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Interval Scheduling

+ given a set of intervals (I;, I,, ... , L,)

- each interval I, has a starting time s;, a finishing
time f,

* your task is to find the largest subset of mutually
non-overlapping intervals

Suppose there are n meetings requests for a
meeting room.

« Each meeting i has a starting time s; and an
ending time t;.

- We have a constraint : no fwo meetings can
not be scheduled at same time.

* Our goal is to schedule as many meetings as
possible
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+ given a set of intervals (I;, I,, ... , L,)

- each interval I, has a starting time s;, a finishing
time f,

* your task is to find the largest subset of mutually
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Interval Scheduling

Dynamic Programming Solution
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OPT (j) = max { OPT (j-1), 1+ OPT (p(j)) }

Can we get a simpler solution?



Interval Scheduling

« solve the problem in myopic fashion

(don't pay attention the global situaton - don't consider
all possible solutions)

- make desicion at each step based on improving local
state

(use greedy approach - pick the one available to you at the
moment based on some fixed and simple priority rules)
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Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one
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Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one
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Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one

| I,

| I8

: I ’ .
I, >




Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one
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set the priority rules!
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set the priority rules!

* choose the first interval as the one having the earliest
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Interval Scheduling

« What is the best option?
set the priority rules!

* choose the first interval as the one having the earliest
finish time
« remove all intervals not compatible with the chosen one
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Interval Scheduling

input : ninterval (I, .., I,) fogether
with their start time and finish time

--sort intervals according to their
finish time (fi<f,<..<f,)
--initialize an empty set S

for (i=1 to n)
if interval I; is compatible with S
S=5SuU{TI)}
return S
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Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof
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Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not
contain the first interval I,.

Let I,” be the interval in S having earliest finish time.
Since I; has the earliest finish time for all, f, < f; .

S =5-{I"JU{I,} suchthatIS’=ISI

This is a contradiction!



Greedy Algorithms

* solve the problem by breaking it a sequence of
subproblems

« make the best local choice among all feasible one
available on that moment (one choice at a time)

* your choice does not depend on any future choices or
any past choices you have made

 prove that the Greedy Choice Property satisfies. A
sequence of locally optimal choices yields a global
optimal solution
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Cashier's Problem

* given a certain amount of money, M cents, and a set of
denominations of coins ¢y, ..., ¢,

 make change for M cents using a minimum total number of coins
(each denomination is available in unlimited quantity)

147 cents

(25,105,1)




Cashier's Problem

input : an amount of money M
a set of denominations (¢, ..., ¢,)

sort denominations
Ci2..2C,
totalw = M
j=1
k=0
while (j < n)
if (¢ < totalw )
totalw = totalw - C
k= k+1
else
J=j+l
return k



Cashier's Problem

Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination c; < M.

(Our greedy approach yields us an optimal solution)
Proof
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Cashier's Problem

Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination c; < M.

(Our greedy approach yields us an optimal solution)
Proof

Assume S is an optimal solution for M, and 10 < M. But S does not contain any
10.

M =ab +b.l (total a + b coins)

M can be written as
M=ab+b1=10-10+ab +b.1

=110+ (a-2)5+b.1 (tfotala+b -1 coins)
This is contradiction.



Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?




Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?




Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?




Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?




Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?




Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?




Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?




Fractional Knapsack

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

you are allowed to get a fraction x; of an item i that yields
a profit x,.p; where O < x; < 1

your goal is to get a filling that maximizes the profit under
the weight constraint M
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given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

you are allowed to get a fraction x; of an item i that yields
a profit x,.p; where O < x; < 1

your goal is to get a filling that maximizes the profit under
the weight constraint M
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Fractional Knapsack

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

you are allowed to get a fraction x; of an item i that yields
a profit x,.p; where O < x; < 1

your goal is to get a filling that maximizes the profit under
the weight constraint M

O B @
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Fractional Knapsack

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

you are allowed to get a fraction x; of an item i that yields
a profit x,.p; where O < x; < 1

your goal is to get a filling that maximizes the profit under
the weight constraint M

O B @

pearl gold silver diamonds
p,/w;=1/2 p,/w, =1 p3/W3=1/3  ps/wy=3

M =25

M=0 3.5+1.5+(1/2).15=275



Fractional Knapsack

input : nitems together with their prices p;
and weight w;, and a knapsack with the capacity M

sort items according to the ratio (p,/w;)
(p1/Wy) ¢ ... < (pp/Wp)
totalw = M
j1
while (totalw > 0)
if (w;>totalw)
add fotalw fraction of item j to the knapsack
totalw = O
else
add item j to the knapsack
totalw = totalw - w,
J=j+1
return knapsack



Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the

maximum ratio p,/w;. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)
Proof
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Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the
maximum ratio p,/w;. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of
capacity M and total profit U.
Assume S does not contain the item j as much as possible.
There must exist some item k such that k # jand (p, / w,) < (p; / w;)
We take out some amount of item k, (suppose a) and
put same amount of item j.
S* =S - {a of item k}u{a of item j}
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Theorem (Greedy-choice property): Let j be the item with the
maximum ratio p,/w;. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of
capacity M and total profit U.
Assume S does not contain the item j as much as possible.
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Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the
maximum ratio p,/w;. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of
capacity M and total profit U.
Assume S does not contain the item j as much as possible.
There must exist some item k such that k # jand (p, / w,) < (p; / w;)
We take out some amount of item k, (suppose a) and
put same amount of item j.
S* =S - {a of item k}u{a of item j}
Let U” be the profit of S™. Then,
U= U-a.(pc/ w) +a.(p; / wy)
Since (px / w) < (p; / w;), U™ > U.
This is contradictionl
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the weight constraint M

(You cannot take fraction of an item, you take the item or not)
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0/1 Knapsack Problem

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

your goal is to get a filling that maximizes the profit under
the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?
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0/1 Knapsack Problem

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

your goal is to get a filling that maximizes the profit under
the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?
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0/1 Knapsack Problem

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

your goal is to get a filling that maximizes the profit under
the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?
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given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

your goal is to get a filling that maximizes the profit under
the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?
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0/1 Knapsack Problem

given n items and a knapsack with the capacity M

each item i has a weight w;, and a value p,

your goal is to get a filling that maximizes the profit under
the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

B o

p /Wy = ATE p3/Ws =

M =20 «— 60+100 =160 100 + 120 = 220

use dynamic programming
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given a computer and n processes p;, ... , p, such that each of
them has a completion time t;

find an optimal order of processes that has the minimum average
finishing time
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Process Scheduling

given a computer and n processes p;, ... , p, such that each of
them has a completion time t;

find an optimal order of processes that has the minimum average
finishing time

If we define the finishing time C; of the processias C;= 2 1;,
then the average finishing time will be (., , C;)/n.

Our goal is o minimize (£,.; , C))/n



Process Scheduling

Givent,, .., 1,

* If we define the finishing time C; of the processias C; = 2. ;t;
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n
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Process Scheduling

Given t,, .., 1,

* If we define the finishing time C; of the processias ;= 2. ¥,
then the average finishing time will be (X,.; , C.)/n.

« Our goal is to minimize (Z_; , C;)/n
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« Giventy, .., 1,

» If we define the finishing time C; of the processias C;= 2 1;,
then the average finishing time will be (X,.; , C.)/n.
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« Giventy, .., 1,
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Theorem (Greedy-choice property): Let S be a sequence of processes
ordered according tfo the deadline. Then S is an optimal sequence.
(Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S™ in which the processes have not been
sorted. Then there should be indices i and j such that i< jand d; < d|

i-1 1 | I J 1+l
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M:i 13110 : 39
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transform this encoding to a binary tree
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for '0', create a right child
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leaves of the tree

transform this encoding to a binary tree
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to get an optimal encoding,
create an optimal tree

« for'l', create a left child
for '0', create a right child

L

—

characters will be
leaves of the tree

transform this encoding to a binary tree
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freq cost
Ai25i0 i 25
E:18:10 : 36
Mi13i110  §39
B{10i1110 (40
Ki7:i11110 35
Ti 5111110 30
Ui 2 i1111110 ; 14
L i 1 11111110} 8
227

to get an optimal encoding,
create an optimal tree

optimal encoding = optimal tree

« for'l', create a left child
for '0', create a right child

L

—

characters will be
leaves of the tree

transform this encoding to a binary tree



Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof :



Huffman Coding

Lemma : Optimal tree is full.
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Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

T
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Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.
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Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

T remove that node
from the tree

] A ’
/6\
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Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

T remove that node R
from the tree

AN A A
A




Huffman Coding

Lemma : Optimal tree is full.
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

remove that node R
from the tree

2 A A
A

Because all characters in subtree B of T* have
encodings 1 bit shorter than encodings in subtree B
of T,

B(T) > B(T*)
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Huffman Coding

combine them in one one, rearrange to preserve the order
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

33 25 23
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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13 10 8 7
/\\
5 3
N
2 1




Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0
48 33
22 SN
25 23 18 15
72 S 7\
13 10 8 7
LN\
5 3
N
2 1




« sort all frequencies in decreasing order

Huffman Coding

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25

81

0

LN\

1

10

3
1
8
8
LN\

5

3

0

15
2

:

0

3
2N
2 1
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freq
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0
freq
18 >3 Ai25011
1,7 \Q 17\0 E | 1801
25| |23 8| |15 M: 13101
B | 10100
N L\ K i 7000
13| |10 8 7 T 2001
B Ui 2 i00101
N L i 100100
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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freq cost
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 o)
fr-eg cost
20 > Ai25ill : 50
N N F ol 38
o [ [ [3 EERE:
A LN B LN Ki7:i000 a2l
B OEm m
MoB N0 K L 1:00100: 5
decoding z : 21l
start from the root T N
left for '1' - right for 'O’ 5 1

end of decoding when
you reach a leaf U L
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

4/1 81 .
B i A f;—?u C;—;f
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decoding S 3 211
start from the root T N
left for '1' - right for 'O’ > ; 10001000

end of decoding when
you reach a leaf U L




« sort all frequencies in decreasing order

Huffman Coding

 start with lowest two frequencies

combine them in one one, rearrange to preserve the order

25

A

decoding

1

23

13

start from the root
left for '1' - right for 'O’

M

7

end of decoding when
you reach a leaf
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10
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E LN

3
1

8
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0
15
1
0
5 3
T
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0

-
0
1

U
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freq cost
Ai25i11 {50
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Mi 13101 (39
B:10i100 |30
Ki7iooo i21
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10001000
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« sort all frequencies in decreasing order

 start with lowest two frequencies

combine them in one one, rearrange to preserve the order

81
1

17~
25 23
AN\,
13 10
M B

decoding

start from the root
left for '1' - right for 'O’
end of decoding when
you reach a leaf
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3
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0
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1
0
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0

-
0
1

U
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freq cost
Ai25i11 {50
Eiigiol 36
Mi 13101 (39
B:10i100 |30
Ki7iooo i21
T 5i0011 {20
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L i 1i00100i 5
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10001000
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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decoding \ 2 : 2l
start from the root T N
left for '1' - right for ‘0’ 5 1 1 O O O 1 O O O
end of decoding when

you reach a leaf U L B
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
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freq cost
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decoding > > 2l

start from the root T N

left for '1' - right for ‘0’ 5 1 1 O O O 1 O O O

end of decoding when
you reach a leaf U L B
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 o
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LN S Ei18i01 36

25 23 18 15 g’\ 18 ig(l) 3(9)

A LN B LN Ki7i000 i21

13 10 8 7 T 5 20011 520

MBI K C 1001005

decoding S 3 211
start from the root T N

left for '1' - right for 'O’ > ; 10001000

end of decoding when

you reach a leaf U L B E
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0

freq cost

48 o Ai25i11 150
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5] [3]  [1] [ 8101100 30

A LN E 1N\Q Ki7i000 a1
A B N

M B LN K Li 100100 5

decoding > > 2l

start from the root T N

left for '1' - right for ‘0’ 5 1 1 O O O 1 O O O

end of decoding when

you reach a leaf U L B E
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0
fpeg cost
48 S Ai25i11 150
1,7 N\Q 17\0 Ei18i01 (36
5] [23]  [] [ 81101100 |30
A LN E N\ Ki7ioo0 i1
1 [ I T D O W
M B LN K Li 100100 5
decoding > > 2l
start from the root T N
left for '1' - right for ‘0’ 5 1 1 O O O 1 O O O
end of decoding when

you reach a leaf U L B E
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0
freq cost
18 > Ai25i11 50

Eil18iol 36
Mi13i101 (39
B{10i100 30

i 7i000 21
10011 20

I SZN

25 23 1

3
1
A m F /\
8 7 : E
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0
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1 0

0 K 100100 | 5
decoding g > \ 2l
start from the root T N
left for '1' - right for 'O’ 5 1 10001000
end of decoding when
you reach a leaf U L B E K

TCHR
= N Ol N




Huffman Coding

« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 o)

freq cost
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

25

81

0

1

10

5

33
N
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freq cost
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100100 { 5

211

TCHR
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two symbols with lowest
requencies will be siblings placed
at lowest level in the tree
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« sort all frequencies in decreasing order

 start with lowest two frequencies
combine them in one one, rearrange to preserve the order

81
1 0
fre cost
10 > A 7;111 : 50
LN S Ei18i01 (36
25 23 18 15 M 13 5101 39
B:10i100 |30
N L\ Ki7:i000 21
Sl e B H
N0 L 100100 5
( 2 3 211
BZERY
2 1 two symbols with lowest

frequencies will be siblings placed
at lowest level in the tree
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solution)

Proof
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Assume there is an optimal tree T where x and y are not siblings.
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Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.
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Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

T « Because T is a full tree, there should
be two symbols a and b that are
y siblings placed at the lowest level in T
X

2\

a b
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Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal

solution)
Proof

Assume there is an optimal tree T where x and y are not siblings.

T

N
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a b

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fu. fy<fa. fiy
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Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal

solution)
Proof

Assume there is an optimal tree T where x and y are not siblings.

T

N

2\

a b

swap x and a

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fu. fy<fa. fiy
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Theorem (Greedy-choice property): Let x and y be twe symbols with the

smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal

solution)
Proof

Assume there is an optimal tree T where x and y are not siblings.

T

N

2\

a

b

swap x and a

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fu. fy<fa. fiy
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Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal

Assume there is an optimal tree T where x and y are not siblings.

T

N

2\

a b

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fu. fy<fa. fiy

B(T) =



Huffman Coding

Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest

frequencies,
fu. fy<fe. fp

B(T)=C+
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Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest

frequencies,
fu. fy<fe. fp

B(T) = C+ fule+ folg
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Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest

frequencies,
fu. fy<fe. fp

B(T) = C+ fili + folq
B(T ) =C+fila+ fols
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Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest

frequencies,
fu. fy<fe. fp

B(T) = C+ fili + folq
B(T ) =C+fila+ fols
B(T)-B(T)=
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Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof
Assume there is an optimal tree T where x and y are not siblings.

Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T
Since f, and f, are the smallest
frequencies,

fo f, < fo, o

B(T) = C+f, .l +f.l
B(T)=C+ 1l +fols
B(T) - B(T ‘) - fx (lx - Ia) + fa (la - Ix)
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Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies f, and f,. There exists an optimal tree where x and y are
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Greedy Algorithms

* solve the problem by breaking it a sequence of
subproblems

« make the best local choice among all feasible one
available on that moment (one choice at a time)

* your choice does not depend on any future choices or
any past choices you have made

 prove that the Greedy Choice Property satisfies. A
sequence of locally optimal choices yields a global
optimal solution



