create an optimal tree

« for'l', create a left child
for '0', create a right child

L

—

characters will be
leaves of the tree

transform this encoding to a binary tree

Huffman Coding

freq cost
Ai25i0 i 25
E:18:10 : 36
Mi13i110 §39
B{10i1110 (40
Ki7:i11110 35
Ti 5111110 30
Ui 2 i1111110 ; 14
L i 1 11111110} 8
227

to get an optimal encoding,
create an optimal tree

optimal encoding = optimal tree

« for'l', create a left child
for '0', create a right child

L

—

characters will be
leaves of the tree

transform this encoding to a binary tree

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof :

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

T

/2\

/A\

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

Z)\
A

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

T remove that node
from the tree

] A ’
/6\

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

T remove that node R
from the tree

AN A A
A

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

remove that node R
from the tree

2 A A
A

Because all characters in subtree B of T* have
encodings 1 bit shorter than encodings in subtree B
of T,

B(T) > B(T*)

Huffman Coding

« sort all frequencies in decreasing order

Huffman Coding

« sort all frequencies in decreasing order

25 18 13 10 7 5

Huffman Coding

« sort all frequencies in decreasing order
 start with lowest two frequencies

25 18 13 10 7 5

« sort all frequencies in decreasing order
 start with lowest two frequencies

Huffman Coding

combine them in one one, rearrange to preserve the order

25

18

13

10

3

2\

« sort all frequencies in decreasing order
 start with lowest two frequencies

Huffman Coding

combine them in one one, rearrange to preserve the order

25

18

13

10

3

AN

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25 18 13 10 7 8

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25 18 13 10 7 &> 8
5 3

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25 18 13 10 8 7

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25 18 13 10 8 7

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25 18 13 10 15

2\

8 7

AN
AN

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25 18 15 13 10

2\

8 7

AN
AN

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25 18 15 13 10

AN

8 7

AN
AN

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25 18 15 23

NN

8 7 13 10

AN
AN

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25 23 18 15

2\ AN

13 10 8 7

AN
AN

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25 23 18 15

N AN

13 10 8 7

AN
AN

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25 23 33

NN

13 10 18 15

AN
AN

8
/\
5

2

7
1

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

33 25 23

AN N

18 15 13 10

AN
AN

8
/\
5

2

7
1

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

33 25 23

AN N

18 15 13 10

AN
AN

8
/\
5

2

7
1

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

33 48
PN /\
18 15 25 23
/\ /\
8 7 13 10
/\
5 3
/\
2 1

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

48 33
/\ /\
25 23 18 15
PN N
13 10 8 7
/\\
5 3
N
2 1

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
48 33
/\ /\
25 23 18 15
PN N
13 10 8 7
/\\
5 3
N
2 1

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
48 33
/\ /\
25 23 18 15
PN N
13 10 8 7
/\\
5 3
N
2 1

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0
48 33
22 SN
25 23 18 15
72 S 7\
13 10 8 7
LN\
5 3
N
2 1

« sort all frequencies in decreasing order

Huffman Coding

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25

81

0

LN\

1

10

3
1
8
8
LN\

5

3

0

15
2

:

0

3
2N
2 1

FCHA®=M>

freq

i 25

~NONS R

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0
freq
18 >3 Ai25011
1,7 \Q 17\0 E | 1801
25| |23 8| |15 M: 13101
B | 10100
N L\ K i 7000
13| |10 8 7 T 2001
B Ui 2 i00101
N L i 100100
5 3
N\
2 1

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 o)

freq cost
Ai25i11 {50

1,70 1N\ Ei18i01 (36

M: 13:i101 39

3
1
acl I a B 10100 30
LN Ki7:i000 ;a2
13 10 8 T 5 ;OOll ;20
1 Ui 200101 : 10
N\ L 1:00100} 5

5

3

0

15
2

:

0

3
2N
2 1

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 o)

freq cost
Ai25i11 {50

1,70 1N\ Ei18i01 (36

M: 13:i101 39

3
1
21 12 o B10i100 30
LN Ki7:i000 ;a2
13 10 8 T 5 ;OOll ;20
1 Ui 200101 10
N\ L 1:00100} 5
2 211

3

0

15
2

:

0

3
2N
2 1

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81

: . fre cost
B i A 7*5(111 50
LN S Ei18i01 36
S @ BB ks
A LN B LN Ki7iooo |21
13 10 8 7 T 5 20011 520
MBI\ K C 10010 5
5 3 —

TN

2 | |1

U L

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 o)
fr-eg cost
20 > Ai25ill : 50
N N F ol 38
o [[[3 EERE:
A LN B LN Ki7:i000 a2l
B OEm m
MoB N0 K L 1:00100: 5
decoding z : 21l
start from the root T N
left for '1' - right for 'O’ 5 1

end of decoding when
you reach a leaf U L

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

4/1 81 .
B i A f;—?u C;—;f
LN S Ei18i01 36
25 23 18 15 g’\ 18 ig(l) 3(9)
A LN B LN Ki7i000 i21
13 10 8 7 T 5 20011 520
mB N K L 100100 5
decoding S 3 211
start from the root T N
left for '1' - right for 'O’ > ; 10001000

end of decoding when
you reach a leaf U L

« sort all frequencies in decreasing order

Huffman Coding

 start with lowest two frequencies

combine them in one one, rearrange to preserve the order

25

A

decoding

1

23

13

start from the root
left for '1' - right for 'O’

M

7

end of decoding when
you reach a leaf

81

N

0

3

LN\

1

10

B

E LN

3
1

8
LN\

K

0
15
1
0
5 3
T

2

0

-
0
1

U

L

freq cost
Ai25i11 {50
Eiigiol 36
Mi 13101 (39
B:10i100 |30
Ki7iooo i21
T 5i0011 {20
Ui 2ioo101 ;10
L i 1i00100i 5
211
10001000

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies

combine them in one one, rearrange to preserve the order

81
1

17~
25 23
AN\,
13 10
M B

decoding

start from the root
left for '1' - right for 'O’
end of decoding when
you reach a leaf

0

3

LN\

1

E LN

3
1

8
LN\

K

0
15
1
0
5 3
T

2

0

-
0
1

U

L

freq cost
Ai25i11 {50
Eiigiol 36
Mi 13101 (39
B:10i100 |30
Ki7iooo i21
T 5i0011 {20
Ui 2ioo101 ;10
L i 1i00100i 5
211
10001000

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0
fpeg cost
48 S Ai25i11 150
1,7 N\Q 17\0 Ei18i01 (36
5] [e3] [18] [51101100 |30
A LN E 1N\Q Ki7ioo0 i1
A B N
M B LN K Li 100100 5
decoding \ 2 : 2l
start from the root T N
left for '1' - right for ‘0’ 5 1 1 O O O 1 O O O
end of decoding when

you reach a leaf U L B

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

1 81 O\A
B i A f;—?u C;—;f
LN S Ei18i01 36
25 23 18 15 g’\ 18 ig(l) 3(9)
A LN B LN Ki7i000 i21
13 10 8 7 T 5 20011 520
mB N K L 100100 5
decoding S 3 211
start from the root T N
left for '1' - right for 'O’ > ; 10001000

end of decoding when
you reach a leaf U L B

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0]

freq cost

48 e Ai25i11 150

1,7 \Q / 17\0 Ei18i01 (36

5] 3] T[] [5101100 |30

A LN E 1N\Q Ki7i000 a1
A B N

M B LN K Li 100100 5

decoding > > 2l

start from the root T N

left for '1' - right for ‘0’ 5 1 1 O O O 1 O O O

end of decoding when
you reach a leaf U L B

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0
fpeg cost
48 33 Ai25i11 150
1,7 N\Q 17\0 Ei18i01 (36
5] [3] [] [8 101100 30
A LN E LN Ki7:i000 a2l
Sl RO M R
M B/ LN K Li 100100 5
decoding > > 2l
start from the root T N
left for '1' - right for ‘0’ 5 1 1 O O O 1 O O O
end of decoding when

you reach a leaf U L B E

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 o

i > A f;—?u C;—;f

LN S Ei18i01 36

25 23 18 15 g’\ 18 ig(l) 3(9)

A LN B LN Ki7i000 i21

13 10 8 7 T 5 20011 520

MBI K C 1001005

decoding S 3 211
start from the root T N

left for '1' - right for 'O’ > ; 10001000

end of decoding when

you reach a leaf U L B E

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0

freq cost

48 o Ai25i11 150

1,7 N\Q m\ Ei18i01 (36

5] [3] [1] [8101100 30

A LN E 1N\Q Ki7i000 a1
A B N

M B LN K Li 100100 5

decoding > > 2l

start from the root T N

left for '1' - right for ‘0’ 5 1 1 O O O 1 O O O

end of decoding when

you reach a leaf U L B E

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0
fpeg cost
48 S Ai25i11 150
1,7 N\Q 17\0 Ei18i01 (36
5] [23] [] [81101100 |30
A LN E N\ Ki7ioo0 i1
1 [I T D O W
M B LN K Li 100100 5
decoding > > 2l
start from the root T N
left for '1' - right for ‘0’ 5 1 1 O O O 1 O O O
end of decoding when

you reach a leaf U L B E

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0
freq cost
18 > Ai25i11 50

Eil18iol 36
Mi13i101 (39
B{10i100 30

i 7i000 21
10011 20

I SZN

25 23 1

3
1
A m F /\
8 7 : E
m B y\ 100101 : 10

0
15
1 0

0 K 100100 | 5
decoding g > \ 2l
start from the root T N
left for '1' - right for 'O’ 5 1 10001000
end of decoding when
you reach a leaf U L B E K

TCHR
= N Ol N

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 o)

freq cost
Ai25i11 {50

1,70 1N\ Ei18i01 (36

M: 13:i101 39

3
1
21 12 o B10i100 30
LN Ki7:i000 ;a2
13 10 8 T 5 ;OOll ;20
1 Ui 200101 10
N\ L 1:00100} 5
2 211

3

0

15
2

:

0

3
2N
2 1

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25

81

0

1

10

5

33
N
8 15
7\
8 7
7\

3

/N0

V4

2

>,

freq cost
Ai25ill i 50
Ei18:i01 : 36
M:i13i101 (39
B:{10i100 {30
i 7i000 :21
10011 20
100101 § 10
100100 { 5

211

TCHR
= N Ol N

two symbols with lowest
requencies will be siblings placed
at lowest level in the tree

Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0
fre cost
10 > A 7;111 : 50
LN S Ei18i01 (36
25 23 18 15 M 13 5101 39
B:10i100 |30
N L\ Ki7:i000 21
Sl e B H
N0 L 100100 5
(2 3 211
BZERY
2 1 two symbols with lowest

frequencies will be siblings placed
at lowest level in the tree

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

T

N

Z "\

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

T « Because T is a full tree, there should
be two symbols a and b that are
y siblings placed at the lowest level in T
X

2\

a b

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal

solution)
Proof

Assume there is an optimal tree T where x and y are not siblings.

T

N

2\

a b

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fu. fy<fa. fiy

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal

solution)
Proof

Assume there is an optimal tree T where x and y are not siblings.

T

N

2\

a b

swap x and a

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fu. fy<fa. fiy

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the

smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal

solution)
Proof

Assume there is an optimal tree T where x and y are not siblings.

T

N

2\

a

b

swap x and a

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fu. fy<fa. fiy

solution)
Proof

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal

Assume there is an optimal tree T where x and y are not siblings.

T

N

2\

a b

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fu. fy<fa. fiy

B(T) =

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest

frequencies,
fu. fy<fe. fp

B(T)=C+

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest

frequencies,
fu. fy<fe. fp

B(T) = C+ fule+ folg

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest

frequencies,
fu. fy<fe. fp

B(T) = C+ fili + folq
B(T) =C+fila+ fols

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest

frequencies,
fu. fy<fe. fp

B(T) = C+ fili + folq
B(T) =C+fila+ fols
B(T)-B(T)=

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fo f, < fo, o

B(T) = C+f, .l +f.l
B(T)=C+ 1l +fols
B(T) - B(T ‘) - fx (lx - Ia) + fa (la - Ix)

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fo f, < fo, o

B(T) = C+fl+ful,

B(T)=C+fl, +fals

B(T) - B(T ‘) - fx (Ix B Ia) + fa (la - Ix)
= (la - Ix) (fa - fx) >0

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the

smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal

solution)
Proof

Assume there is an optimal tree T where x and y are not siblings.

T

N

2\

a

b

swap y and b

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fu. fy<fa. fiy

B(T) = C+fl+ful,

B(T)=C+fl, +fals

B(T) - B(T ‘) - fx (Ix B Ia) + fa (Ia - Ix)
= (la - Ix) (fa - fx) >0

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the

smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal

solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

TII

AN

"\

X

)4

swap y and b

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fu. fy<fa. fiy

B(T) = C+fl+ful,

B(T)=C+fl, +fals

B(T) - B(T ‘) - fx (Ix B Ia) + fa (Ia - Ix)
= (la - Ix) (fa - fx) >0

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the

smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal

solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

TII

AN

/X

o

S~

X

)4

swap y and b

[

—
AN
/X

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fu. fy<fa. fiy

B(T) = C+fl+ful,

B(T)=C+fl, +fals

B(T) - B(T ‘) - fx (Ix B Ia) + fa (Ia - Ix)
= (la - Ix) (fa - fx) >0

B(T)-B(T)20

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the

smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal

Assume there is an optimal tree T where x and y are not siblings.

this is a contradiction «———

[

solution)
Proof
—
& T
CI/ \ \\/ 1
=/ & /X
X b
swap y and b

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fu. fy<fa. fiy

B(T) = C+fl+ful,

B(T)=C+fl, +fals

B(T) - B(T ‘) - fx (Ix B Ia) + fa (Ia - Ix)
= (la - Ix) (fa - fx) >0

B(T)-B(T)20

Greedy Algorithms

* solve the problem by breaking it a sequence of
subproblems

« make the best local choice among all feasible one
available on that moment (one choice at a time)

* your choice does not depend on any future choices or
any past choices you have made

 prove that the Greedy Choice Property satisfies. A
sequence of locally optimal choices yields a global
optimal solution

