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• each interval Ii has a starting time si, a finishing

time fi

• your task is to find the largest subset of mutually

non-overlapping intervals

• Suppose there are n meetings requests for a
meeting room.

• Each meeting i has a starting time si and an
ending time ti.

• We have a constraint : no two meetings can
not be scheduled at same time.

• Our goal is to schedule as many meetings as
possible
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fj
jsj

J-1

OPT (j) = max { OPT (j-1),  1 + OPT (p(j)) } 

Dynamic Programming Solution

Can we get a simpler solution?



Interval Scheduling

• solve the problem in myopic fashion

(don’t pay attention the global situaton - don’t consider

all possible solutions)

• make desicion at each step based on improving local
state

(use greedy approach – pick the one available to you at the

moment based on some fixed and simple priority rules)
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• What is the best option?
set the priority rules!

• choose the first interval as the one having the earliest

finish time

• remove all intervals not compatible with the chosen one

I2 I4

I6
I8



Interval Scheduling

input : n interval (I1, … , In) together 
with their start time and finish time

--sort intervals according to their
finish time  (f1 ≤ f2 ≤ … ≤ fn)
--initialize an empty set S

for (i=1 to n)
if interval Ii is compatible with S

S = S ∪ { Ii }
return S
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Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest
finish time (first interval) will be part of some optimal solution set.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution set for problem and S does not
contain the first interval I1.

Let Ii
* be the interval in S having earliest finish time.

Since I1 has the earliest finish time for all, f1 ≤ fi .

S* = S – { Ii
* }∪{ I1 } such that ΙS*Ι = ΙSΙ

This is a contradiction!



Greedy Algorithms

• solve the problem by breaking it a sequence of
subproblems

• make the best local choice among all feasible one
available on that moment (one choice at a time)

• your choice does not depend on any future choices or
any past choices you have made

• prove that the Greedy Choice Property satisfies. A
sequence of locally optimal choices yields a global
optimal solution



Cashier’s Problem
• given a certain amount of money, M cents, and a set of 

denominations of coins c1 , ... , cm 

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)



Cashier’s Problem
• given a certain amount of money, M cents, and a set of 

denominations of coins c1 , ... , cm 

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)



Cashier’s Problem
• given a certain amount of money, M cents, and a set of 

denominations of coins c1 , ... , cm 

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

2        +       4       +       5     +     32 = 43          



Cashier’s Problem
• given a certain amount of money, M cents, and a set of 

denominations of coins c1 , ... , cm 

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

2        +       4       +       5     +     32 = 43          

4        +       3       +       2     +       7 = 16          



Cashier’s Problem
• given a certain amount of money, M cents, and a set of 

denominations of coins c1 , ... , cm 

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

2        +       4       +       5     +     32 = 43          

4        +       3       +       2     +       7 = 16          



Cashier’s Problem
• given a certain amount of money, M cents, and a set of 

denominations of coins c1 , ... , cm 

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

2        +       4       +       5     +     32 = 43          

4        +       3       +       2     +       7 = 16          

5 +              



Cashier’s Problem
• given a certain amount of money, M cents, and a set of 

denominations of coins c1 , ... , cm 

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

2        +       4       +       5     +     32 = 43          

4        +       3       +       2     +       7 = 16          

5 +       2       +       



Cashier’s Problem
• given a certain amount of money, M cents, and a set of 

denominations of coins c1 , ... , cm 
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Cashier’s Problem
• given a certain amount of money, M cents, and a set of 

denominations of coins c1 , ... , cm 

• make change for M cents using a minimum total number of coins

(each denomination is available in unlimited quantity)

147 cents

(25,10,5,1)

2        +       4       +       5     +     32 = 43          

4        +       3       +       2     +       7 = 16          

5 +       2       +       0     +      2 = 9          



Cashier’s Problem
input : an amount of money M 

a set of denominations (c1 , … , cn)     

sort denominations
c1 ≥ … ≥ cn

totalw = M
j=1
k=0
while (j ≤ n)

if ( cj ≤ totalw ) 
totalw = totalw - cj

k = k +1 
else 

j = j +1
return k  
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Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination cj ≤ M.

(Our greedy approach yields us an optimal solution)

Proof
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Cashier’s Problem
Theorem (Greedy-choice property): Let (10, 5, 1) be the denomination
set. For the amount M, there exists an optimal solution set that
contains the largest denomination cj ≤ M.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution for M, and 10 ≤ M. But S does not contain any
10.

M = a.5 + b.1 (total a + b coins)

M can be written as

M = a.5 + b.1 = 10 – 10 + a.5 + b.1

= 1.10 + (a – 2).5 + b.1 (total a + b – 1 coins)

This is contradiction.
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Cashier’s Problem
Will the Greedy Technique give an optimal solution for all denomination set? 

1610

M = 24 2             +             0           +          4 = 6

4.6 = 24
use dynamic programming 
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Fractional Knapsack
• given n items and a knapsack with the capacity M 

• each item i has a weight wi, and a value pi

• you are allowed to get a fraction xi of an item i that yields 

a profit xi.pi where 0 ≤ xi ≤ 1

• your goal is to get a filling that maximizes the profit under 

the weight constraint M

w1=20
P1=10

w2=5
p2=5

w1=15
p1=5

w1=5
p1=15

diamondsgold silverpearl

M = 25

p1/w1 =1/2 p2/w2 =1 p3/w3 =1/3 p4/w4 =3

3 . 5 + 1 . 5 + (1/2) . 15 = 27.5   M = 0



Fractional Knapsack
input : n items together with their prices pi

and weight wi, and a knapsack with the capacity M

sort items according to the ratio (pi/wi)
(p1/w1) ≤ … ≤ (pn/wn)
totalw = M
j=1
while (totalw > 0)

if ( wj > totalw ) 
add totalw fraction of item j to the knapsack
totalw = 0 

else 
add item j to the knapsack 
totalw = totalw - wj

j = j + 1
return knapsack
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Theorem (Greedy-choice property): Let j be the item with the
maximum ratio pi/wi. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)
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Fractional Knapsack
Theorem (Greedy-choice property): Let j be the item with the
maximum ratio pi/wi. There exists an optimal solution that contains
item j as much as possible.

(Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution with the full knapsack of

capacity M and total profit U.

Assume S does not contain the item j as much as possible.

There must exist some item k such that k ≠ j and (pk / wk) < (pj / wj)

We take out some amount of item k, (suppose α) and

put same amount of item j.

S* = S – {α of item k}∪{α of item j}

Let U* be the profit of S*. Then,

U* = U – α.(pk / wk) + α.(pj / wj)

Since (pk / wk) < (pj / wj), U* > U.

This is contradiction!
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0/1 Knapsack Problem
• given n items and a knapsack with the capacity M 

• each item i has a weight wi, and a value pi
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0/1 Knapsack Problem
• given n items and a knapsack with the capacity M 

• each item i has a weight wi, and a value pi

• your goal is to get a filling that maximizes the profit under 

the weight constraint M

(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?
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use dynamic programming 



Process Scheduling
• given a computer and n processes p1, ... , pn such that each of 

them has a completion time ti

• find an optimal order of processes that has the minimum average 
finishing time



Process Scheduling
• given a computer and n processes p1, ... , pn such that each of 

them has a completion time ti

• find an optimal order of processes that has the minimum average 
finishing time

If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,

then the average finishing time will be  (Σi=1..n Ci)/n.



Process Scheduling
• given a computer and n processes p1, ... , pn such that each of 

them has a completion time ti

• find an optimal order of processes that has the minimum average 
finishing time

If we define the finishing time Ci of the process i as Ci = Σj=1..itj ,

then the average finishing time will be  (Σi=1..n Ci)/n.

Our goal is to minimize (Σi=1..n Ci)/n 



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 

t1 = 4 t2 = 2 t3 = 5 t4 = 3



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t1 = 4 t2 = 2 t3 = 5 t4 = 3



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t1 = 4 t2 = 2 t3 = 5 t4 = 3

C1=4 C2=6 C3=11 C4=14



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t1 = 4 t2 = 2 t3 = 5 t4 = 3

C1=4 C2=6 C3=11 C4=14 C* = (4+6+11+14)/4
C* = 8.75



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t1 = 4 t2 = 2 t3 = 5 t4 = 3

C1=4 C2=6 C3=11 C4=14 C* = (4+6+11+14)/4
C* = 8.75

t3 = 5 t1 = 4 t4 = 3 t2 = 2



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t1 = 4 t2 = 2 t3 = 5 t4 = 3

C1=4 C2=6 C3=11 C4=14 C* = (4+6+11+14)/4
C* = 8.75

t3 = 5 t1 = 4 t4 = 3 t2 = 2

C1=5 C2=9 C3=12 C4=14



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 

t1 = 4 t2 = 2 t3 = 5 t4 = 3

t1 = 4 t2 = 2 t3 = 5 t4 = 3

C1=4 C2=6 C3=11 C4=14 C* = (4+6+11+14)/4
C* = 8.75

t3 = 5 t1 = 4 t4 = 3 t2 = 2

C1=5 C2=9 C3=12 C4=14 C* = (5+9+12+14)/4
C* = 10



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 

this part is constant



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 

t1 t2 t3
.  .  . tn

C1 = t1

C2 = t1 + t2



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 

t1 t2 t3
.  .  . tn

C1 = t1

C2 = t1 + t2

C3 = t1 + t2 + t3

.

.

.
Cn = t1 + t2 + t3 + . . . + tn



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 

t1 t2 t3
.  .  . tn

C1 = t1

C2 = t1 + t2

C3 = t1 + t2 + t3

.

.

.
Cn = t1 + t2 + t3 + . . . + tn

Σi=1..n Ci = n.t1 + (n-1).t2 + . . . + tn



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 

t1 t2 t3
.  .  . tn

C1 = t1

C2 = t1 + t2

C3 = t1 + t2 + t3

.

.

.
Cn = t1 + t2 + t3 + . . . + tn

Σi=1..n Ci = n.t1 + (n-1).t2 + . . . + tn

small t1 makes the sum smaller 



Process Scheduling
• Given t1 , … , tn

• If we define the finishing time Ci of the process i as Ci = Σj=1..itj , 
then the average finishing time will be  (Σi=1..n Ci)/n.

• Our goal is to minimize (Σi=1..n Ci)/n 
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.

.
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Σi=1..n Ci = n.t1 + (n-1).t2 + . . . + tn

small t1 makes the sum smaller 

Greedy Approach : sort the processes according to
the completion time in increasing order
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Lemma : Optimal tree is full. 
(every node has either two children or no child)

Proof : Suppose there is an optimal tree T having one node with one child.

A

B

T

AB

T*remove that node 
from the tree

Because all characters in subtree B of T* have
encodings 1 bit shorter than encodings in subtree B
of T,

B(T) > B(T*)



Huffman Coding
• sort all frequencies in decreasing order



Huffman Coding

25 18 13 10 7 5 2 1

• sort all frequencies in decreasing order



Huffman Coding

25 18 13 10 7 5 2 1

• sort all frequencies in decreasing order
• start with lowest two frequencies



Huffman Coding

25 18 13 10 7 5

2 1

3

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 



Huffman Coding

25 18 13 10 7 5

2 1

3

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 



Huffman Coding

25 18 13 10 7

5

2 1

3

8

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 



Huffman Coding

25 18 13 10 7

5

2 1

3

8

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 



Huffman Coding

25 18 13 10 8

5

2 1

3

7

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 



Huffman Coding

25 18 13 10 8

5

2 1

3

7

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 



Huffman Coding

25 18 13 10

8

5

2 1

3

7

15

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 



Huffman Coding

25 18 1315

8

5

2 1

3

7

10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 



Huffman Coding

25 18 1315

8

5

2 1

3

7

10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 



Huffman Coding

25 18

13

15

8

5

2 1

3

7 10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23



Huffman Coding

25

1813 15

8

5

2 1

3

7

10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23 33



Huffman Coding

25

18 1315

8

5

2 1

3

7

10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

2333



Huffman Coding

25

18 1315

8

5

2 1

3

7

10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

2333



Huffman Coding

2518

13

15

8

5

2 1

3

7 10

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

33 48



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

A E

M B K

T

U L



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B E

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B E

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B E

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B E

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

1 0 0 0 1 0 0 0
B E     K

decoding

• start from the root
• left for ‘1’ – right for ‘0’
• end of decoding when

you reach a leaf

A E

M B K

T

U L



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

two symbols with lowest 
frequencies will be siblings placed 

at lowest level in the tree



Huffman Coding

25 18

13

15

8

5

2 1

3

710

• sort all frequencies in decreasing order
• start with lowest two frequencies

combine them in one one, rearrange to preserve the order 

23

3348

81

01

01

01

01

01

01

01

A
E
M
B
K
T
U
L

25
18
13
10
7
5
2
1

freq

11
01
101
100
000
0011
00101
00100

50
36
39
30
21
20
10
5

cost

211

two symbols with lowest 
frequencies will be siblings placed 

at lowest level in the tree



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Huffman Coding



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

T



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

swap x and a 



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

y

a

x b

T ’

swap x and a 



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) =
•

y

a

x b

T ’



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C +
•

y

a

x b

T ’



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
•

y

a

x b

T ’



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx

y

a

x b

T ’



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) =

y

a

x b

T ’



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) = fx (lx – la) + fa (la – lx)

y

a

x b

T ’



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) = fx (lx – la) + fa (la – lx)

= (la – lx) (fa – fx) ≥ 0

y

a

x b

T ’



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

y

x

a b

T • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) = fx (lx – la) + fa (la – lx)

= (la – lx) (fa – fx) ≥ 0

y

a

x b

T ’

swap y and b 



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

b

a

x y

T” • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) = fx (lx – la) + fa (la – lx)

= (la – lx) (fa – fx) ≥ 0

y

a

x b

T ’

swap y and b 



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

b

a

x y

T” • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) = fx (lx – la) + fa (la – lx)

= (la – lx) (fa – fx) ≥ 0

• B(T ‘) - B(T”) ≥ 0

y

a

x b

T ’

swap y and b 



Theorem (Greedy-choice property): Let x and y be twe symbols with the
smallest frequencies fx and fy. There exists an optimal tree where x and y are
siblings with the highest depth. (Our greedy approach yields us an optimal
solution)

Proof

Assume there is an optimal tree T where x and y are not siblings.

Huffman Coding

b

a

x y

T” • Because T is a full tree, there should
be two symbols a and b that are
siblings placed at the lowest level in T

• Since fx and fy are the smallest
frequencies,

fx , fy ≤ fa , fb

• B(T) = C + fx.lx + fa.la
• B(T ‘) = C + fx.la + fa.lx
• B(T) – B(T ‘) = fx (lx – la) + fa (la – lx)

= (la – lx) (fa – fx) ≥ 0

• B(T ‘) - B(T”) ≥ 0

y

a

x b

T ’

swap y and b 

this is a contradiction



Greedy Algorithms

• solve the problem by breaking it a sequence of
subproblems

• make the best local choice among all feasible one
available on that moment (one choice at a time)

• your choice does not depend on any future choices or
any past choices you have made

• prove that the Greedy Choice Property satisfies. A
sequence of locally optimal choices yields a global
optimal solution


