Greedy Algorithms

Murat Osmanoglu

Interval Scheduling

- given a set of intervals $\left(I_{1}, I_{2}, \ldots, I_{n}\right)$
- each interval I_{i} has a starting time s_{i}, a finishing time f_{i}
- your task is to find the largest subset of mutually non-overlapping intervals

Interval Scheduling

- given a set of intervals $\left(I_{1}, I_{2}, \ldots, I_{n}\right)$
- each interval I_{i} has a starting time s_{i}, a finishing time f_{i}
- your task is to find the largest subset of mutually non-overlapping intervals
- Suppose there are n meetings requests for a meeting room.
- Each meeting i has a starting time s_{i} and an ending time t_{i}.
- We have a constraint : no two meetings can not be scheduled at same time.
- Our goal is to schedule as many meetings as possible

Interval Scheduling

- given a set of intervals $\left(I_{1}, I_{2}, \ldots, I_{n}\right)$
- each interval I_{i} has a starting time s_{i}, a finishing time f_{i}
- your task is to find the largest subset of mutually non-overlapping intervals

Interval Scheduling

- given a set of intervals $\left(I_{1}, I_{2}, \ldots, I_{n}\right)$
- each interval I_{i} has a starting time s_{i}, a finishing time f_{i}
- your task is to find the largest subset of mutually non-overlapping intervals

Interval Scheduling

Dynamic Programming Solution

Interval Scheduling

Dynamic Programming Solution

Can we get a simpler solution?

Interval Scheduling

- solve the problem in myopic fashion
(don't pay attention the global situaton - don't consider all possible solutions)
- make desicion at each step based on improving local state
(use greedy approach - pick the one available to you at the moment based on some fixed and simple priority rules)

Interval Scheduling

- What is the best option?
set the priority rules!

Interval Scheduling

-What is the best option?
set the priority rules!

- choose the first interval as the one having the earliest start time
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option? set the priority rules!

- choose the first interval as the one having the earliest start time
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option?
set the priority rules!

- choose the first interval as the shortest one
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option?
set the priority rules!

- choose the first interval as the shortest one
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option?
set the priority rules!

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option? set the priority rules!

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option? set the priority rules!

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option? set the priority rules!

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option?
set the priority rules!

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option?
set the priority rules!

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option?
set the priority rules!

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option?
set the priority rules!

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option?
set the priority rules!

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option?
set the priority rules!

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option?
set the priority rules!

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

Interval Scheduling

-What is the best option?
set the priority rules!

- choose the first interval as the one having the earliest finish time
- remove all intervals not compatible with the chosen one

Interval Scheduling

input : n interval $\left(I_{1}, \ldots, I_{n}\right)$ together with their start time and finish time
--sort intervals according to their
finish time ($f_{1} \leq f_{2} \leq \ldots \leq f_{n}$)
--initialize an empty set S
for ($\mathrm{i}=1$ to n) if interval I_{i} is compatible with S $S=S \cup\left\{I_{i}\right\}$
return S

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest finish time (first interval) will be part of some optimal solution set. (Our greedy approach yields us an optimal solution)

Proof

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest finish time (first interval) will be part of some optimal solution set. (Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution set for problem and S does not contain the first interval I_{1}.

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest finish time (first interval) will be part of some optimal solution set. (Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution set for problem and S does not contain the first interval I_{1}.
Let I_{i}^{*} be the interval in S having earliest finish time.

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest finish time (first interval) will be part of some optimal solution set. (Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution set for problem and S does not contain the first interval I_{1}.
Let I_{i}^{*} be the interval in S having earliest finish time.
Since I_{1} has the earliest finish time for all, $f_{1} \leq f_{i}$.

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest finish time (first interval) will be part of some optimal solution set. (Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution set for problem and S does not contain the first interval I_{1}.
Let I_{i}^{*} be the interval in S having earliest finish time.
Since I_{1} has the earliest finish time for all, $f_{1} \leq f_{i}$.

$$
S^{*}=S-\left\{I_{i}^{*}\right\} \cup\left\{I_{1}\right\} \quad \text { such that }\left|S^{*}\right|=|S|
$$

Interval Scheduling

Theorem (Greedy-choice property): The interval having earliest finish time (first interval) will be part of some optimal solution set. (Our greedy approach yields us an optimal solution)

Proof
Assume S is an optimal solution set for problem and S does not contain the first interval I_{1}.
Let I_{i}^{*} be the interval in S having earliest finish time.
Since I_{1} has the earliest finish time for all, $f_{1} \leq f_{i}$.

$$
S^{*}=S-\left\{I_{i}^{*}\right\} \cup\left\{I_{1}\right\} \quad \text { such that } I S^{*}|=|S|
$$

This is a contradiction!

Greedy Algorithms

- solve the problem by breaking it a sequence of subproblems
- make the best local choice among all feasible one available on that moment (one choice at a time)
- your choice does not depend on any future choices or any past choices you have made
- prove that the Greedy Choice Property satisfies. A sequence of locally optimal choices yields a global optimal solution

Cashier's Problem

- given a certain amount of money, M cents, and a set of denominations of coins c_{1}, \ldots, c_{m}
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

Cashier's Problem

- given a certain amount of money, M cents, and a set of denominations of coins c_{1}, \ldots, c_{m}
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

147 cents
$(25,10,5,1)$

Cashier's Problem

- given a certain amount of money, M cents, and a set of denominations of coins c_{1}, \ldots, c_{m}
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

147 cents
$(25,10,5,1)$

Cashier's Problem

- given a certain amount of money, M cents, and a set of denominations of coins c_{1}, \ldots, c_{m}
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

147 cents
$(25,10,5,1)$

Cashier's Problem

- given a certain amount of money, M cents, and a set of denominations of coins c_{1}, \ldots, c_{m}
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

147 cents
$(25,10,5,1)$

Cashier's Problem

- given a certain amount of money, M cents, and a set of denominations of coins c_{1}, \ldots, c_{m}
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

147 cents
$(25,10,5,1)$

Cashier's Problem

- given a certain amount of money, M cents, and a set of denominations of coins c_{1}, \ldots, c_{m}
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

147 cents
$(25,10,5,1)$

Cashier's Problem

- given a certain amount of money, M cents, and a set of denominations of coins c_{1}, \ldots, c_{m}
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

147 cents
$(25,10,5,1)$

Cashier's Problem

- given a certain amount of money, M cents, and a set of denominations of coins c_{1}, \ldots, c_{m}
- make change for M cents using a minimum total number of coins (each denomination is available in unlimited quantity)

147 cents
$(25,10,5,1)$

Cashier's Problem

```
input : an amount of money M
    a set of denominations ( }\mp@subsup{c}{1}{},\ldots,\mp@subsup{c}{n}{}
```

sort denominations

```
\(c_{1} \geq \ldots \geq c_{n}\)
totalw \(=M\)
j=1
\(\mathrm{k}=0\)
while ( \(j \leq n\) )
    if ( \(c_{j} \leq\) totalw \()\)
        totalw = totalw \(-c_{j}\)
        \(\mathrm{k}=\mathrm{k}+1\)
        else
        \(j=j+1\)
return \(k\)
```


Cashier's Problem

Theorem (Greedy-choice property): Let $(10,5,1)$ be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_{j} \leq M$.
(Our greedy approach yields us an optimal solution)
Proof

Cashier's Problem

Theorem (Greedy-choice property): Let $(10,5,1)$ be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_{j} \leq M$.
(Our greedy approach yields us an optimal solution)
Proof
Assume S is an optimal solution for M, and $10 \leq M$. But S does not contain any 10.

Cashier's Problem

Theorem (Greedy-choice property): Let $(10,5,1)$ be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_{j} \leq M$.
(Our greedy approach yields us an optimal solution)
Proof
Assume S is an optimal solution for M, and $10 \leq M$. But S does not contain any 10.

$$
M=a .5+b .1 \text { (total } a+b \text { coins) }
$$

Cashier's Problem

Theorem (Greedy-choice property): Let $(10,5,1)$ be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_{j} \leq M$.
(Our greedy approach yields us an optimal solution)
Proof
Assume S is an optimal solution for M, and $10 \leq M$. But S does not contain any 10.

$$
M=a .5+b .1 \text { (total } a+b \text { coins })
$$

M can be written as

$$
M=a .5+b .1=10-10+a .5+b .1
$$

Cashier's Problem

Theorem (Greedy-choice property): Let $(10,5,1)$ be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_{j} \leq M$.
(Our greedy approach yields us an optimal solution)
Proof
Assume S is an optimal solution for M, and $10 \leq M$. But S does not contain any 10.

$$
M=a .5+b .1 \text { (total } a+b \text { coins) }
$$

M can be written as

$$
\begin{aligned}
M=a .5+b .1 & =10-10+a .5+b .1 \\
& =1.10+(a-2) .5+b .1
\end{aligned}
$$

Cashier's Problem

Theorem (Greedy-choice property): Let $(10,5,1)$ be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_{j} \leq M$.
(Our greedy approach yields us an optimal solution)
Proof
Assume S is an optimal solution for M, and $10 \leq M$. But S does not contain any 10.

$$
M=a .5+b .1 \text { (total } a+b \text { coins) }
$$

M can be written as

$$
\begin{aligned}
M=a .5+b .1 & =10-10+a .5+b .1 \\
& =1.10+(a-2) .5+b .1 \text { (total } a+b-1 \text { coins) }
\end{aligned}
$$

Cashier's Problem

Theorem (Greedy-choice property): Let $(10,5,1)$ be the denomination set. For the amount M, there exists an optimal solution set that contains the largest denomination $c_{j} \leq M$.
(Our greedy approach yields us an optimal solution)
Proof
Assume S is an optimal solution for M, and $10 \leq M$. But S does not contain any 10.

$$
M=a .5+b .1 \text { (total } a+b \text { coins) }
$$

M can be written as

$$
\begin{aligned}
M=a .5+b .1 & =10-10+a .5+b .1 \\
& =1.10+(a-2) .5+b .1 \text { (total } a+b-1 \text { coins) }
\end{aligned}
$$

This is contradiction.

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?

6
1
$M=24$

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?

$M=24$

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?
$M=24$
2
6

0

1

$+$
$+$

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?

10

2
$+$

6

0

1

$4=6$

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?

Cashier's Problem

Will the Greedy Technique give an optimal solution for all denomination set?

$M=24$
2

6

$+$

1

$4=6$
use dynamic programming

Fractional Knapsack

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- you are allowed to get a fraction x_{i} of an item i that yields a profit $x_{i} \cdot p_{i}$ where $0 \leq x_{i} \leq 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

Fractional Knapsack

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- you are allowed to get a fraction x_{i} of an item i that yields a profit $x_{i} \cdot p_{i}$ where $0 \leq x_{i} \leq 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

$w_{1}=5$
$p_{1}=15$
diamonds
$M=25$

Fractional Knapsack

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- you are allowed to get a fraction x_{i} of an item i that yields a profit $x_{i} \cdot p_{i}$ where $0 \leq x_{i} \leq 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

gold
$p_{2} / w_{2}=1$

$M=25$
diamonds
$p_{4} / w_{4}=3$

Fractional Knapsack

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- you are allowed to get a fraction x_{i} of an item i that yields a profit $x_{i} \cdot p_{i}$ where $0 \leq x_{i} \leq 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

gold
$p_{2} / w_{2}=1$

$M=25$
$M=25$

Fractional Knapsack

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- you are allowed to get a fraction x_{i} of an item i that yields a profit $x_{i} \cdot p_{i}$ where $0 \leq x_{i} \leq 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

gold
$p_{2} / w_{2}=1$

$M=25$
$M=25$
3.5

Fractional Knapsack

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- you are allowed to get a fraction x_{i} of an item i that yields a profit $x_{i} \cdot p_{i}$ where $0 \leq x_{i} \leq 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

gold
$p_{2} / w_{2}=1$

silver
$p_{3} / w_{3}=1 / 3$
$p_{4} / w_{4}=3$
$M=20$
$3.5+1.5$

Fractional Knapsack

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- you are allowed to get a fraction x_{i} of an item i that yields a profit $x_{i} \cdot p_{i}$ where $0 \leq x_{i} \leq 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

gold
$p_{2} / w_{2}=1$

silver
$p_{3} / w_{3}=1 / 3$
$p_{4} / w_{4}=3$
$M=15$
$3.5+1.5+(1 / 2) .15$
diamonds

$M=25$

Fractional Knapsack

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- you are allowed to get a fraction x_{i} of an item i that yields a profit $x_{i} \cdot p_{i}$ where $0 \leq x_{i} \leq 1$
- your goal is to get a filling that maximizes the profit under the weight constraint M

gold
$p_{2} / w_{2}=1$

silver
$p_{3} / w_{3}=1 / 3$

$$
M=0
$$

$$
3.5+1.5+(1 / 2) \cdot 15=27.5
$$

$p_{4} / w_{4}=3$
$M=25$
diamonds

Fractional Knapsack

input : n items together with their prices p_{i} and weight w_{i}, and a knapsack with the capacity M
sort items according to the ratio $\left(p_{i} / w_{i}\right)$
$\left(p_{1} / w_{1}\right) \leq \ldots \leq\left(p_{n} / w_{n}\right)$
totalw $=M$
$j=1$
while (totalw > 0)
if ($w_{j}>$ totalw) add totalw fraction of item j to the knapsack totalw = 0
else
add item j to the knapsack totalw = totalw $-w_{j}$
$j=j+1$
return knapsack

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the maximum ratio p_{i} / w_{i}. There exists an optimal solution that contains item j as much as possible.
(Our greedy approach yields us an optimal solution)
Proof

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the maximum ratio p_{i} / w_{i}. There exists an optimal solution that contains item j as much as possible.
(Our greedy approach yields us an optimal solution) Proof
Assume S is an optimal solution with the full knapsack of capacity M and total profit U.

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the maximum ratio p_{i} / w_{i}. There exists an optimal solution that contains item j as much as possible.
(Our greedy approach yields us an optimal solution)
Proof
Assume S is an optimal solution with the full knapsack of capacity M and total profit U.
Assume S does not contain the item j as much as possible.
There must exist some item k such that $k \neq j$ and $\left(p_{k} / w_{k}\right)<\left(p_{j} / w_{j}\right)$

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the maximum ratio p_{i} / w_{i}. There exists an optimal solution that contains item j as much as possible.
(Our greedy approach yields us an optimal solution)
Proof
Assume S is an optimal solution with the full knapsack of capacity M and total profit U.
Assume S does not contain the item j as much as possible.
There must exist some item k such that $k \neq j$ and $\left(p_{k} / w_{k}\right)<\left(p_{j} / w_{j}\right)$
We take out some amount of item k, (suppose α) and put same amount of item j.

$$
S^{*}=S-\{\alpha \text { of item } k\} \cup\{\alpha \text { of item } j\}
$$

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the maximum ratio p_{i} / w_{i}. There exists an optimal solution that contains item j as much as possible.
(Our greedy approach yields us an optimal solution) Proof
Assume S is an optimal solution with the full knapsack of capacity M and total profit U.
Assume S does not contain the item j as much as possible.
There must exist some item k such that $k \neq j$ and $\left(p_{k} / w_{k}\right)<\left(p_{j} / w_{j}\right)$
We take out some amount of item k, (suppose α) and put same amount of item j.

$$
S^{*}=S-\{\alpha \text { of item } k\} \cup\{\alpha \text { of item } j\}
$$

Let U^{*} be the profit of S^{*}. Then,

$$
U^{*}=U-\alpha \cdot\left(p_{k} / w_{k}\right)+\alpha \cdot\left(p_{j} / w_{j}\right)
$$

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the maximum ratio p_{i} / w_{i}. There exists an optimal solution that contains item j as much as possible.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution with the full knapsack of capacity M and total profit U.
Assume S does not contain the item j as much as possible.
There must exist some item k such that $k \neq j$ and $\left(p_{k} / w_{k}\right)<\left(p_{j} / w_{j}\right)$
We take out some amount of item k, (suppose α) and
put same amount of item j.

$$
S^{*}=S-\{\alpha \text { of item } k\} \cup\{\alpha \text { of item } j\}
$$

Let U^{*} be the profit of S^{*}. Then,

$$
U^{\star}=U-\alpha \cdot\left(p_{k} / w_{k}\right)+\alpha \cdot\left(p_{j} / w_{j}\right)
$$

Since $\left(p_{k} / w_{k}\right)<\left(p_{j} / w_{j}\right), U^{*}>U$.

Fractional Knapsack

Theorem (Greedy-choice property): Let j be the item with the maximum ratio p_{i} / w_{i}. There exists an optimal solution that contains item j as much as possible.
(Our greedy approach yields us an optimal solution)

Proof

Assume S is an optimal solution with the full knapsack of capacity M and total profit U.
Assume S does not contain the item j as much as possible.
There must exist some item k such that $k \neq j$ and $\left(p_{k} / w_{k}\right)<\left(p_{j} / w_{j}\right)$
We take out some amount of item k, (suppose α) and
put same amount of item j.

$$
S^{*}=S-\{\alpha \text { of item } k\} \cup\{\alpha \text { of item } j\}
$$

Let U^{*} be the profit of S^{*}. Then,

$$
U^{\star}=U-\alpha \cdot\left(p_{k} / w_{k}\right)+\alpha \cdot\left(p_{j} / w_{j}\right)
$$

Since $\left(p_{k} / w_{k}\right)<\left(p_{j} / w_{j}\right), U^{*}>U$.
This is contradiction!

0/1 Knapsack Problem

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- your goal is to get a filling that maximizes the profit under the weight constraint M
(You cannot take fraction of an item, you take the item or not)

0/1 Knapsack Problem

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- your goal is to get a filling that maximizes the profit under the weight constraint M
(You cannot take fraction of an item, you take the item or not)
Can we use Greedy Technique to solve this problem?

0/1 Knapsack Problem

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- your goal is to get a filling that maximizes the profit under the weight constraint M
(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

0/1 Knapsack Problem

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- your goal is to get a filling that maximizes the profit under the weight constraint M
(You cannot take fraction of an item, you take the item or not)
Can we use Greedy Technique to solve this problem?

$$
\begin{aligned}
& w_{3}=30 \\
& p_{3}=120 \\
& p_{3} / w_{3}=4
\end{aligned}
$$

$$
M=50
$$

$$
M=50 \longleftrightarrow 60
$$

0/1 Knapsack Problem

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- your goal is to get a filling that maximizes the profit under the weight constraint M
(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

$$
\begin{aligned}
& w_{3}=30 \\
& p_{3}=120 \\
& p_{3} / w_{3}=4
\end{aligned}
$$

$$
M=50
$$

$$
M=40 \longleftrightarrow 60+100
$$

0/1 Knapsack Problem

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- your goal is to get a filling that maximizes the profit under the weight constraint M
(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

0/1 Knapsack Problem

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- your goal is to get a filling that maximizes the profit under the weight constraint M
(You cannot take fraction of an item, you take the item or not)

Can we use Greedy Technique to solve this problem?

$$
M=20 \longleftrightarrow 60+100=160
$$

$$
\begin{aligned}
& w_{3}=30 \\
& p_{3}=120 \\
& p_{3} / w_{3}=4
\end{aligned}
$$

$$
100+120=220
$$

0/1 Knapsack Problem

- given n items and a knapsack with the capacity M
- each item i has a weight w_{i}, and a value p_{i}
- your goal is to get a filling that maximizes the profit under the weight constraint M
(You cannot take fraction of an item, you take the item or not)
Can we use Greedy Technique to solve this problem?

$$
M=20 \longleftrightarrow 60+100=160
$$

$$
\begin{aligned}
& \begin{array}{l}
w_{3}=30 \\
p_{3}=120
\end{array} \\
& p_{3} / w_{3}=4 \\
& \quad 100+120=220
\end{aligned}
$$

Process Scheduling

- given a computer and n processes p_{1}, \ldots, p_{n} such that each of them has a completion time t_{i}
- find an optimal order of processes that has the minimum average finishing time

Process Scheduling

- given a computer and n processes p_{1}, \ldots, p_{n} such that each of them has a completion time t_{i}
- find an optimal order of processes that has the minimum average finishing time

If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{\mathrm{j}=1.1 \mathrm{i}} \dagger_{\mathrm{j}}$, then the average finishing time will be $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$.

Process Scheduling

- given a computer and n processes p_{1}, \ldots, p_{n} such that each of them has a completion time t_{i}
- find an optimal order of processes that has the minimum average finishing time

If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1.1 .} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$.

Our goal is to minimize $\left(\sum_{i=1 . n} C_{i}\right) / n$

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . i} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . n} C_{i}\right) / n$.
- Our goal is to minimize $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$

$$
t_{1}=4 \quad t_{2}=2 \quad t_{3}=5 \quad t_{4}=3
$$

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . . \mathrm{i}} \dagger_{j}$, then the average finishing time will be ($\Sigma_{i=1 . . n} C_{i}$)/n.
- Our goal is to minimize $\left(\sum_{i=1 . . n} C_{i}\right) / n$
$t_{1}=4$
$t_{2}=2$
$t_{3}=5$
$t_{4}=3$

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . i} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . n} C_{i}\right) / n$.
- Our goal is to minimize $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . i} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . n} C_{i}\right) / n$.
- Our goal is to minimize $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . i} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$.
- Our goal is to minimize $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . i} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$.
- Our goal is to minimize $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . i} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$.
- Our goal is to minimize $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . i} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . n} C_{i}\right) / n$.
- Our goal is to minimize $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$
this part is constant

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . . i} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$.
- Our goal is to minimize $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . i} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . n} C_{i}\right) / n$.
- Our goal is to minimize $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$

$$
\begin{aligned}
& C_{1}=t_{1} \\
& C_{2}=t_{1}+t_{2}
\end{aligned}
$$

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . i} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . n} C_{i}\right) / n$.
- Our goal is to minimize $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$

$$
\begin{aligned}
& C_{1}=t_{1} \\
& c_{2}=t_{1}+t_{2} \\
& C_{3}=t_{1}+t_{2}+t_{3}
\end{aligned}
$$

$$
C_{n}=t_{1}+t_{2}+t_{3}+\ldots+t_{n}
$$

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . i} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . n} C_{i}\right) / n$.
- Our goal is to minimize $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$

$$
\begin{aligned}
& C_{1}=t_{1} \\
& C_{2}=t_{1}+t_{2} \\
& C_{3}=t_{1}+t_{2}+t_{3}
\end{aligned}
$$

$$
C_{n}=t_{1}+t_{2}+t_{3}+\ldots+t_{n}
$$

$$
\Sigma_{i=1 . . n} C_{i}=n . t_{1}+(n-1) \cdot t_{2}+\ldots+t_{n}
$$

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . i} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . n} C_{i}\right) / n$.
- Our goal is to minimize $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$

$$
\begin{aligned}
& C_{1}=t_{1} \\
& c_{2}=t_{1}+t_{2} \\
& C_{3}=t_{1}+t_{2}+t_{3}
\end{aligned}
$$

small t_{1} makes the sum smaller
$\frac{C_{n}=t_{1}+t_{2}+t_{3}+\ldots+t_{n}}{\sum_{i=1 . n} C_{i}=n . t_{1}+(n-1) \cdot t_{2}+\ldots+t_{n}}$

Process Scheduling

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time C_{i} of the process i as $C_{i}=\Sigma_{j=1 . i} \dagger_{j}$, then the average finishing time will be $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$.
- Our goal is to minimize $\left(\Sigma_{i=1 . . n} C_{i}\right) / n$

$$
\begin{aligned}
& C_{1}=t_{1} \\
& c_{2}=t_{1}+t_{2} \\
& c_{3}=t_{1}+t_{2}+t_{3}
\end{aligned}
$$

$$
C_{2}=t_{1}+t_{2} \quad \text { Greedy Approach: sort the processes according to }
$$

the completion time in increasing order
small t_{1} makes the sum smaller

$$
C_{n}=t_{1}+t_{2}+t_{3}+\ldots+t_{n}
$$

$$
\Sigma_{i=1 . . n} C_{i}=n . t_{1}+(n-1) \cdot t_{2}+\ldots+t_{n}
$$

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)
Proof

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)
Proof
Assume there is an optimal sequence S^{*} in which the processes have not been sorted.

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)
Proof
Assume there is an optimal sequence S^{\star} in which the processes have not been sorted. Then there should be indices i and j such that $i<j$ and $t_{j}<t_{i}$

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)
Proof
Assume there is an optimal sequence S^{\star} in which the processes have not been sorted. Then there should be indices i and j such that $i<j$ and $t_{j}<t_{i}$

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that $i<j$ and $t_{j}<t_{i}$

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S^{\star} in which the processes have not been sorted. Then there should be indices i and j such that $i<j$ and $t_{j}<t_{i}$

What happens if we swap i and j ?

- finishing time of the processes up to $i-1$ not changing
(C_{1}, \ldots, C_{i-1} remain same)
- finishing time of the processes after j not changing
(C_{j}, \ldots, C_{n} remain same)

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S^{\star} in which the processes have not been sorted. Then there should be indices i and j such that $i<j$ and $t_{j}<t_{i}$

What happens if we swap i and j ?

- finishing time of the processes up to i-1 not changing
($C_{1}, \ldots, C_{\mathrm{i}-1}$ remain same)
- finishing time of the processes after j not changing
(C_{j}, \ldots, C_{n} remain same)
-Let $\Delta=t_{i}-t_{j}$.

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S^{\star} in which the processes have not been sorted. Then there should be indices i and j such that $i<j$ and $t_{j}<t_{i}$

What happens if we swap i and j ?

- finishing time of the processes up to i-1 not changing
(C_{1}, \ldots, C_{i-1} remain same)
- finishing time of the processes after j not changing
(C_{j}, \ldots, C_{n} remain same)
- Let $\Delta=t_{i}-t_{j}$. Then
$C_{i}^{*}=C_{i}-\Delta$

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S^{\star} in which the processes have not been sorted. Then there should be indices i and j such that $i<j$ and $t_{j}<t_{i}$

What happens if we swap i and j ?

- finishing time of the processes up to i-1 not changing
(C_{1}, \ldots, C_{i-1} remain same)
- finishing time of the processes after j not changing
(C_{j}, \ldots, C_{n} remain same)
- Let $\Delta=t_{i}-t_{j}$. Then

$$
\begin{aligned}
C_{i}^{*}= & C_{i}-\Delta \\
C_{i+1}^{*}= & C_{i+1}-\Delta \\
& \vdots \\
C_{j-1}^{*}= & C_{j-1}-\Delta
\end{aligned}
$$

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S^{\star} in which the processes have not been sorted. Then there should be indices i and j such that $i<j$ and $t_{j}<t_{i}$

What happens if we swap i and j ?

- finishing time of the processes up to i-1 not changing
(C_{1}, \ldots, C_{i-1} remain same)
- finishing time of the processes after j not changing
(C_{j}, \ldots, C_{n} remain same)
- Let $\Delta=t_{i}-t_{j}$. Then

$$
\begin{aligned}
C_{i}^{*} & =C_{i}-\Delta \\
C_{i+1}^{*}= & C_{i+1}-\Delta \\
& \vdots \\
C_{j-1}^{*} & =C_{j-1}-\Delta
\end{aligned}
$$

- $\quad \sum_{i=1 . . n} C_{i}$ decreasing

Process Scheduling

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the completion time. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)

Proof

Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that $i<j$ and $t_{j}<t_{i}$

What happens if we swap i and j ?

- finishing time of the processes up to i-1 not changing
(C_{1}, \ldots, C_{i-1} remain same)
- finishing time of the processes after j not changing
(C_{j}, \ldots, C_{n} remain same)
- Let $\Delta=t_{i}-t_{j}$. Then

$$
\begin{gathered}
C_{i}^{*}=C_{i}-\Delta \\
C_{i+1}^{*}=C_{i+1}-\Delta \\
\vdots \\
C_{j-1}^{*}=C_{j-1}-\Delta
\end{gathered}
$$

this is a contradiction \qquad - $\quad \sum_{i=1 . . n} C_{i}$ decreasing

Minimizing Lateness

- given a computer and n processes p_{1}, \ldots, p_{n} such that each of them has a processing time t_{i} and a deadline d_{i}
- find an optimal order of processes that minimizes the maximum lateness

Minimizing Lateness

- given a computer and n processes p_{1}, \ldots, p_{n} such that each of them has a processing time t_{i} and a deadline d_{i}
- find an optimal order of processes that minimizes the maximum lateness

If we define the finishing time f_{i} of the process i as $f_{i}=\Sigma_{j=1.1 .} t_{j}$, then the lateness of the process i will be $l_{i}=\max \left\{0, f_{i}-d_{i}\right\}$

Minimizing Lateness

- given a computer and n processes p_{1}, \ldots, p_{n} such that each of them has a processing time t_{i} and a deadline d_{i}
- find an optimal order of processes that minimizes the maximum lateness

> If we define the finishing time f_{i} of the process i as $f_{i}=\Sigma_{j=1.1 .} \dagger_{j}$, then the lateness of the process i will be $l_{i}=\max \left\{0, f_{i}-d_{i}\right\}$

Our goal is to minimize $L=\max _{i} I_{i}$

Minimizing Lateness

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time f_{i} of the process i as $f_{i}=\Sigma_{j=1 . . i} \dagger_{j}$, then the lateness of the process i will be $l_{i}=\max \left\{0, f_{i}-d_{i}\right\}$
- Our goal is to minimize $L=\max _{i} I_{i}$

Minimizing Lateness

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time f_{i} of the process i as $f_{i}=\Sigma_{j=1 . i} t_{j}$, then the lateness of the process i will be $l_{i}=\max \left\{0, f_{i}-d_{i}\right\}$
- Our goal is to minimize $L=\max _{i} I_{i}$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\boldsymbol{t}_{\mathbf{i}}$	4	2	5	3
$\mathbf{d}_{\mathbf{i}}$	6	4	10	8

Minimizing Lateness

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time f_{i} of the process i as $f_{i}=\Sigma_{j=1 . i} t_{j}$, then the lateness of the process i will be $l_{i}=\max \left\{0, f_{i}-d_{i}\right\}$
- Our goal is to minimize $L=\max _{i} I_{i}$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\boldsymbol{t}_{\mathbf{i}}$	4	2	5	3
$\mathbf{d}_{\mathbf{i}}$	6	4	10	8

Minimizing Lateness

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time f_{i} of the process i as $f_{i}=\Sigma_{j=1 . . i} t_{j}$, then the lateness of the process i will be $l_{i}=\max \left\{0, f_{i}-d_{i}\right\}$
- Our goal is to minimize $L=\max _{i} I_{i}$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\boldsymbol{t}_{\mathbf{i}}$	4	2	5	3
$\mathbf{d}_{\mathbf{i}}$	6	4	10	8

$$
L=6
$$

Minimizing Lateness

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time f_{i} of the process i as $f_{i}=\Sigma_{j=1 . i} \dagger_{j}$, then the lateness of the process i will be $l_{i}=\max \left\{0, f_{i}-d_{i}\right\}$
- Our goal is to minimize $L=\max _{i} I_{i}$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{i}}$	4	2	5	3
$\mathbf{d}_{\mathbf{i}}$	6	4	10	8

Minimizing Lateness

- Given t_{1}, \ldots, t_{n}
- If we define the finishing time f_{i} of the process i as $f_{i}=\Sigma_{j=1 . . i} t_{j}$, then the lateness of the process i will be $I_{i}=\max \left\{0, f_{i}-d_{i}\right\}$
- Our goal is to minimize $L=\max _{i} I_{i}$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\boldsymbol{t}_{\mathbf{i}}$	4	2	5	3
$\mathbf{d}_{\mathbf{i}}$	6	4	10	8

$$
L=6
$$

$$
L=10
$$

Minimizing Lateness

How do we sort the processes?

- according to their process time t_{i}

Minimizing Lateness

How do we sort the processes?

- according to their process time t_{i}

	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{t}_{\mathbf{i}}$	1	5
$\mathbf{d}_{\mathbf{i}}$	12	5

Minimizing Lateness

How do we sort the processes?

- according to their process time t_{i}

	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{t}_{\mathbf{i}}$	1	5
$\mathbf{d}_{\mathbf{i}}$	12	5

Minimizing Lateness

How do we sort the processes?

- according to their process time t_{i}

	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{t}_{\mathbf{i}}$	1	5
$\mathbf{d}_{\mathbf{i}}$	12	5

Minimizing Lateness

How do we sort the processes?

- according to their slack time $\mathrm{d}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}}$

Minimizing Lateness

How do we sort the processes?

- according to their slack time $d_{i}-t_{i}$

	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{t}_{\mathbf{i}}$	1	5
$\mathbf{d}_{\mathbf{i}}$	2	5

Minimizing Lateness

How do we sort the processes?

- according to their slack time $\mathrm{d}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}}$

	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{t}_{\mathbf{i}}$	1	5
$\mathbf{d}_{\mathbf{i}}$	2	5

Minimizing Lateness

How do we sort the processes?

- according to their slack time $\mathrm{d}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}}$

Minimizing Lateness

How do we sort the processes?

- according to their deadlines d_{i}

Minimizing Lateness

How do we sort the processes?

- according to their deadlines d_{i}

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{i}}$	4	2	5	3
$\mathbf{d}_{\mathbf{i}}$	6	4	10	8

$$
\begin{array}{c:c:c}
t_{2}=2 & t_{1}=4 & t_{4}=3 \\
L_{1}=0 \quad t_{3}=5 \\
L_{2}=0 \quad L_{3}=1 \quad L=4
\end{array} \quad L_{4}=4
$$

Minimizing Lateness

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the deadline. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution)

Minimizing Lateness

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the deadline. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution) Proof
Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that $i<j$ and $d_{j}<d_{i}$

Minimizing Lateness

Theorem (Greedy-choice property): Let S be a sequence of processes ordered according to the deadline. Then S is an optimal sequence. (Our greedy approach yields us an optimal solution) Proof
Assume there is an optimal sequence S^{*} in which the processes have not been sorted. Then there should be indices i and j such that $i<j$ and $d_{j}<d_{i}$

What happens if we swap i and j ?

Huffman Coding

Huffman Coding

Encoding

ABRACADABRA

A	B	R	A	C	A	D	A	B	R	A
000	001	010	000	011	000	100	000	001	010	000

- Encode them using 3-bit strings

Huffman Coding

Encoding

ABRACADABRA

A	B	R	A	C	A	D	A	B	R	A
000	001	010	000	011	000	100	000	001	010	000
freq										

```
number of times
``` the letter appears
- Encode them using 3-bit strings

\section*{Huffman Coding}

\section*{Encoding}

ABRACADABRA
\begin{tabular}{ccccccccccc}
A & \(B\) & \(R\) & \(A\) & \(C\) & \(A\) & \(D\) & \(A\) & \(B\) & \(R\) & \(A\) \\
000 & 001 & 010 & 000 & 011 & 000 & 100 & 000 & 001 & 010 & 000 \\
freq & & & & & & & & &
\end{tabular}
\begin{tabular}{l:l}
A & 5 \\
B & 2 \\
R & 2 \\
\(C\) & 1 \\
D & 1
\end{tabular}
- Encode them using 3-bit strings

\section*{Huffman Coding}

\section*{Encoding}

ABRACADABRA
\begin{tabular}{ccccccccccc}
A & \(B\) & \(R\) & \(A\) & \(C\) & \(A\) & \(D\) & \(A\) & \(B\) & \(R\) & \(A\) \\
000 \\
\\
freq & 0010 & 000 & 011 & 000 & 100 & 000 & 001 & 010 & 000
\end{tabular}
\begin{tabular}{l:l:l}
\(A\) & 5 & 000 \\
\(B\) & 2 & 001 \\
\(R\) & 2 & 010 \\
\(C\) & 1 & 011 \\
\(D\) & 1 & 100
\end{tabular}
- Encode them using 3-bit strings

\section*{Huffman Coding}

\section*{Encoding}

ABRACADABRA
\begin{tabular}{ccccccccccc}
A & \(B\) & \(R\) & \(A\) & \(C\) & \(A\) & \(D\) & \(A\) & \(B\) & \(R\) & \(A\) \\
000 & 001 & 010 & 000 & 011 & 000 & 100 & 000 & 001 & 010 & 000 \\
freq & cost & & & & & & & &
\end{tabular}
\begin{tabular}{l:l:l:l}
\(A\) & 5 & 000 & 15 \\
\(B\) & 2 & 001 & 6 \\
\(R\) & 2 & 010 & 6 \\
\(C\) & 1 & 011 & 3 \\
\(D\) & 1 & 100 & 3
\end{tabular}
- Encode them using 3-bit strings

\section*{Huffman Coding}

\section*{Encoding}

ABRACADABRA
\begin{tabular}{ccccccccccc}
A & \(B\) & \(R\) & \(A\) & \(C\) & \(A\) & \(D\) & \(A\) & \(B\) & \(R\) & \(A\) \\
000 & 001 & 010 & 000 & 011 & 000 & 100 & 000 & 001 & 010 & 000 \\
freq & cost & & & & & & & &
\end{tabular}
\begin{tabular}{c:c:c:c}
\(A\) & 5 & 000 & 15 \\
\(B\) & 2 & 001 & 6 \\
\(R\) & 2 & 010 & 6 \\
\(C\) & 1 & 011 & 3 \\
\(D\) & 1 & 100 & 3 \\
\hline
\end{tabular}
- Encode them using 3-bit strings
- Total 33 bits required to encode

\section*{Huffman Coding}

\section*{Encoding}

ABRACADABRA
\begin{tabular}{ccccccccccc}
A & \(B\) & \(R\) & \(A\) & \(C\) & \(A\) & \(D\) & \(A\) & \(B\) & \(R\) & \(A\) \\
000 & 001 & 010 & 000 & 011 & 000 & 100 & 000 & 001 & 010 & 000 \\
freq & cost & & & & & & & &
\end{tabular}
\begin{tabular}{c:c:c:c}
\(A\) & 5 & 000 & 15 \\
\(B\) & 2 & 001 & 6 \\
\(R\) & 2 & 010 & 6 \\
\(C\) & 1 & 011 & 3 \\
\(D\) & 1 & 100 & 3 \\
\hline
\end{tabular}
- Encode them using 3-bit strings
- Total 33 bits required to encode

Can we get better encoding?

\section*{Huffman Coding}

\section*{Encoding}

ABRACADABRA
\begin{tabular}{ccccccccccc}
A & \(B\) & \(R\) & \(A\) & \(C\) & \(A\) & \(D\) & \(A\) & \(B\) & \(R\) & \(A\) \\
000 & 001 & 010 & 000 & 011 & 000 & 100 & 000 & 001 & 010 & 000 \\
freq & cost & & & & & & & &
\end{tabular}
\begin{tabular}{c:c:c:c}
\(A\) & 5 & 000 & 15 \\
\(B\) & 2 & 001 & 6 \\
\(R\) & 2 & 010 & 6 \\
\(C\) & 1 & 011 & 3 \\
\(D\) & 1 & 100 & 3 \\
\hline
\end{tabular}
- Encode them using 3-bit strings
- Total 33 bits required to encode

Can we get better encoding?
100000001000010000

\section*{Huffman Coding}

\section*{Encoding}

ABRACADABRA
\begin{tabular}{ccccccccccc}
A & \(B\) & \(R\) & \(A\) & \(C\) & \(A\) & \(D\) & \(A\) & \(B\) & \(R\) & \(A\) \\
000 & 001 & 010 & 000 & 011 & 000 & 100 & 000 & 001 & 010 & 000 \\
freq & cost & & & & & & & &
\end{tabular}
\begin{tabular}{c:c:c:c}
\(A\) & 5 & 000 & 15 \\
\(B\) & 2 & 001 & 6 \\
\(R\) & 2 & 010 & 6 \\
\(C\) & 1 & 011 & 3 \\
\(D\) & 1 & 100 & 3 \\
\hline
\end{tabular}
- Encode them using 3-bit strings
- Total 33 bits required to encode

Can we get better encoding?

\section*{Huffman Coding}

\section*{Encoding}

ABRACADABRA
\begin{tabular}{ccccccccccc}
A & \(B\) & \(R\) & \(A\) & \(C\) & \(A\) & \(D\) & \(A\) & \(B\) & \(R\) & \(A\) \\
000 & 001 & 010 & 000 & 011 & 000 & 100 & 000 & 001 & 010 & 000 \\
freq & cost & & & & & & & &
\end{tabular}
\begin{tabular}{c:c:c:c}
\(A\) & 5 & 000 & 15 \\
\(B\) & 2 & 001 & 6 \\
\(R\) & 2 & 010 & 6 \\
\(C\) & 1 & 011 & 3 \\
\(D\) & 1 & 100 & 3 \\
\hline
\end{tabular}
- Encode them using 3-bit strings
- Total 33 bits required to encode

Can we get better encoding?
\(\begin{array}{c:c:c:c:c:c}100 & 0 & 0 & 0 & 0 & 0 \\ \text { D } & \text { A } & \text { B } & \text { A } & \text { R } & \text { A }\end{array}\)

\section*{Huffman Coding}

\section*{Encoding}

ABRACADABRA
\begin{tabular}{ccccccccccc}
A & \(B\) & \(R\) & \(A\) & \(C\) & \(A\) & \(D\) & \(A\) & \(B\) & \(R\) & \(A\) \\
000 & 001 & 010 & 000 & 011 & 000 & 100 & 000 & 001 & 010 & 000 \\
freq & cost & & & & & & & &
\end{tabular}
\begin{tabular}{c:c:c:c}
\(A\) & 5 & 000 & 15 \\
\(B\) & 2 & 001 & 6 \\
\(R\) & 2 & 010 & 6 \\
\(C\) & 1 & 011 & 3 \\
\(D\) & 1 & 100 & 3 \\
\hline
\end{tabular}
a unique decoding
\(\leftarrow\)

\section*{Huffman Coding}
\begin{tabular}{ll}
& \\
freq \\
A & 5 \\
\(B\) & 2 \\
\(R\) & 2 \\
\(C\) & 1 \\
\(D\) & 1
\end{tabular}

Huffman Coding
\begin{tabular}{l:l}
& \\
& freq \\
\(A\) & 5 \\
\(B\) & 2 \\
\(R\) & 2 \\
\(C\) & 1 \\
\(D\) & 1 \\
&
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)

\section*{Huffman Coding}
\begin{tabular}{l:l}
& \\
& freq \\
\(A\) & 5 \\
\(B\) & 2 \\
\(R\) & 2 \\
\(C\) & 1 \\
\(D\) & 1
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)

\section*{Huffman Coding}
\begin{tabular}{l:l}
& \\
& freq \\
A & 5 \\
\(B\) & 2 \\
\(R\) & 2 \\
\(C\) & 1 \\
\(D\) & 1
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency

\section*{Huffman Coding}
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{freq} \\
\hline A & 5 & 0 \\
\hline B & 2 & 1 \\
\hline R & 2 & 01 \\
\hline \(C\) & 1 & 10 \\
\hline D & 1 & 11 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot l_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency

\section*{Huffman Coding}
\begin{tabular}{l:c:c}
& freq & \\
& cost \\
A & 5 & 0 \\
B & 2 & 1 \\
R & 2 & 2 \\
C & 1 & 10 \\
D & 1 & 11 \\
& & 2 \\
& & \\
& & \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot l_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency

\section*{Huffman Coding}
\begin{tabular}{l:c:c:c}
& \multicolumn{1}{c}{ freq } & & \multicolumn{1}{c}{ cost } \\
& A & 5 & 0 \\
B & 2 & 1 & 2 \\
R & 2 & 01 & 4 \\
\(C\) & 1 & 10 & 2 \\
\(D\) & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?

\section*{Huffman Coding}
\begin{tabular}{l:c:c:c}
& \multicolumn{1}{c}{ freq } & & \multicolumn{1}{c}{ cost } \\
& A & 5 & 0 \\
B & 2 & 1 & 2 \\
R & 2 & 01 & 4 \\
\(C\) & 1 & 10 & 2 \\
\(D\) & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?
\[
00110110
\]

\section*{Huffman Coding}
\begin{tabular}{l:c:c:c}
& \multicolumn{1}{c}{ freq } & & \multicolumn{1}{c}{ cost } \\
& A & 5 & 0 \\
B & 2 & 1 & 2 \\
R & 2 & 01 & 4 \\
\(C\) & 1 & 10 & 2 \\
\(D\) & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?
\[
00111110
\]

\section*{Huffman Coding}
\begin{tabular}{l:c:c:c}
& \multicolumn{1}{c}{ freq } & & \multicolumn{1}{c}{ cost } \\
& A & 5 & 0 \\
B & 2 & 1 & 2 \\
R & 2 & 01 & 4 \\
\(C\) & 1 & 10 & 2 \\
\(D\) & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?
\[
\begin{aligned}
& 00110110 \\
& A A D R \quad C
\end{aligned}
\]

\section*{Huffman Coding}
\begin{tabular}{l:c:c:c}
& \multicolumn{1}{c}{ freq } & & \multicolumn{1}{c}{ cost } \\
& A & 5 & 0 \\
B & 2 & 1 & 2 \\
R & 2 & 01 & 4 \\
\(C\) & 1 & 10 & 2 \\
\(D\) & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?
\[
\begin{array}{l:l:l}
0 & \text { AADRC } \\
A R B R C & \\
A R O
\end{array}
\]

\section*{Huffman coding}
\begin{tabular}{l:c:c:c}
& \multicolumn{2}{c}{ freq } & \\
cost \\
A & 5 & 0 & 5 \\
B & 2 & 1 & 2 \\
R & 2 & 01 & 4 \\
\(C\) & 1 & 10 & 2 \\
\(D\) & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?
00110110
A ABBA D A

AADRC ARBRC

\section*{Huffman coding}
\begin{tabular}{l:c:c:c}
& \multicolumn{2}{c}{ freq } & \\
cost \\
A & 5 & 0 & 5 \\
B & 2 & 1 & 2 \\
R & 2 & 01 & 4 \\
\(C\) & 1 & 10 & 2 \\
\(D\) & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?
\[
\begin{array}{l:l:l}
0 & 1110 \\
A A B B A D A
\end{array}
\]

AADRC ARBRC AABBADA

\section*{Huffman coding}
\begin{tabular}{l:c:c:c}
& \multicolumn{2}{c}{ freq } & \\
cost \\
A & 5 & 0 & 5 \\
B & 2 & 1 & 2 \\
R & 2 & 01 & 4 \\
\(C\) & 1 & 10 & 2 \\
\(D\) & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?
\[
\begin{array}{l:l:l}
0 & 1110 \\
A A B B A D A
\end{array}
\]

AADRC ARBRC AABBADA

\section*{Huffman coding}
\begin{tabular}{l:c:c:c}
& \multicolumn{2}{c}{ freq } & \\
cost \\
A & 5 & 0 & 5 \\
B & 2 & 1 & 2 \\
R & 2 & 01 & 4 \\
\(C\) & 1 & 10 & 2 \\
\(D\) & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?

\section*{Huffman coding}
\begin{tabular}{l:c:c:c}
& \multicolumn{2}{c}{ freq } & \\
cost \\
A & 5 & 0 & 5 \\
B & 2 & 1 & 2 \\
R & 2 & 01 & 4 \\
\(C\) & 1 & 10 & 2 \\
\(D\) & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency

Is there any problem for this encoding?
\[
\begin{array}{l:l:l}
0 & 1110 \\
A A B B A D A
\end{array}
\]

AADRC
ARBRC AABBADA
decoding is not unique
to get unique decoding, coding should be 'prefix-free'

\section*{Huffman Coding}
\begin{tabular}{l:c:c}
& freq & \\
& cost \\
A & 5 & 0 \\
B & 2 & 1 \\
R & 2 & 2 \\
C & 1 & 10 \\
D & 1 & 11 \\
& & 2 \\
& & \\
& & \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot l_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency
to get unique decoding, coding should be 'prefix-free'

\section*{Muffman coding}
\begin{tabular}{l:c:c:c}
& \multicolumn{1}{c}{ freq } & & \multicolumn{1}{c}{ cost } \\
& A & 5 & 0 \\
B & 2 & 1 & 2 \\
R & 2 & 01 & 4 \\
\(C\) & 1 & 10 & 2 \\
\(D\) & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency
to get unique decoding, coding should be 'prefix-free'
Coding is called 'prefix free' if for any \(i, j\); encoding \(c_{i}\) is not prefix of encoding \(c_{j}\)

\section*{Muffman coding}
\begin{tabular}{|c|c|c|c|}
\hline & frea & & cost \\
\hline A & 5 & 0 & 5 \\
\hline B & 2 & 1 & 2 \\
\hline R & 2 & 01 & 4 \\
\hline C & 1 & 10 & 2 \\
\hline D & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot l_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency
to get unique decoding, coding should be 'prefix-free'
Coding is called 'prefix free' if for any \(i, j\); encoding \(c_{i}\) is not prefix of encoding \(c_{j}\) encoding of \(B-1\) - is prefix of encoding of \(C-10-\)

10

\section*{Muffman coding}
\begin{tabular}{|c|c|c|c|}
\hline & frea & & cost \\
\hline A & 5 & 0 & 5 \\
\hline B & 2 & 1 & 2 \\
\hline R & 2 & 01 & 4 \\
\hline C & 1 & 10 & 2 \\
\hline D & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency
to get unique decoding, coding should be 'prefix-free'
Coding is called 'prefix free' if for any \(i\), \(j\); encoding \(c_{i}\) is not prefix of encoding \(c_{j}\) encoding of \(B-1\) - is prefix of encoding of \(C-10-\)

10
\(10=c\)

\section*{Huffman coding}
\begin{tabular}{l:c:c:c}
& \multicolumn{2}{c}{ freq } & \\
cost \\
A & 5 & 0 & 5 \\
B & 2 & 1 & 2 \\
R & 2 & 01 & 4 \\
\(C\) & 1 & 10 & 2 \\
\(D\) & 1 & 11 & 2 \\
\hline
\end{tabular}
- \(B\left(T,\left\{f_{c}\right\}\right)=\Sigma f_{c} \cdot I_{c}\)
- try to minimize the function \(B\)
- use smaller length encoding for the character having larger frequency
to get unique decoding, coding should be 'prefix-free'
Coding is called 'prefix free' if for any \(i, j\); encoding \(c_{i}\) is not prefix of encoding \(c_{j}\) encoding of \(B-1\) - is prefix of encoding of \(C-10-\)
\[
10=c^{10} 10=B A
\]

\section*{Huffman Coding}
\begin{tabular}{l:c}
& freq \\
A & 25 \\
E & 18 \\
\(M\) & 13 \\
\(B\) & 10 \\
\(K\) & 7 \\
T & 5 \\
\(U\) & 2 \\
\(L\) & 1
\end{tabular}
- If you have a prefix-free code, you can uniquely decode it

\section*{Huffman Coding}
freq
- If you have a prefix-free code, you can uniquely decode it
- encoding for each char ends with ' 0 '
- use different length encoding for each char

\section*{Huffman Coding}

\section*{freq}
\(\begin{array}{l:l:l}\text { A } & 25 & 0 \\ \mathrm{E} & 18 & 10\end{array}\)
M: \(13: 110\)
B 10 1110
K 7 11110
\begin{tabular}{l|l|l}
T & 5 & 111110
\end{tabular}
U 2 1111110
\(\begin{array}{l:l:l}\text { L } & 11111110\end{array}\)
- If you have a prefix-free code, you can uniquely decode it
- encoding for each char ends with ' 0 '
- use different length encoding for each char

\section*{Huffman Coding}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{freq} & cost \\
\hline A & 25 & & 25 \\
\hline E & 18 & 10 & 36 \\
\hline M & 13 & 110 & 39 \\
\hline B & 10 & 1110 & 40 \\
\hline K & 7 & 11110 & 35 \\
\hline T & 5 & 111110 & 30 \\
\hline U & 2 & 1111110 & 14 \\
\hline L & 1 & 11111110 & \\
\hline
\end{tabular}
- If you have a prefix-free code, you can uniquely decode it
- encoding for each char ends with ' 0 '
- use different length encoding for each char

\section*{Muffman coding}

\section*{Muffman coding}

\section*{Muffman coding}

transform this encoding to a binary tree

\section*{Muffman coding}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{freq} & cost & for '1', create a left child \\
\hline A & 25 & 0 & 25 & for ' 0 ', create a right child \\
\hline E & 18 & 10 & 36 & \\
\hline M & 13 & 110 & 39 & \\
\hline B & 10 & 1110 & 40 & \\
\hline K & 7 & 11110 & 35 & \\
\hline T & 5 & 111110 & 30 & \\
\hline U & 2 & 1111110 & 14 & \\
\hline L & 1 & 11111110 & 8 & \\
\hline & & & \(\overline{227}\) & \\
\hline
\end{tabular}

\section*{Muffman coding}

transform this encoding to a binary tree

\section*{Muffman coding}

transform this encoding to a binary tree

\section*{Muffman coding}

transform this encoding to a binary tree

\section*{Muffman coding}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{freq} & \(\underline{\text { cost }}\) \\
\hline A & 25 & 0 & 25 \\
\hline E & 18 & 10 & 36 \\
\hline M & 13 & 110 & 39 \\
\hline B & 10 & 1110 & 40 \\
\hline K & 7 & 11110 & 35 \\
\hline T & 5 & 111110 & 30 \\
\hline U & 2 & 1111110 & 14 \\
\hline L & 1 & 11111110 & 8 \\
\hline
\end{tabular}
- for '1', create a left child for 'O', create a right child

transform this encoding to a binary tree

\section*{Muffman coding}

transform this encoding to a binary tree

\section*{Huffman coding}

transform this encoding to a binary tree

\section*{Huffman coding}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{freq} & cost \\
\hline A & 25 & 0 & 25 \\
\hline E & 18 & 10 & 36 \\
\hline M & 13 & 110 & 39 \\
\hline B & 10 & 1110 & 40 \\
\hline K & 7 & 11110 & 35 \\
\hline T & 5 & 111110 & 30 \\
\hline U & 2 & 1111110 & 14 \\
\hline L & 1 & 11111110 & 8 \\
\hline
\end{tabular}
to get an optimal encoding, create an optimal tree
- for '1', create a left child for 'O', create a right child

transform this encoding to a binary tree

\section*{Huffman coding}
\begin{tabular}{l:l:l:l}
& freq & cost \\
\(A\) & 25 & 0 & 25 \\
\(E\) & 18 & 10 & 36 \\
\(M\) & 13 & 110 & 39 \\
\(B\) & 10 & 1110 & 40 \\
\(K\) & 7 & 11110 & 35 \\
\(T\) & 5 & 111110 & 30 \\
\(U\) & 2 & 1111110 & 14 \\
\(L\) & 1 & 1111110 & 8 \\
\hline
\end{tabular}
to get an optimal encoding, create an optimal tree
optimal encoding = optimal tree
- for '1', create a left child for '0', create a right child

transform this encoding to a binary tree

\section*{Huffman Coding}

Lemma : Optimal tree is full. (every node has either two children or no child)

Proof:

\section*{Huffman Coding}

Lemma : Optimal tree is full. (every node has either two children or no child)

Proof: Suppose there is an optimal tree Thaving one node with one child.

\section*{Huffman Coding}

Lemma : Optimal tree is full. (every node has either two children or no child)

Proof: Suppose there is an optimal tree Thaving one node with one child.

\section*{Huffman Coding}

Lemma : Optimal tree is full. (every node has either two children or no child)

Proof: Suppose there is an optimal tree Thaving one node with one child.

\section*{Huffman coding}

Lemma : Optimal tree is full. (every node has either two children or no child)

Proof: Suppose there is an optimal tree Thaving one node with one child.

\section*{Huffman coding}

Lemma : Optimal tree is full. (every node has either two children or no child)

Proof: Suppose there is an optimal tree Thaving one node with one child.

\section*{Huffman coding}

Lemma : Optimal tree is full. (every node has either two children or no child)

Proof: Suppose there is an optimal tree Thaving one node with one child.

Because all characters in subtree \(B\) of \(T^{\star}\) have encodings 1 bit shorter than encodings in subtree \(B\) of \(T\),
\[
B(T)>B\left(T^{\star}\right)
\]

\section*{Huffman Coding}
- sort all frequencies in decreasing order

\section*{Huffman Coding}
- sort all frequencies in decreasing order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{freq} \\
\hline A & 25 & 11 \\
\hline E & 18 & 01 \\
\hline M & 13 & 101 \\
\hline B & 10 & 100 \\
\hline K & 7 & 000 \\
\hline T & 5 & 0011 \\
\hline U & 2 & 00101 \\
\hline L & 1 & 00100 \\
\hline
\end{tabular}

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{freq} & cost \\
\hline A & 25 & 11 & 50 \\
\hline E & 18 & 01 & 36 \\
\hline M & 13 & 101 & 39 \\
\hline B & 10 & 100 & 30 \\
\hline K & 7 & 000 & 21 \\
\hline T & 5 & 0011 & 20 \\
\hline \(\cup\) & 2 & 00101 & 10 \\
\hline L & 1 & 00100 & 5 \\
\hline
\end{tabular}

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{freq} & cost \\
\hline A & 25 & 11 & 50 \\
\hline E & 18 & 01 & 36 \\
\hline M & 13 & 101 & 39 \\
\hline B & 10 & 100 & 30 \\
\hline K & 7 & 000 & 21 \\
\hline T & 5 & 0011 & 20 \\
\hline U & 2 & 00101 & 10 \\
\hline L & 1 & 00100 & 5 \\
\hline
\end{tabular}

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{decoding}
- start from the root
- left for '1' - right for '0'
- end of decoding when you reach a leaf

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{decoding}
- start from the root
- left for '1' - right for ' 0 '
- end of decoding when you reach a leaf

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{freq} & \(\underline{\text { cost }}\) \\
\hline A & 25 & 11 & 50 \\
\hline E & 18 & 01 & 36 \\
\hline M & 13 & 101 & 39 \\
\hline B & 10 & 100 & 30 \\
\hline K & 7 & 000 & 21 \\
\hline T & 5 & 0011 & 20 \\
\hline U & 2 & 00101 & 10 \\
\hline L & 1 & 00100 & 5 \\
\hline
\end{tabular}

10001000

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{decoding}
- start from the root
- left for '1' - right for ' 0 '
- end of decoding when you reach a leaf

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{freq} & \(\underline{\text { cost }}\) \\
\hline A & 25 & 11 & 50 \\
\hline E & 18 & 01 & 36 \\
\hline M & 13 & 101 & 39 \\
\hline B & 10 & 100 & 30 \\
\hline K & 7 & 000 & 21 \\
\hline T & 5 & 0011 & 20 \\
\hline U & 2 & 00101 & 10 \\
\hline L & 1 & 00100 & 5 \\
\hline
\end{tabular}

10001000

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{decoding}
- start from the root
- left for '1' - right for ' 0 '
- end of decoding when you reach a leaf

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{freq} & cost \\
\hline A & 25 & \%11 & 50 \\
\hline E & 18 & 01 & 36 \\
\hline M & 13 & 101 & 39 \\
\hline B & 10 & 100 & 30 \\
\hline K & 7 & 000 & 21 \\
\hline T & 5 & 0011 & 20 \\
\hline U & 2 & 00101 & 10 \\
\hline L & 1 & 00100 & 5 \\
\hline & & & 211 \\
\hline \multicolumn{4}{|l|}{00010} \\
\hline
\end{tabular}

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\[
\begin{aligned}
& \text { freq cost } \\
& \begin{array}{c}
10001000 \\
\text { B }
\end{array}
\end{aligned}
\]

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{decoding}
- start from the root
- left for '1' - right for ' 0 '
- end of decoding when you reach a leaf
\[
\begin{aligned}
& \text { freq cost } \\
& 10001000 \\
& \text { B }
\end{aligned}
\]

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{decoding}
- start from the root
- left for '1' - right for ' 0 '
- end of decoding when you reach a leaf
\[
\begin{aligned}
& \text { freq cost } \\
& 10001000 \\
& \text { B }
\end{aligned}
\]

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{freq} \\
\hline & \(25: 11\) & 50 \\
\hline E & 18.01 & 36 \\
\hline M & 13101 & 39 \\
\hline B & 10 100 & 30 \\
\hline K & 7000 & 21 \\
\hline T & 0011 & 20 \\
\hline U & 00101 & 10 \\
\hline L & \(1: 00100\) & 5 \\
\hline & & 211 \\
\hline \multicolumn{3}{|l|}{10001000} \\
\hline B & E & \\
\hline
\end{tabular}

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{decoding}
- start from the root
- left for '1' - right for ' 0 '
- end of decoding when you reach a leaf

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{frea} & cost \\
\hline A & \(25: 11\) & 50 \\
\hline E & 18.01 & 36 \\
\hline M & 13101 & 39 \\
\hline B & 10 100 & 30 \\
\hline K & 7000 & 21 \\
\hline T & 5 0011 & 20 \\
\hline U & 200101 & 10 \\
\hline L & 1 00100 & 5 \\
\hline & & 211 \\
\hline \multicolumn{3}{|l|}{0001000} \\
\hline B & E & \\
\hline
\end{tabular}

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{decoding}
- start from the root
- left for '1' - right for ' 0 '
- end of decoding when you reach a leaf

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{decoding}
- start from the root
- left for '1' - right for ' 0 '
- end of decoding when you reach a leaf

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\section*{decoding}
- start from the root
- left for '1' - right for ' 0 '
- end of decoding when you reach a leaf

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies combine them in one one, rearrange to preserve the order

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{freq} & cost \\
\hline A & 25 & 11 & 50 \\
\hline E & 18 & 01 & 36 \\
\hline M & 13 & 101 & 39 \\
\hline B & 10 & 100 & 30 \\
\hline K & 7 & 000 & 21 \\
\hline T & 5 & 0011 & 20 \\
\hline U & 2 & 00101 & 10 \\
\hline L & 1 & 00100 & 5 \\
\hline
\end{tabular}

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\begin{tabular}{l:l:l:c}
& \multicolumn{1}{c}{ freq } & cost \\
A & 25 & 11 & 50 \\
E & 18 & 01 & 36 \\
\(M\) & 13 & 101 & 39 \\
B & 10 & 100 & 30 \\
K & 7 & 000 & 21 \\
T & 5 & 0011 & 20 \\
\(U\) & 2 & 00101 & 10 \\
\(L\) & 1 & 00100 & 5 \\
\hline
\end{tabular}
two symbols with lowest frequencies will be siblings placed at lowest level in the tree

\section*{Huffman Coding}
- sort all frequencies in decreasing order
- start with lowest two frequencies
combine them in one one, rearrange to preserve the order

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{freq} & \(\underline{\text { cost }}\) \\
\hline A & 25 & 11 & 50 \\
\hline E & 18 & 01 & 36 \\
\hline M & 13 & 101 & 39 \\
\hline B & 10 & 100 & 30 \\
\hline K & 7 & 000 & 21 \\
\hline T & 5 & 0011 & 20 \\
\hline U & 2 & 00101 & 10 \\
\hline L & 1 & 00100 & 5 \\
\hline
\end{tabular}

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)
Proof

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)
Proof
Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)
Proof
Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)
Proof
Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)
Proof
Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)
Proof
Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)
Proof
Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]
swap \(x\) and a

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)
Proof
Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]
- \(B(T)=\)

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

\section*{Proof}

Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]
- \(B(T)=C+\)

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

\section*{Proof}

Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]
- \(B(T)=C+f_{x} \cdot I_{x}+f_{a} \cdot I_{a}\)

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

\section*{Proof}

Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]
- \(B(T)=C+f_{x} \cdot I_{x}+f_{a} \cdot I_{a}\)
- \(B\left(T^{\prime}\right)=C+f_{x} \cdot I_{a}+f_{a} \cdot l_{x}\)

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

\section*{Proof}

Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]
- \(B(T)=C+f_{x} \cdot I_{x}+f_{a} \cdot I_{a}\)
- \(B\left(T^{\prime}\right)=C+f_{x} \cdot I_{a}+f_{a} \cdot l_{x}\)
- \(B(T)-B\left(T^{\prime}\right)=\)

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

\section*{Proof}

Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]
- \(B(T)=C+f_{x} \cdot I_{x}+f_{a} \cdot I_{a}\)
- \(B\left(T^{\prime}\right)=C+f_{x} \cdot I_{a}+f_{a} \cdot l_{x}\)
- \(B(T)-B\left(T^{\prime}\right)=f_{x}\left(I_{x}-I_{a}\right)+f_{a}\left(I_{a}-I_{x}\right)\)

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

\section*{Proof}

Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]
- \(B(T)=C+f_{x} \cdot I_{x}+f_{a} \cdot I_{a}\)
- \(B\left(T^{\prime}\right)=C+f_{x} \cdot I_{a}+f_{a} \cdot I_{x}\)
- \(B(T)-B\left(T^{\prime}\right)=f_{x}\left(I_{x}-I_{a}\right)+f_{a}\left(I_{a}-I_{x}\right)\)
\[
=\left(l_{a}-\hat{l}_{x}\right)\left(f_{a}-f_{x}\right) \geq 0
\]

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

\section*{Proof}

Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]
- \(B(T)=C+f_{x} \cdot I_{x}+f_{a} \cdot I_{a}\)
- \(B\left(T^{\prime}\right)=C+f_{x} \cdot I_{a}+f_{a} \cdot I_{x}\)
- \(B(T)-B\left(T^{\prime}\right)=f_{x}\left(I_{x}-I_{a}\right)+f_{a}\left(I_{a}-I_{x}\right)\)
\[
=\left(l_{a}-l_{x}\right)\left(f_{a}-f_{x}\right) \geq 0
\]
swap y and b

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

\section*{Proof}

Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]
- \(B(T)=C+f_{x} \cdot I_{x}+f_{a} \cdot I_{a}\)
- \(B\left(T^{\prime}\right)=C+f_{x} \cdot I_{a}+f_{a} \cdot I_{x}\)
- \(B(T)-B\left(T^{\prime}\right)=f_{x}\left(I_{x}-I_{a}\right)+f_{a}\left(I_{a}-I_{x}\right)\)
\[
=\left(l_{a}-l_{x}\right)\left(f_{a}-f_{x}\right) \geq 0
\]
swap y and b

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

\section*{Proof}

Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]
- \(B(T)=C+f_{x} \cdot I_{x}+f_{a} \cdot I_{a}\)
- \(B\left(T^{\prime}\right)=C+f_{x} \cdot I_{a}+f_{a} \cdot I_{x}\)
- \(B(T)-B\left(T^{\prime}\right)=f_{x}\left(I_{x}-I_{a}\right)+f_{a}\left(I_{a}-I_{x}\right)\)
\[
=\left(l_{a}-l_{x}\right)\left(f_{a}-f_{x}\right) \geq 0
\]
- \(B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right) \geq 0\)

\section*{Huffman Coding}

Theorem (Greedy-choice property): Let \(x\) and \(y\) be twe symbols with the smallest frequencies \(f_{x}\) and \(f_{y}\). There exists an optimal tree where \(x\) and \(y\) are siblings with the highest depth. (Our greedy approach yields us an optimal solution)

\section*{Proof}

Assume there is an optimal tree \(T\) where \(x\) and \(y\) are not siblings.

- Because \(T\) is a full tree, there should be two symbols \(a\) and \(b\) that are siblings placed at the lowest level in \(T\)
- Since \(f_{x}\) and \(f_{y}\) are the smallest frequencies,
\[
f_{x}, f_{y} \leq f_{a}, f_{b}
\]
- \(B(T)=C+f_{x} \cdot I_{x}+f_{a} \cdot I_{a}\)
- \(B\left(T^{\prime}\right)=C+f_{x} \cdot I_{a}+f_{a} \cdot I_{x}\)
- \(B(T)-B\left(T^{\prime}\right)=f_{x}\left(I_{x}-I_{a}\right)+f_{a}\left(I_{a}-I_{x}\right)\)
\[
=\left(l_{a}-l_{x}\right)\left(f_{a}-f_{x}\right) \geq 0
\]
swap y and b this is a contradiction
- \(B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right) \geq 0\)

\section*{Greedy Algorithms}
- solve the problem by breaking it a sequence of subproblems
- make the best local choice among all feasible one available on that moment (one choice at a time)
- your choice does not depend on any future choices or any past choices you have made
- prove that the Greedy Choice Property satisfies. A sequence of locally optimal choices yields a global optimal solution```

