
Greedy Algorithms

Murat Osmanoglu

Interval Scheduling

• given a set of intervals (I1, I2, ... , In)

• each interval Ii has a starting time si, a finishing

time fi

• your task is to find the largest subset of mutually

non-overlapping intervals

Interval Scheduling

• given a set of intervals (I1, I2, ... , In)

• each interval Ii has a starting time si, a finishing

time fi

• your task is to find the largest subset of mutually

non-overlapping intervals

• Suppose there are n meetings requests for a
meeting room.

• Each meeting i has a starting time si and an
ending time ti.

• We have a constraint : no two meetings can
not be scheduled at same time.

• Our goal is to schedule as many meetings as
possible

Interval Scheduling

• given a set of intervals (I1, I2, ... , In)

• each interval Ii has a starting time si, a finishing

time fi

• your task is to find the largest subset of mutually

non-overlapping intervals

I1

I2

I3

I4

I5

I6

I7

I8

Interval Scheduling

• given a set of intervals (I1, I2, ... , In)

• each interval Ii has a starting time si, a finishing

time fi

• your task is to find the largest subset of mutually

non-overlapping intervals

I1

I2

I3

I4

I5

I6

I7

I8

Interval Scheduling

fj
jsj

J-1

OPT (j) = max { OPT (j-1), 1 + OPT (p(j)) }

Dynamic Programming Solution

Interval Scheduling

fj
jsj

J-1

OPT (j) = max { OPT (j-1), 1 + OPT (p(j)) }

Dynamic Programming Solution

Can we get a simpler solution?

Interval Scheduling

• solve the problem in myopic fashion

(don’t pay attention the global situaton - don’t consider

all possible solutions)

• make desicion at each step based on improving local
state

(use greedy approach – pick the one available to you at the

moment based on some fixed and simple priority rules)

Interval Scheduling

• What is the best option?
set the priority rules!

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

start time

• remove all intervals not compatible with the chosen one

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

start time

• remove all intervals not compatible with the chosen one

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the shortest one

• remove all intervals not compatible with the chosen one

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the shortest one

• remove all intervals not compatible with the chosen one

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

finish time

• remove all intervals not compatible with the chosen one

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

finish time

• remove all intervals not compatible with the chosen one

I1

I2

I3

I4

I5

I6

I7

I8

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

finish time

• remove all intervals not compatible with the chosen one

I1

I2

I3

I4

I5

I6

I7

I8

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

finish time

• remove all intervals not compatible with the chosen one

I1

I2

I3

I4

I5

I6

I7

I8

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

finish time

• remove all intervals not compatible with the chosen one

I2 I4

I5

I6

I7

I8

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

finish time

• remove all intervals not compatible with the chosen one

I2 I4

I5

I6

I7

I8

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

finish time

• remove all intervals not compatible with the chosen one

I2 I4

I5

I6

I7

I8

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

finish time

• remove all intervals not compatible with the chosen one

I2 I4

I6

I7

I8

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

finish time

• remove all intervals not compatible with the chosen one

I2 I4

I6

I7

I8

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

finish time

• remove all intervals not compatible with the chosen one

I2 I4

I6

I7

I8

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

finish time

• remove all intervals not compatible with the chosen one

I2 I4

I6
I8

Interval Scheduling

• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

finish time

• remove all intervals not compatible with the chosen one

I2 I4

I6
I8

Interval Scheduling

input : n interval (I1, … , In) together
with their start time and finish time

--sort intervals according to their
finish time (f1 ≤ f2 ≤ … ≤ fn)
--initialize an empty set S

for (i=1 to n)
if interval Ii is compatible with S

S = S ∪ { Ii }
return S

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not
contain the first interval I1.

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not
contain the first interval I1.

Let Ii
* be the interval in S having earliest finish time.

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not
contain the first interval I1.

Let Ii
* be the interval in S having earliest finish time.

Since I1 has the earliest finish time for all, f1 ≤ fi .

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not
contain the first interval I1.

Let Ii
* be the interval in S having earliest finish time.

Since I1 has the earliest finish time for all, f1 ≤ fi .

S* = S – { Ii
* }∪{ I1 } such that ΙS*Ι = ΙSΙ

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not
contain the first interval I1.

Let Ii
* be the interval in S having earliest finish time.

Since I1 has the earliest finish time for all, f1 ≤ fi .

S* = S – { Ii
* }∪{ I1 } such that ΙS*Ι = ΙSΙ

This is a contradiction!

Greedy Algorithms

• solve the problem by breaking it a sequence of
subproblems

• make the best local choice among all feasible one
available on that moment (one choice at a time)

• your choice does not depend on any future choices or
any past choices you have made

• prove that the Greedy Choice Property satisfies. A
sequence of locally optimal choices yields a global
optimal solution

Cashier’s Problem
• given a certain amount of money, M cents, and a set of

denominations of coins c1 , ... , cm

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

Cashier’s Problem
• given a certain amount of money, M cents, and a set of

denominations of coins c1 , ... , cm

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

Cashier’s Problem
• given a certain amount of money, M cents, and a set of

denominations of coins c1 , ... , cm

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

2 + 4 + 5 + 32 = 43

Cashier’s Problem
• given a certain amount of money, M cents, and a set of

denominations of coins c1 , ... , cm

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

2 + 4 + 5 + 32 = 43

4 + 3 + 2 + 7 = 16

Cashier’s Problem
• given a certain amount of money, M cents, and a set of

denominations of coins c1 , ... , cm

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

2 + 4 + 5 + 32 = 43

4 + 3 + 2 + 7 = 16

Cashier’s Problem
• given a certain amount of money, M cents, and a set of

denominations of coins c1 , ... , cm

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

2 + 4 + 5 + 32 = 43

4 + 3 + 2 + 7 = 16

5 +

Cashier’s Problem
• given a certain amount of money, M cents, and a set of

denominations of coins c1 , ... , cm

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

2 + 4 + 5 + 32 = 43

4 + 3 + 2 + 7 = 16

5 + 2 +

Cashier’s Problem
• given a certain amount of money, M cents, and a set of

denominations of coins c1 , ... , cm

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

2 + 4 + 5 + 32 = 43

4 + 3 + 2 + 7 = 16

5 + 2 + 0 +

Cashier’s Problem
• given a certain amount of money, M cents, and a set of

denominations of coins c1 , ... , cm

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

2 + 4 + 5 + 32 = 43

4 + 3 + 2 + 7 = 16

5 + 2 + 0 + 2 = 9

Cashier’s Problem
input : an amount of money M

a set of denominations (c1 , … , cn)

sort denominations
c1 ≥ … ≥ cn

totalw = M
j=1
k=0
while (j ≤ n)

if (cj ≤ totalw)
totalw = totalw - cj

k = k +1
else

j = j +1
return k

Cashier’s Problem
Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination cj ≤ M.

(Our greedy approach yields us an optimal solution)

Proof

Cashier’s Problem
Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination cj ≤ M.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution for M, and 10 ≤ M. But S does not contain any
10.

Cashier’s Problem
Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination cj ≤ M.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution for M, and 10 ≤ M. But S does not contain any
10.

M = a.5 + b.1 (total a + b coins)

Cashier’s Problem
Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination cj ≤ M.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution for M, and 10 ≤ M. But S does not contain any
10.

M = a.5 + b.1 (total a + b coins)

M can be written as

M = a.5 + b.1 = 10 – 10 + a.5 + b.1

Cashier’s Problem
Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination cj ≤ M.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution for M, and 10 ≤ M. But S does not contain any
10.

M = a.5 + b.1 (total a + b coins)

M can be written as

M = a.5 + b.1 = 10 – 10 + a.5 + b.1

= 1.10 + (a – 2).5 + b.1

Cashier’s Problem
Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination cj ≤ M.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution for M, and 10 ≤ M. But S does not contain any
10.

M = a.5 + b.1 (total a + b coins)

M can be written as

M = a.5 + b.1 = 10 – 10 + a.5 + b.1

= 1.10 + (a – 2).5 + b.1 (total a + b – 1 coins)

Cashier’s Problem
Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination cj ≤ M.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution for M, and 10 ≤ M. But S does not contain any
10.

M = a.5 + b.1 (total a + b coins)

M can be written as

M = a.5 + b.1 = 10 – 10 + a.5 + b.1

= 1.10 + (a – 2).5 + b.1 (total a + b – 1 coins)

This is contradiction.

Cashier’s Problem
Will the Greedy Technique give an optimal solution for all denomination set?

Cashier’s Problem
Will the Greedy Technique give an optimal solution for all denomination set?

1610

M = 24

Cashier’s Problem
Will the Greedy Technique give an optimal solution for all denomination set?

1610

M = 24 2 +

Cashier’s Problem
Will the Greedy Technique give an optimal solution for all denomination set?

1610

M = 24 2 + 0 +

Cashier’s Problem
Will the Greedy Technique give an optimal solution for all denomination set?

1610

M = 24 2 + 0 + 4 = 6

Cashier’s Problem
Will the Greedy Technique give an optimal solution for all denomination set?

1610

M = 24 2 + 0 + 4 = 6

4.6 = 24

Cashier’s Problem
Will the Greedy Technique give an optimal solution for all denomination set?

1610

M = 24 2 + 0 + 4 = 6

4.6 = 24
use dynamic programming

Fractional Knapsack
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• you are allowed to get a fraction xi of an item i that yields

a profit xi.pi where 0 ≤ xi ≤ 1

• your goal is to get a filling that maximizes the profit under

the weight constraint M

Fractional Knapsack
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• you are allowed to get a fraction xi of an item i that yields

a profit xi.pi where 0 ≤ xi ≤ 1

• your goal is to get a filling that maximizes the profit under

the weight constraint M

w1=20
P1=10

w2=5
p2=5

w1=15
p1=5

w1=5
p1=15

diamondsgold silverpearl

M = 25

Fractional Knapsack
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• you are allowed to get a fraction xi of an item i that yields

a profit xi.pi where 0 ≤ xi ≤ 1

• your goal is to get a filling that maximizes the profit under

the weight constraint M

w1=20
P1=10

w2=5
p2=5

w1=15
p1=5

w1=5
p1=15

diamondsgold silverpearl

M = 25

p1/w1 =1/2 p2/w2 =1 p3/w3 =1/3 p4/w4 =3

Fractional Knapsack
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• you are allowed to get a fraction xi of an item i that yields

a profit xi.pi where 0 ≤ xi ≤ 1

• your goal is to get a filling that maximizes the profit under

the weight constraint M

w1=20
P1=10

w2=5
p2=5

w1=15
p1=5

w1=5
p1=15

diamondsgold silverpearl

M = 25

p1/w1 =1/2 p2/w2 =1 p3/w3 =1/3 p4/w4 =3

M = 25

Fractional Knapsack
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• you are allowed to get a fraction xi of an item i that yields

a profit xi.pi where 0 ≤ xi ≤ 1

• your goal is to get a filling that maximizes the profit under

the weight constraint M

w1=20
P1=10

w2=5
p2=5

w1=15
p1=5

w1=5
p1=15

diamondsgold silverpearl

M = 25

p1/w1 =1/2 p2/w2 =1 p3/w3 =1/3 p4/w4 =3

3 . 5M = 25

Fractional Knapsack
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• you are allowed to get a fraction xi of an item i that yields

a profit xi.pi where 0 ≤ xi ≤ 1

• your goal is to get a filling that maximizes the profit under

the weight constraint M

w1=20
P1=10

w2=5
p2=5

w1=15
p1=5

w1=5
p1=15

diamondsgold silverpearl

M = 25

p1/w1 =1/2 p2/w2 =1 p3/w3 =1/3 p4/w4 =3

3 . 5 + 1 . 5 M = 20

Fractional Knapsack
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• you are allowed to get a fraction xi of an item i that yields

a profit xi.pi where 0 ≤ xi ≤ 1

• your goal is to get a filling that maximizes the profit under

the weight constraint M

w1=20
P1=10

w2=5
p2=5

w1=15
p1=5

w1=5
p1=15

diamondsgold silverpearl

M = 25

p1/w1 =1/2 p2/w2 =1 p3/w3 =1/3 p4/w4 =3

3 . 5 + 1 . 5 + (1/2) . 15 M = 15

Fractional Knapsack
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• you are allowed to get a fraction xi of an item i that yields

a profit xi.pi where 0 ≤ xi ≤ 1

• your goal is to get a filling that maximizes the profit under

the weight constraint M

w1=20
P1=10

w2=5
p2=5

w1=15
p1=5

w1=5
p1=15

diamondsgold silverpearl

M = 25

p1/w1 =1/2 p2/w2 =1 p3/w3 =1/3 p4/w4 =3

3 . 5 + 1 . 5 + (1/2) . 15 = 27.5 M = 0

Fractional Knapsack
input : n items together with their prices pi

and weight wi, and a knapsack with the capacity M

sort items according to the ratio (pi/wi)
(p1/w1) ≤ … ≤ (pn/wn)
totalw = M
j=1
while (totalw > 0)

if (wj > totalw)
add totalw fraction of item j to the knapsack
totalw = 0

else
add item j to the knapsack
totalw = totalw - wj

j = j + 1
return knapsack

Fractional Knapsack
Theorem (Greedy-choice property): Let j be the item with the
maximum ratio pi/wi. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof

Fractional Knapsack
Theorem (Greedy-choice property): Let j be the item with the
maximum ratio pi/wi. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of

capacity M and total profit U.

Fractional Knapsack
Theorem (Greedy-choice property): Let j be the item with the
maximum ratio pi/wi. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of

capacity M and total profit U.

Assume S does not contain the item j as much as possible.

There must exist some item k such that k ≠ j and (pk / wk) < (pj / wj)

Fractional Knapsack
Theorem (Greedy-choice property): Let j be the item with the
maximum ratio pi/wi. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of

capacity M and total profit U.

Assume S does not contain the item j as much as possible.

There must exist some item k such that k ≠ j and (pk / wk) < (pj / wj)

We take out some amount of item k, (suppose α) and

put same amount of item j.

S* = S – {α of item k}∪{α of item j}

Fractional Knapsack
Theorem (Greedy-choice property): Let j be the item with the
maximum ratio pi/wi. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of

capacity M and total profit U.

Assume S does not contain the item j as much as possible.

There must exist some item k such that k ≠ j and (pk / wk) < (pj / wj)

We take out some amount of item k, (suppose α) and

put same amount of item j.

S* = S – {α of item k}∪{α of item j}

Let U* be the profit of S*. Then,

U* = U – α.(pk / wk) + α.(pj / wj)

Fractional Knapsack
Theorem (Greedy-choice property): Let j be the item with the
maximum ratio pi/wi. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of

capacity M and total profit U.

Assume S does not contain the item j as much as possible.

There must exist some item k such that k ≠ j and (pk / wk) < (pj / wj)

We take out some amount of item k, (suppose α) and

put same amount of item j.

S* = S – {α of item k}∪{α of item j}

Let U* be the profit of S*. Then,

U* = U – α.(pk / wk) + α.(pj / wj)

Since (pk / wk) < (pj / wj), U* > U.

Fractional Knapsack
Theorem (Greedy-choice property): Let j be the item with the
maximum ratio pi/wi. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of

capacity M and total profit U.

Assume S does not contain the item j as much as possible.

There must exist some item k such that k ≠ j and (pk / wk) < (pj / wj)

We take out some amount of item k, (suppose α) and

put same amount of item j.

S* = S – {α of item k}∪{α of item j}

Let U* be the profit of S*. Then,

U* = U – α.(pk / wk) + α.(pj / wj)

Since (pk / wk) < (pj / wj), U* > U.

This is contradiction!

0/1 Knapsack Problem
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• your goal is to get a filling that maximizes the profit under

the weight constraint M

(You cannot take fraction of an item, you take the item or not)

0/1 Knapsack Problem
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• your goal is to get a filling that maximizes the profit under

the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

0/1 Knapsack Problem
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• your goal is to get a filling that maximizes the profit under

the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

w1=10
p1=60

w2=20
p2=100

w3=30
p3=120

p1/w1 =6 p2/w2 =5 p3/w3 =4

M = 50

0/1 Knapsack Problem
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• your goal is to get a filling that maximizes the profit under

the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

w1=10
p1=60

w2=20
p2=100

w3=30
p3=120

p1/w1 =6 p2/w2 =5 p3/w3 =4

60 M = 50

M = 50

0/1 Knapsack Problem
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• your goal is to get a filling that maximizes the profit under

the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

w1=10
p1=60

w2=20
p2=100

w3=30
p3=120

p1/w1 =6 p2/w2 =5 p3/w3 =4

60 + 100 M = 40

M = 50

0/1 Knapsack Problem
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• your goal is to get a filling that maximizes the profit under

the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

w1=10
p1=60

w2=20
p2=100

w3=30
p3=120

p1/w1 =6 p2/w2 =5 p3/w3 =4

60 + 100 = 160M = 20

M = 50

0/1 Knapsack Problem
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• your goal is to get a filling that maximizes the profit under

the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

w1=10
p1=60

w2=20
p2=100

w3=30
p3=120

p1/w1 =6 p2/w2 =5 p3/w3 =4

60 + 100 = 160M = 20

M = 50

100 + 120 = 220

0/1 Knapsack Problem
• given n items and a knapsack with the capacity M

• each item i has a weight wi, and a value pi

• your goal is to get a filling that maximizes the profit under

the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

w1=10
p1=60

w2=20
p2=100

w3=30
p3=120

p1/w1 =6 p2/w2 =5 p3/w3 =4

60 + 100 = 160M = 20

M = 50

100 + 120 = 220

use dynamic programming

Process Scheduling
• given a computer and n processes p1, ... , pn such that each of

them has a completion time ti

• find an optimal order of processes that has the minimum average
finishing time

Process Scheduling
• given a computer and n processes p1, ... , pn such that each of

them has a completion time ti

• find an optimal order of processes that has the minimum average
finishing time

If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,

then the average finishing time will be (Σi=1..n Ci)/n.

Process Scheduling
• given a computer and n processes p1, ... , pn such that each of

them has a completion time ti

• find an optimal order of processes that has the minimum average
finishing time

If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,

then the average finishing time will be (Σi=1..n Ci)/n.

Our goal is to minimize (Σi=1..n Ci)/n

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

t1 = 4 t2 = 2 t3 = 5 t4 = 3

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t1 = 4 t2 = 2 t3 = 5 t4 = 3

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t1 = 4 t2 = 2 t3 = 5 t4 = 3

C1=4 C2=6 C3=11 C4=14

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t1 = 4 t2 = 2 t3 = 5 t4 = 3

C1=4 C2=6 C3=11 C4=14 C* = (4+6+11+14)/4
C* = 8.75

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t1 = 4 t2 = 2 t3 = 5 t4 = 3

C1=4 C2=6 C3=11 C4=14 C* = (4+6+11+14)/4
C* = 8.75

t3 = 5 t1 = 4 t4 = 3 t2 = 2

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t1 = 4 t2 = 2 t3 = 5 t4 = 3

C1=4 C2=6 C3=11 C4=14 C* = (4+6+11+14)/4
C* = 8.75

t3 = 5 t1 = 4 t4 = 3 t2 = 2

C1=5 C2=9 C3=12 C4=14

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t1 = 4 t2 = 2 t3 = 5 t4 = 3

C1=4 C2=6 C3=11 C4=14 C* = (4+6+11+14)/4
C* = 8.75

t3 = 5 t1 = 4 t4 = 3 t2 = 2

C1=5 C2=9 C3=12 C4=14 C* = (5+9+12+14)/4
C* = 10

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

this part is constant

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

t1 t2 t3
. . . tn

C1 = t1

C2 = t1 + t2

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

t1 t2 t3
. . . tn

C1 = t1

C2 = t1 + t2

C3 = t1 + t2 + t3

.

.

.
Cn = t1 + t2 + t3 + . . . + tn

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

t1 t2 t3
. . . tn

C1 = t1

C2 = t1 + t2

C3 = t1 + t2 + t3

.

.

.
Cn = t1 + t2 + t3 + . . . + tn

Σi=1..n Ci = n.t1 + (n-1).t2 + . . . + tn

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

t1 t2 t3
. . . tn

C1 = t1

C2 = t1 + t2

C3 = t1 + t2 + t3

.

.

.
Cn = t1 + t2 + t3 + . . . + tn

Σi=1..n Ci = n.t1 + (n-1).t2 + . . . + tn

small t1 makes the sum smaller

Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,
then the average finishing time will be (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n

t1 t2 t3
. . . tn

C1 = t1

C2 = t1 + t2

C3 = t1 + t2 + t3

.

.

.
Cn = t1 + t2 + t3 + . . . + tn

Σi=1..n Ci = n.t1 + (n-1).t2 + . . . + tn

small t1 makes the sum smaller

Greedy Approach : sort the processes according to
the completion time in increasing order

Process Scheduling
Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof

Process Scheduling
Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof
Assume there is an optimal sequence S* in which the processes have not been
sorted.

Process Scheduling
Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof
Assume there is an optimal sequence S* in which the processes have not been
sorted. Then there should be indices i and j such that i < j and tj < ti

ti-1 ti tj tj+1
.

ii-1 j j+1

Process Scheduling
Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof
Assume there is an optimal sequence S* in which the processes have not been
sorted. Then there should be indices i and j such that i < j and tj < ti

ti-1 ti tj tj+1
.

What happens if we swap i and j?

ii-1 j j+1

Process Scheduling
Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof
Assume there is an optimal sequence S* in which the processes have not been
sorted. Then there should be indices i and j such that i < j and tj < ti

ti-1 ti tj tj+1
.

What happens if we swap i and j?

ti-1 tj+1
. tj ti

ii-1 j j+1

ii-1 j j+1

Process Scheduling
Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof
Assume there is an optimal sequence S* in which the processes have not been
sorted. Then there should be indices i and j such that i < j and tj < ti

ti-1 ti tj tj+1
.

What happens if we swap i and j?

• finishing time of the processes up
to i-1 not changing
(C1 , …, Ci-1 remain same)

• finishing time of the processes
after j not changing
(Cj , …, Cn remain same)

ti-1 tj+1
. tj ti

ii-1 j j+1

ii-1 j j+1

Process Scheduling
Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof
Assume there is an optimal sequence S* in which the processes have not been
sorted. Then there should be indices i and j such that i < j and tj < ti

ti-1 ti tj tj+1
.

What happens if we swap i and j?

• finishing time of the processes up
to i-1 not changing
(C1 , …, Ci-1 remain same)

• finishing time of the processes
after j not changing
(Cj , …, Cn remain same)

• Let ∆= 𝑡𝑖 − 𝑡𝑗. ti-1 tj+1
. tj ti

ii-1 j j+1

ii-1 j j+1

Process Scheduling
Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof
Assume there is an optimal sequence S* in which the processes have not been
sorted. Then there should be indices i and j such that i < j and tj < ti

ti-1 ti tj tj+1
.

What happens if we swap i and j?

• finishing time of the processes up
to i-1 not changing
(C1 , …, Ci-1 remain same)

• finishing time of the processes
after j not changing
(Cj , …, Cn remain same)

• Let ∆= 𝑡𝑖 − 𝑡𝑗. Then
𝐶𝑖
∗ = 𝐶𝑖 − ∆

ti-1 tj+1
. tj ti

ii-1 j j+1

ii-1 j j+1

Process Scheduling
Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof
Assume there is an optimal sequence S* in which the processes have not been
sorted. Then there should be indices i and j such that i < j and tj < ti

ti-1 ti tj tj+1
.

What happens if we swap i and j?

• finishing time of the processes up
to i-1 not changing
(C1 , …, Ci-1 remain same)

• finishing time of the processes
after j not changing
(Cj , …, Cn remain same)

• Let ∆= 𝑡𝑖 − 𝑡𝑗. Then
𝐶𝑖
∗ = 𝐶𝑖 − ∆

𝐶𝑖+1
∗ = 𝐶𝑖+1 − ∆

⋮
𝐶𝑗−1
∗ = 𝐶𝑗−1 − ∆

ti-1 tj+1
. tj ti

ii-1 j j+1

ii-1 j j+1

Process Scheduling
Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof
Assume there is an optimal sequence S* in which the processes have not been
sorted. Then there should be indices i and j such that i < j and tj < ti

ti-1 ti tj tj+1
.

What happens if we swap i and j?

• finishing time of the processes up
to i-1 not changing
(C1 , …, Ci-1 remain same)

• finishing time of the processes
after j not changing
(Cj , …, Cn remain same)

• Let ∆= 𝑡𝑖 − 𝑡𝑗. Then
𝐶𝑖
∗ = 𝐶𝑖 − ∆

𝐶𝑖+1
∗ = 𝐶𝑖+1 − ∆

⋮
𝐶𝑗−1
∗ = 𝐶𝑗−1 − ∆

ti-1 tj+1
. tj ti

ii-1 j j+1

ii-1 j j+1

• Σi=1..n Ci decreasing

Process Scheduling
Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the completion time. Then S is an optimal
sequence. (Our greedy approach yields us an optimal solution)

Proof
Assume there is an optimal sequence S* in which the processes have not been
sorted. Then there should be indices i and j such that i < j and tj < ti

ti-1 ti tj tj+1
.

What happens if we swap i and j?

• finishing time of the processes up
to i-1 not changing
(C1 , …, Ci-1 remain same)

• finishing time of the processes
after j not changing
(Cj , …, Cn remain same)

• Let ∆= 𝑡𝑖 − 𝑡𝑗. Then
𝐶𝑖
∗ = 𝐶𝑖 − ∆

𝐶𝑖+1
∗ = 𝐶𝑖+1 − ∆

⋮
𝐶𝑗−1
∗ = 𝐶𝑗−1 − ∆

ti-1 tj+1
. tj ti

ii-1 j j+1

ii-1 j j+1

• Σi=1..n Ci decreasingthis is a contradiction

Minimizing Lateness

• given a computer and n processes p1, ... , pn such that each of
them has a processing time ti and a deadline di

• find an optimal order of processes that minimizes the maximum
lateness

Minimizing Lateness

• given a computer and n processes p1, ... , pn such that each of
them has a processing time ti and a deadline di

• find an optimal order of processes that minimizes the maximum
lateness

If we define the finishing time fi of the process i as fi = Σj=1..itj ,

then the lateness of the process i will be li = max {0, fi - di }

Minimizing Lateness

• given a computer and n processes p1, ... , pn such that each of
them has a processing time ti and a deadline di

• find an optimal order of processes that minimizes the maximum
lateness

If we define the finishing time fi of the process i as fi = Σj=1..itj ,

then the lateness of the process i will be li = max {0, fi - di }

Our goal is to minimize L = maxi li

• Given t1 , … , tn

• If we define the finishing time fi of the process i as fi = Σj=1..itj,
then the lateness of the process i will be li = max {0, fi - di }

• Our goal is to minimize L = maxi li

Minimizing Lateness

• Given t1 , … , tn

• If we define the finishing time fi of the process i as fi = Σj=1..itj,
then the lateness of the process i will be li = max {0, fi - di }

• Our goal is to minimize L = maxi li

Minimizing Lateness

1 2 3 4

ti 4 2 5 3

di 6 4 10 8

• Given t1 , … , tn

• If we define the finishing time fi of the process i as fi = Σj=1..itj,
then the lateness of the process i will be li = max {0, fi - di }

• Our goal is to minimize L = maxi li

t1 = 4 t2 = 2 t3 = 5 t4 = 3

Minimizing Lateness

1 2 3 4

ti 4 2 5 3

di 6 4 10 8

• Given t1 , … , tn

• If we define the finishing time fi of the process i as fi = Σj=1..itj,
then the lateness of the process i will be li = max {0, fi - di }

• Our goal is to minimize L = maxi li

t1 = 4 t2 = 2 t3 = 5 t4 = 3

L = 6

Minimizing Lateness

1 2 3 4

ti 4 2 5 3

di 6 4 10 8

L1=0 L2=2 L3=1 L4=6

• Given t1 , … , tn

• If we define the finishing time fi of the process i as fi = Σj=1..itj,
then the lateness of the process i will be li = max {0, fi - di }

• Our goal is to minimize L = maxi li

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t3 = 5 t1 = 4 t4 = 3 t2 = 2

L = 6

Minimizing Lateness

1 2 3 4

ti 4 2 5 3

di 6 4 10 8

L1=0 L2=2 L3=1 L4=6

• Given t1 , … , tn

• If we define the finishing time fi of the process i as fi = Σj=1..itj,
then the lateness of the process i will be li = max {0, fi - di }

• Our goal is to minimize L = maxi li

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t3 = 5 t1 = 4 t4 = 3 t2 = 2

L = 6

L = 10

Minimizing Lateness

1 2 3 4

ti 4 2 5 3

di 6 4 10 8

L1=0 L2=3 L3=4 L4=10

L1=0 L2=2 L3=1 L4=6

Minimizing Lateness
How do we sort the processes ?

• according to their process time ti

Minimizing Lateness
How do we sort the processes ?

• according to their process time ti

1 2

ti 1 5

di 12 5

Minimizing Lateness
How do we sort the processes ?

• according to their process time ti

t1 = 1 t2 = 5
L = 1

1 2

ti 1 5

di 12 5
L1 = 0 L2 = 1

Minimizing Lateness
How do we sort the processes ?

• according to their process time ti

t1 = 1 t2 = 5
L = 1

t1 = 1t2 = 5 L = 0

1 2

ti 1 5

di 12 5
L1 = 0 L2 = 1

L1 = 0 L2 = 0

Minimizing Lateness
How do we sort the processes ?

• according to their slack time di - ti

Minimizing Lateness
How do we sort the processes ?

• according to their slack time di - ti

1 2

ti 1 5

di 2 5

Minimizing Lateness
How do we sort the processes ?

• according to their slack time di - ti

L = 4t1 = 1t2 = 51 2

ti 1 5

di 2 5
L1 = 0 L2 = 4

Minimizing Lateness
How do we sort the processes ?

• according to their slack time di - ti

t1 = 1 t2 = 5

L = 4t1 = 1t2 = 5

L = 1

1 2

ti 1 5

di 2 5

L1 = 0 L2 = 1

L1 = 0 L2 = 4

Minimizing Lateness
How do we sort the processes ?

• according to their deadlines di

Minimizing Lateness
How do we sort the processes ?

• according to their deadlines di

1 2 3 4

ti 4 2 5 3

di 6 4 10 8

t1 = 4t2 = 2 t3 = 5t4 = 3 L = 4

L1=0 L2=0 L3=1 L4=4

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the deadline. Then S is an optimal sequence.
(Our greedy approach yields us an optimal solution)

Minimizing Lateness

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the deadline. Then S is an optimal sequence.
(Our greedy approach yields us an optimal solution)

Proof
Assume there is an optimal sequence S* in which the processes have not been
sorted. Then there should be indices i and j such that i < j and dj < di

Minimizing Lateness

Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according to the deadline. Then S is an optimal sequence.
(Our greedy approach yields us an optimal solution)

Proof
Assume there is an optimal sequence S* in which the processes have not been
sorted. Then there should be indices i and j such that i < j and dj < di

ti-1 ti tj tj+1
.

What happens if we swap i and j?

ii-1 j j+1

Minimizing Lateness

Huffman Coding

ABRACADABRAEncoding

A B R A C A D A B R A

Huffman Coding

ABRACADABRAEncoding

A B R A C A D A B R A

000 001 010 000 011 000 100 000 001 010 000

• Encode them using 3-bit strings

Huffman Coding

ABRACADABRAEncoding

A B R A C A D A B R A

000 001 010 000 011 000 100 000 001 010 000

• Encode them using 3-bit stringsA
B
R
C
D

freq

number of times
the letter appears

Huffman Coding

ABRACADABRAEncoding

A B R A C A D A B R A

000 001 010 000 011 000 100 000 001 010 000

• Encode them using 3-bit stringsA
B
R
C
D

5
2
2
1
1

freq

Huffman Coding

ABRACADABRAEncoding

A B R A C A D A B R A

000 001 010 000 011 000 100 000 001 010 000

• Encode them using 3-bit stringsA
B
R
C
D

5
2
2
1
1

000
001
010
011
100

freq

Huffman Coding

ABRACADABRAEncoding

A B R A C A D A B R A

000 001 010 000 011 000 100 000 001 010 000

• Encode them using 3-bit stringsA
B
R
C
D

5
2
2
1
1

000
001
010
011
100

15
6
6
3
3

freq cost

Huffman Coding

ABRACADABRAEncoding

A B R A C A D A B R A

000 001 010 000 011 000 100 000 001 010 000

• Encode them using 3-bit strings
• Total 33 bits required to encode

A
B
R
C
D

5
2
2
1
1

000
001
010
011
100

15
6
6
3
3

33

freq cost

Huffman Coding

ABRACADABRAEncoding

A B R A C A D A B R A

000 001 010 000 011 000 100 000 001 010 000

• Encode them using 3-bit strings
• Total 33 bits required to encode

Can we get better encoding?

A
B
R
C
D

5
2
2
1
1

000
001
010
011
100

15
6
6
3
3

33

freq cost

Huffman Coding

ABRACADABRAEncoding

A B R A C A D A B R A

000 001 010 000 011 000 100 000 001 010 000

• Encode them using 3-bit strings
• Total 33 bits required to encode

Can we get better encoding?

A
B
R
C
D

5
2
2
1
1

000
001
010
011
100

15
6
6
3
3

33

freq cost

1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Huffman Coding

ABRACADABRAEncoding

A B R A C A D A B R A

000 001 010 000 011 000 100 000 001 010 000

• Encode them using 3-bit strings
• Total 33 bits required to encode

Can we get better encoding?

A
B
R
C
D

5
2
2
1
1

000
001
010
011
100

15
6
6
3
3

33

freq cost

1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Huffman Coding

ABRACADABRAEncoding

A B R A C A D A B R A

000 001 010 000 011 000 100 000 001 010 000

• Encode them using 3-bit strings
• Total 33 bits required to encode

Can we get better encoding?

A
B
R
C
D

5
2
2
1
1

000
001
010
011
100

15
6
6
3
3

33

freq cost

1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

D A B A R A

Huffman Coding

ABRACADABRAEncoding

A B R A C A D A B R A

000 001 010 000 011 000 100 000 001 010 000

• Encode them using 3-bit strings
• Total 33 bits required to encode

Can we get better encoding?

A
B
R
C
D

5
2
2
1
1

000
001
010
011
100

15
6
6
3
3

33

freq cost

1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

D A B A R Aa unique decoding

Huffman Coding

A
B
R
C
D

5
2
2
1
1

freq

Huffman Coding

• B(T, { fc }) = Σ fc.lcA
B
R
C
D

5
2
2
1
1

freq

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

A
B
R
C
D

5
2
2
1
1

freq

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

Is there any problem for this encoding?

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

Is there any problem for this encoding?

0 0 1 1 0 1 1 0

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

Is there any problem for this encoding?

0 0 1 1 0 1 1 0

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

Is there any problem for this encoding?

0 0 1 1 0 1 1 0

A A D R C

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

Is there any problem for this encoding?

0 0 1 1 0 1 1 0

A R B R C

AADRC

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

Is there any problem for this encoding?

0 0 1 1 0 1 1 0

A A BBA D A

AADRC
ARBRC

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

Is there any problem for this encoding?

0 0 1 1 0 1 1 0

A A BBA D A

AADRC
ARBRC
AABBADA

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

Is there any problem for this encoding?

0 0 1 1 0 1 1 0

A A BBA D A

AADRC
ARBRC
AABBADA

.

.

.

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

Is there any problem for this encoding?

0 0 1 1 0 1 1 0

A A BBA D A

AADRC
ARBRC
AABBADA

.

.

.

decoding is not unique

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

Is there any problem for this encoding?

0 0 1 1 0 1 1 0

A A BBA D A

AADRC
ARBRC
AABBADA

.

.

.

decoding is not unique

to get unique decoding, coding should be ‘prefix-free’

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

to get unique decoding, coding should be ‘prefix-free’

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

to get unique decoding, coding should be ‘prefix-free’

Coding is called ‘prefix free’ if for any i, j; encoding ci is
not prefix of encoding cj

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

to get unique decoding, coding should be ‘prefix-free’

Coding is called ‘prefix free’ if for any i, j; encoding ci is
not prefix of encoding cj

encoding of B -1- is prefix of encoding of C -10-

1 0

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

to get unique decoding, coding should be ‘prefix-free’

Coding is called ‘prefix free’ if for any i, j; encoding ci is
not prefix of encoding cj

encoding of B -1- is prefix of encoding of C -10-

1 0

1 0 = C

Huffman Coding

• B(T, { fc }) = Σ fc.lc

• try to minimize the function B

• use smaller length encoding for the
character having larger frequency

A
B
R
C
D

5
2
2
1
1

freq

0
1

01
10
11

5
2
4
2
2

15

cost

to get unique decoding, coding should be ‘prefix-free’

Coding is called ‘prefix free’ if for any i, j; encoding ci is
not prefix of encoding cj

encoding of B -1- is prefix of encoding of C -10-

1 0

1 0 = C 1 0 = BA

Huffman Coding
• If you have a prefix-free code, you

can uniquely decode itA
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

Huffman Coding
• If you have a prefix-free code, you

can uniquely decode it

• encoding for each char ends with ‘0’

• use different length encoding for
each char

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

Huffman Coding
• If you have a prefix-free code, you

can uniquely decode it

• encoding for each char ends with ‘0’

• use different length encoding for
each char

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

Huffman Coding
• If you have a prefix-free code, you

can uniquely decode it

• encoding for each char ends with ‘0’

• use different length encoding for
each char

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

25
36
39
40
35
30
14
8

cost

227

Huffman Coding
• If you have a prefix-free code, you

can uniquely decode it

• encoding for each char ends with ‘0’

• use different length encoding for
each char

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

25
36
39
40
35
30
14
8

cost

227

1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0

Huffman Coding
• If you have a prefix-free code, you

can uniquely decode it

• encoding for each char ends with ‘0’

• use different length encoding for
each char

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

25
36
39
40
35
30
14
8

cost

227

1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0

M A K A L E

Huffman Coding
• If you have a prefix-free code, you

can uniquely decode it

• encoding for each char ends with ‘0’

• use different length encoding for
each char

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

25
36
39
40
35
30
14
8

cost

227

1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0

M A K A L E

transform this encoding to a binary tree

Huffman Coding
• for ‘1’, create a left child

for ‘0’, create a right childA
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

25
36
39
40
35
30
14
8

cost

227

transform this encoding to a binary tree

Huffman Coding
• for ‘1’, create a left child

for ‘0’, create a right childA
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

25
36
39
40
35
30
14
8

cost

227

1

transform this encoding to a binary tree

Huffman Coding
• for ‘1’, create a left child

for ‘0’, create a right childA
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

25
36
39
40
35
30
14
8

cost

227

A

01

transform this encoding to a binary tree

Huffman Coding
• for ‘1’, create a left child

for ‘0’, create a right childA
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

25
36
39
40
35
30
14
8

cost

227

A

E

01

0

transform this encoding to a binary tree

Huffman Coding
• for ‘1’, create a left child

for ‘0’, create a right childA
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

25
36
39
40
35
30
14
8

cost

227

A

E

M

01

01

0

transform this encoding to a binary tree

Huffman Coding
• for ‘1’, create a left child

for ‘0’, create a right childA
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

25
36
39
40
35
30
14
8

cost

227

A

E

M

B

01

01

01

0

transform this encoding to a binary tree

Huffman Coding
• for ‘1’, create a left child

for ‘0’, create a right childA
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

25
36
39
40
35
30
14
8

cost

227

A

E

M

B

K

T

U

L

01

01

01

01

01

01

01
characters will be
leaves of the tree

transform this encoding to a binary tree

Huffman Coding
• for ‘1’, create a left child

for ‘0’, create a right childA
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

25
36
39
40
35
30
14
8

cost

227

A

E

M

B

K

T

U

L

01

01

01

01

01

01

01
characters will be
leaves of the tree

transform this encoding to a binary tree

to get an optimal encoding,
create an optimal tree

Huffman Coding
• for ‘1’, create a left child

for ‘0’, create a right childA
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

0
10
110
1110
11110
111110
1111110
11111110

25
36
39
40
35
30
14
8

cost

227

A

E

M

B

K

T

U

L

01

01

01

01

01

01

01
characters will be
leaves of the tree

transform this encoding to a binary tree

to get an optimal encoding,
create an optimal tree

optimal encoding = optimal tree

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof :

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

A

B

T

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

A

B

T

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

A

B

T remove that node
from the tree

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

A

B

T

AB

T*remove that node
from the tree

Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

A

B

T

AB

T*remove that node
from the tree

Because all characters in subtree B of T* have
encodings 1 bit shorter than encodings in subtree B
of T,

B(T) > B(T*)

Huffman Coding
• sort all frequencies in decreasing order

Huffman Coding

25 18 13 10 7 5 2 1

• sort all frequencies in decreasing order

Huffman Coding

25 18 13 10 7 5 2 1

• sort all frequencies in decreasing order
• start with lowest two frequencies

Huffman Coding

25 18 13 10 7 5

2 1

3

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

Huffman Coding

25 18 13 10 7 5

2 1

3

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

Huffman Coding

25 18 13 10 7

5

2 1

3

8

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

Huffman Coding

25 18 13 10 7

5

2 1

3

8

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

Huffman Coding

25 18 13 10 8

5

2 1

3

7

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

Huffman Coding

25 18 13 10 8

5

2 1

3

7

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

Huffman Coding

25 18 13 10

8

5

2 1

3

7

15

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

Huffman Coding

25 18 1315

8

5

2 1

3

7

10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

Huffman Coding

25 18 1315

8

5

2 1

3

7

10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

Huffman Coding

25 18

13

15

8

5

2 1

3

7 10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

Huffman Coding

25

1813 15

8

5

2 1

3

7

10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23 33

Huffman Coding

25

18 1315

8

5

2 1

3

7

10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

2333

Huffman Coding

25

18 1315

8

5

2 1

3

7

10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

2333

Huffman Coding

2518

13

15

8

5

2 1

3

7 10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

33 48

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

A E

M B K

T

U L

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B E

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B E

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B E

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B E

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B E K

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

two symbols with lowest
frequencies will be siblings placed

at lowest level in the tree

Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

two symbols with lowest
frequencies will be siblings placed

at lowest level in the tree

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

T

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

swap x and a

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

y

a

x b

T ’

swap x and a

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) =
•

y

a

x b

T ’

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C +
•

y

a

x b

T ’

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
•

y

a

x b

T ’

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx

y

a

x b

T ’

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) =

y

a

x b

T ’

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) = fx (lx – la) + fa (la – lx)

y

a

x b

T ’

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) = fx (lx – la) + fa (la – lx)

= (la – lx) (fa – fx) ≥ 0

y

a

x b

T ’

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) = fx (lx – la) + fa (la – lx)

= (la – lx) (fa – fx) ≥ 0

y

a

x b

T ’

swap y and b

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

b

a

x y

T” • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) = fx (lx – la) + fa (la – lx)

= (la – lx) (fa – fx) ≥ 0

y

a

x b

T ’

swap y and b

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

b

a

x y

T” • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) = fx (lx – la) + fa (la – lx)

= (la – lx) (fa – fx) ≥ 0

• B(T ‘) - B(T”) ≥ 0

y

a

x b

T ’

swap y and b

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

b

a

x y

T” • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) = fx (lx – la) + fa (la – lx)

= (la – lx) (fa – fx) ≥ 0

• B(T ‘) - B(T”) ≥ 0

y

a

x b

T ’

swap y and b

this is a contradiction

Greedy Algorithms

• solve the problem by breaking it a sequence of
subproblems

• make the best local choice among all feasible one
available on that moment (one choice at a time)

• your choice does not depend on any future choices or
any past choices you have made

• prove that the Greedy Choice Property satisfies. A
sequence of locally optimal choices yields a global
optimal solution

