## Brute Force and Exhaustive Search II

Murat Osmanoglu





• Königsberg was a city in Germany in 18th century. There was a river named Pregel that divided the city into four distinct regions.





- Königsberg was a city in Germany in 18th century. There was a river named Pregel that divided the city into four distinct regions.
- There was a natural question for the people of Königsberg :

'Is it possible to take a walk around the city that crosses each bridge exaactly once?'





• The problem was solved by Swiss mathematician Leonard Euler. His works are considered as the beginning of Graph Theory.



- The problem was solved by Swiss mathematician Leonard Euler. His works are considered as the beginning of Graph Theory.
- Euler represented four distinct lands with four points (or nodes), and seven bridges with seven lines connecting those points.



- The problem was solved by Swiss mathematician Leonard Euler. His works are considered as the beginning of Graph Theory.
- Euler represented four distinct lands with four points (or nodes), and seven bridges with seven lines connecting those points.

'Can you find a path that includes every edge exactly once?' 'Is the given graph traversable?'







undirected graph





undirected graph



directed graph



directed graph

undirected graph

deg(v)= # of edges at that vertex









• a vertex v is called even vertex if deg(v) is even







• Euler showed that a graph can be traversable if it has no odd vertex or exactly two odd vertices.



- Euler showed that a graph can be traversable if it has no odd vertex or exactly two odd vertices.
- Königsberg graph is not traversable since it has four odd vertices.



- Euler showed that a graph can be traversable if it has no odd vertex or exactly two odd vertices.
- Königsberg graph is not traversable since it has four odd vertices.



- Euler showed that a graph can be traversable if it has no odd vertex or exactly two odd vertices.
- Königsberg graph is not traversable since it has four odd vertices.



Can you draw an envelope without lifting your pen from the paper?









Adjacency List Adjacency Matrix



<u>Adjacency List</u>

Adjacency Matrix

O(|V|)

retrieving all neighbors of a given node u

O(deg(u))



|                                               | <u>Adjacency List</u> | <u>Adjacency Matrix</u> |
|-----------------------------------------------|-----------------------|-------------------------|
| retrieving all neighbors of a<br>given node u | O(deg(u))             | O(IVI)                  |
|                                               |                       |                         |

 given nodes u and v, checking if u and v are adjacent O(deg(u))

*O*(1)

## <u>Graph Theory</u>

|                                                                               | <u>Adjacency List</u> | <u>Adjacency Matrix</u> |
|-------------------------------------------------------------------------------|-----------------------|-------------------------|
| <ul> <li>retrieving all neighbors of a<br/>given node u</li> </ul>            | O(deg(u))             | O(IVI)                  |
| <ul> <li>given nodes u and v, checking<br/>if u and v are adjacent</li> </ul> | O(deg(u))             | O(1)                    |
| • space                                                                       | O(IEI+IVI)            | O(IVI <sup>2</sup> )    |

## Graph Theory

|                                                                               | <u>Adjacency List</u> | <u>Adjacency Matrix</u> |
|-------------------------------------------------------------------------------|-----------------------|-------------------------|
| <ul> <li>retrieving all neighbors of a<br/>given node u</li> </ul>            | O(deg(u))             | O(IVI)                  |
| <ul> <li>given nodes u and v, checking<br/>if u and v are adjacent</li> </ul> | O(deg(u))             | <i>O</i> (1)            |
| • space                                                                       | O(IEI+IVI)            | O(IVI <sup>2</sup> )    |

If graph is sparse, use adjacency list; if graph is dense, use adjacency matrix



• a path in a graph is a sequence of nodes  $v_1$ ,  $v_2$ , ...,  $v_k$  such that  $(v_i, v_j)$  is an edge in the graph. a path is simple if all nodes are distinct



• a path in a graph is a sequence of nodes  $v_1, v_2, ..., v_k$  such that  $(v_i, v_j)$  is an edge in the graph. a path is simple if all nodes are distinct



- a path in a graph is a sequence of nodes v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>k</sub> such that (v<sub>i</sub>, v<sub>j</sub>) is an edge in the graph.
   a path is simple if all nodes are distinct
- nodes u and v are called connected if there is a path between them. A graph is connected if there is a path between every pair of nodes



- a path in a graph is a sequence of nodes v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>k</sub> such that (v<sub>i</sub>, v<sub>j</sub>) is an edge in the graph.
   a path is simple if all nodes are distinct
- nodes u and v are called connected if there is a path between them. A graph is connected if there is a path between every pair of nodes
- a cycle is a path  $v_1$ ,  $v_2$ , ...,  $v_k$  such that  $v_1 = v_k$ . A cycle is simple if first k-1 nodes are distinct



- a path in a graph is a sequence of nodes v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>k</sub> such that (v<sub>i</sub>, v<sub>j</sub>) is an edge in the graph.
   a path is simple if all nodes are distinct
- nodes u and v are called connected if there is a path between them. A graph is connected if there is a path between every pair of nodes
- a cycle is a path  $v_1$ ,  $v_2$ , ...,  $v_k$  such that  $v_1 = v_k$ . A cycle is simple if first k-1 nodes are distinct



- a path in a graph is a sequence of nodes v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>k</sub> such that (v<sub>i</sub>, v<sub>j</sub>) is an edge in the graph.
   a path is simple if all nodes are distinct
- nodes u and v are called connected if there is a path between them. A graph is connected if there is a path between every pair of nodes
- a cycle is a path  $v_1$ ,  $v_2$ , ...,  $v_k$  such that  $v_1 = v_k$ . A cycle is simple if first k-1 nodes are distinct
- length of a path is the number of edges in the path



- a path in a graph is a sequence of nodes  $v_1, v_2, ..., v_k$  such that  $(v_i, v_j)$  is an edge in the graph. a path is simple if all nodes are distinct
- nodes u and v are called connected if there is a path between them. A graph is connected if there is a path between every pair of nodes
- a cycle is a path  $v_1$ ,  $v_2$ , ...,  $v_k$  such that  $v_1 = v_k$ . A cycle is simple if first k-1 nodes are distinct
- length of a path is the number of edges in the path



 One of the most fundemantal graph problems is to traverse every edge and every vertex in a graph



- One of the most fundemantal graph problems is to traverse every edge and every vertex in a graph
- Explore the graph in a systematic way : make sure that each edge visited at most twice don't miss anything


- One of the most fundemantal graph problems is to traverse every edge and every vertex in a graph
- Explore the graph in a systematic way : make sure that each edge visited at most twice don't miss anything





- One of the most fundemantal graph problems is to traverse every edge and every vertex in a graph
- Explore the graph in a systematic way : make sure that each edge visited at most twice don't miss anything



 each vertex denotes a junction and each edge denotes a hallway



- One of the most fundemantal graph problems is to traverse every edge and every vertex in a graph
- Explore the graph in a systematic way : make sure that each edge visited at most twice don't miss anything



- each vertex denotes a junction and each edge denotes a hallway
- any traversal algorithm can be sufficient to get us out of any maze



- One of the most fundemantal graph problems is to traverse every edge and every vertex in a graph
- Explore the graph in a systematic way : make sure that each edge visited at most twice don't miss anything



- each vertex denotes a junction and each edge denotes a hallway
- any traversal algorithm can be sufficient to get us out of any maze
- For efficieny, make sure you don't get stuck (visiting same place over and over again)



- One of the most fundemantal graph problems is to traverse every edge and every vertex in a graph
- Explore the graph in a systematic way : make sure that each edge visited at most twice don't miss anything



- each vertex denotes a junction and each edge denotes a hallway
- any traversal algorithm can be sufficient to get us out of any maze
- For efficieny, make sure you don't get stuck (visiting same place over and over again)
- For correctness, we do the traversal in a way that we get out of the maze



Graph Traversal

- mark each vertex when you first visit it
- keep track of what you haven't yet completely explored

Graph Traversal

- mark each vertex when you first visit it
- keep track of what you haven't yet completely explored

### possible three states for each vertex

Graph Traversal

- mark each vertex when you first visit it
- keep track of what you haven't yet completely explored

### possible three states for each vertex

undiscovered

discovered

processed

Graph Traversal

- mark each vertex when you first visit it
- keep track of what you haven't yet completely explored

### possible three states for each vertex



### discovered

the vertex has been visited but all of its incident edges have not been checked out



Graph Traversal

- mark each vertex when you first visit it
- keep track of what you haven't yet completely explored

### possible three states for each vertex



state of each vertex changes from left to right

• instead of going deep in a graph, just go in cross-wise fashion

- instead of going deep in a graph, just go in cross-wise fashion
- explore the graph outward from a starting point (a node s) in all possible directions



- instead of going deep in a graph, just go in cross-wise fashion
- explore the graph outward from a starting point (a node s) in all possible directions - add one layer of nodes at a time



- instead of going deep in a graph, just go in cross-wise fashion
- explore the graph outward from a starting point (a node s) in all possible directions - add one layer of nodes at a time



- instead of going deep in a graph, just go in cross-wise fashion
- explore the graph outward from a starting point (a node s) in all possible directions - add one layer of nodes at a time



- instead of going deep in a graph, just go in cross-wise fashion
- explore the graph outward from a starting point (a node s) in all possible directions - add one layer of nodes at a time



• every node u is associated with three parameters :

distance

parent

color

• every node u is associated with three parameters :



• every node u is associated with three parameters :



• • •

```
for each vertex u of V
      u.color = white
      u.dis = ∞
      u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                v.color = gray
                v.dis = u.dis + 1
                v.par = u
                Enqueue(Q,v)
     u.color = black
```

```
for each vertex u of V
      u.color = white
      u.dis = ∞
      u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                v.color = gray
                v.dis = u.dis + 1
                v.par = u
                Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                v.color = gray
                v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                v.color = gray
                v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                v.color = gray
                v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                v.color = gray
                v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```


```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
      u.color = white
      u.dis = ∞
      u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                v.color = gray
                v.dis = u.dis + 1
                v.par = u
                Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
      u.color = white
      u.dis = ∞
      u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                v.color = gray
                v.dis = u.dis + 1
                v.par = u
                Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



```
for each vertex u of V
       u.color = white
       u.dis = ∞
       u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while Q \neq \emptyset
     u = Dequeu(Q)
     for each v \in Adj(u)
           if v.color = white
                 v.color = gray
                 v.dis = u.dis + 1
                 v.par = u
                 Enqueue(Q,v)
     u.color = black
```



d,2

e,1





#### BFS(G,s)



total O(IVI + IEI)

BFS(G,s)

parent pointer used to find the shortest path



total O(IVI + IEI)

• a connected component is a maximal subgraph where there is a path between any two nodes of it

- a connected component is a maximal subgraph where there is a path between any two nodes of it
- a graph can be made up of seperate connected components



- a connected component is a maximal subgraph where there is a path between any two nodes of it
- a graph can be made up of seperate connected components



 find the number of connected components of a given graph (use BFS)

- a connected component is a maximal subgraph where there is a path between any two nodes of it
- a graph can be made up of seperate connected components



- find the number of connected components of a given graph (use BFS)
- start from the first vertex; any vertex we have discovered during this search should be part of same component.

- a connected component is a maximal subgraph where there is a path between any two nodes of it
- a graph can be made up of seperate connected components



- find the number of connected components of a given graph (use BFS)
- start from the first vertex; any vertex we have discovered during this search should be part of same component.
- so, repeat the process with an undiscovered vertex.

- a connected component is a maximal subgraph where there is a path between any two nodes of it
- a graph can be made up of seperate connected components



- find the number of connected components of a given graph (use BFS)
- start from the first vertex; any vertex we have discovered during this search should be part of same component.
- so, repeat the process with an undiscovered vertex.

```
int num = 0
for (i=1 to n)
    if (v<sub>i</sub> has not been discovered)
        num = num + 1
        BFS(G, v<sub>i</sub>)
return num
```

- a connected component is a maximal subgraph where there is a path between any two nodes of it
- a graph can be made up of seperate connected components



- It would be useful to clasify each vertex by which connected component it belongs
- When we run BFS on G from v, we mark each vertex as being owned by v.
- If we iterate through all vertices, each vertex will be marked by its owner that represents a different connected component



• instead of going cross-wise, just go deep in the graph



- instead of going cross-wise, just go deep in the graph
- when we process a node u, we pick each neighbor v of u in order

- instead of going cross-wise, just go deep in the graph
- when we process a node u, we pick each neighbor v of u in order

at the time of checking each v, we check again each neighbor of v in order

only after processing all descendants of v, we pass to the next neighbor of  $\boldsymbol{u}$ 

- instead of going cross-wise, just go deep in the graph
- when we process a node u, we pick each neighbor v of u in order

at the time of checking each v, we check again each neighbor of v in order

only after processing all descendants of v, we pass to the next neighbor of u

- the process continues until all verices reachable from the source have been discovered
- if any undiscovered vertices remain, choose one of them as new source and repeat the process



• every node u is associated with four parameters :



• every node u is associated with four parameters :



• every node u is associated with four parameters :



<u>DFS(G)</u> for each vertex u of V u.color = white u.par = nil time = 0 for each vertex u of V if u.color = white DFS\_Visit(u)

```
DFS_Visit(u)

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```





<u>DFS(G)</u> for each vertex u of V u.color = white u.par = nil time = 0 for each vertex u of V if u.color = white DFS\_Visit(u)

```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```



time = 1

<u>DFS(G)</u> for each vertex u of V u.color = white u.par = nil time = 0 for each vertex u of V if u.color = white DFS\_Visit(u)

```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```




<u>DFS(G)</u> for each vertex u of V u.color = white u.par = nil time = 0 for each vertex u of V if u.color = white DFS\_Visit(u)

```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```



<u>DFS(G)</u> for each vertex u of V u.color = white u.par = nil time = 0 for each vertex u of V if u.color = white DFS\_Visit(u)

DFS\_Visit(u) u.color = gray time = time + 1 u.dis = time for each v in Adj(u) if (v.color = white) v.par = u DFS\_Visit(v) u.color = black time = time + 1 u.fin = time





```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```





```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```





```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```





```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```





```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```





```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```





<u>DFS\_Visit(u)</u> u.color = gray time = time + 1 u.dis = time for each v in Adj(u) if (v.color = white) v.par = u DFS\_Visit(v) u.color = black time = time + 1 u.fin = time





```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```





```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```







```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```



```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```



```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```



```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```



<u>DFS(G)</u> for each vertex u of V u.color = white u.par = nil time = 0 for each vertex u of V if u.color = white DFS\_Visit(u)

<u>DFS\_Visit(u)</u> u.color = gray time = time + 1 u.dis = time for each v in Adj(u) if (v.color = white) v.par = u DFS\_Visit(v) u.color = black time = time + 1 u.fin = time



```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```



```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```



```
<u>DFS_Visit(u)</u>

u.color = gray

time = time + 1

u.dis = time

for each v in Adj(u)

if (v.color = white)

v.par = u

DFS_Visit(v)

u.color = black

time = time + 1

u.fin = time
```





Depth First Search

<u>tree-edge</u> (u,v) is called tree-edge if it was first discovered by exploring edge



Depth First Search

<u>tree-edge</u> (u,v) is called tree-edge if it was first discovered by exploring edge



<u>tree-edge</u> (u,v) is called tree-edge if it was first discovered by exploring edge

#### <u>back-edge</u>

(u,v) is called back-edge if it's connecting vertex u to an ancestor v in depth-first tree



<u>tree-edge</u> (u,v) is called tree-edge if it was first discovered by exploring edge

#### <u>back-edge</u>

(u,v) is called back-edge if it's connecting vertex u to an ancestor v in depth-first tree



<u>tree-edge</u> (u,v) is called tree-edge if it was first discovered by exploring edge

### <u>back-edge</u>

(u,v) is called back-edge if it's connecting vertex u to an ancestor v in depth-first tree

#### forward-edge

(u,v) is called forward-edge if it's a nontree-edge connecting vertex u to a decendant v in depth-first tree



<u>tree-edge</u> (u,v) is called tree-edge if it was first discovered by exploring edge

### <u>back-edge</u>

(u,v) is called back-edge if it's connecting vertex u to an ancestor v in depth-first tree

#### forward-edge

(u,v) is called forward-edge if it's a nontree-edge connecting vertex u to a decendant v in depth-first tree



<u>tree-edge</u> (u,v) is called tree-edge if it was first discovered by exploring edge

### <u>back-edge</u>

(u,v) is called back-edge if it's connecting vertex u to an ancestor v in depth-first tree

### forward-edge

(u,v) is called forward-edge if it's a nontree-edge connecting vertex u to a decendant v in depth-first tree

#### <u>cross-edge</u>

(u,v) is called cross-edge if it's connecting vertex u to vertex v such that there is no ancestor/ descendant relation between them



<u>tree-edge</u> (u,v) is called tree-edge if it was first discovered by exploring edge

### <u>back-edge</u>

(u,v) is called back-edge if it's connecting vertex u to an ancestor v in depth-first tree

### forward-edge

(u,v) is called forward-edge if it's a nontree-edge connecting vertex u to a decendant v in depth-first tree

#### <u>cross-edge</u>

(u,v) is called cross-edge if it's connecting vertex u to vertex v such that there is no ancestor/ descendant relation between them







```
DFS(G)
for each vertex u of V
      u.color = white
      u.par = nil
for each vertex u of V
     if u.color = white
           DFS_Visit(u)
DFS_Visit(u)
u.color = gray
for each v in Adj(u)
    if (v.color = gray)
         output 'cycle found'
    else
         v.par = u
         DFS_Visit(v)
u.color = black
```

```
<u>DFS(G)</u>
for each vertex u of V
u.color = white
u.par = nil
for each vertex u of V
if u.color = white
DFS_Visit(u)
```

```
<u>DFS_Visit(u)</u>
u.color = gray
for each v in Adj(u)
if (v.color = gray)
output 'cycle found'
else
v.par = u
DFS_Visit(v)
u.color = black
```



```
<u>DFS(G)</u>
for each vertex u of V
u.color = white
u.par = nil
for each vertex u of V
if u.color = white
DFS_Visit(u)
```

```
<u>DFS_Visit(u)</u>
u.color = gray
for each v in Adj(u)
if (v.color = gray)
output 'cycle found'
else
v.par = u
DFS_Visit(v)
u.color = black
```



```
<u>DFS(G)</u>
for each vertex u of V
u.color = white
u.par = nil
for each vertex u of V
if u.color = white
DFS_Visit(u)
```

```
<u>DFS_Visit(u)</u>

u.color = gray

for each v in Adj(u)

if (v.color = gray)

output 'cycle found'

else

v.par = u

DFS_Visit(v)

u.color = black
```



```
<u>DFS(G)</u>
for each vertex u of V
u.color = white
u.par = nil
for each vertex u of V
if u.color = white
DFS_Visit(u)
```

```
<u>DFS_Visit(u)</u>
u.color = gray
for each v in Adj(u)
if (v.color = gray)
output 'cycle found'
else
v.par = u
DFS_Visit(v)
u.color = black
```



```
<u>DFS(G)</u>
for each vertex u of V
u.color = white
u.par = nil
for each vertex u of V
if u.color = white
DFS_Visit(u)
```

```
<u>DFS_Visit(u)</u>
u.color = gray
for each v in Adj(u)
if (v.color = gray)
output 'cycle found'
else
v.par = u
DFS_Visit(v)
u.color = black
```



```
<u>DFS(G)</u>
for each vertex u of V
u.color = white
u.par = nil
for each vertex u of V
if u.color = white
DFS_Visit(u)
```

```
<u>DFS_Visit(u)</u>
u.color = gray
for each v in Adj(u)
if (v.color = gray)
output 'cycle found'
else
v.par = u
DFS_Visit(v)
u.color = black
```


## Cycle Detection

• There is a cycle in the graph only if there is back edge in the graph

```
<u>DFS(G)</u>
for each vertex u of V
u.color = white
u.par = nil
for each vertex u of V
if u.color = white
DFS_Visit(u)
```

```
<u>DFS_Visit(u)</u>
u.color = gray
for each v in Adj(u)
if (v.color = gray)
output 'cycle found'
else
v.par = u
DFS_Visit(v)
u.color = black
```



## Cycle Detection

• There is a cycle in the graph only if there is back edge in the graph

```
<u>DFS(G)</u>
for each vertex u of V
u.color = white
u.par = nil
for each vertex u of V
if u.color = white
DFS_Visit(u)
```

```
<u>DFS_Visit(u)</u>
u.color = gray
for each v in Adj(u)
if (v.color = gray)
output 'cycle found'
else
v.par = u
DFS_Visit(v)
u.color = black
```



## Cycle Detection

• There is a cycle in the graph only if there is back edge in the graph

```
DFS(G)
for each vertex u of V
      u.color = white
      u.par = nil
for each vertex u of V
      if u.color = white
           DFS_Visit(u)
<u>DFS_Visit(u)</u>
u.color = gray
for each v in Adj(u)
    if (v.color = gray)
          output 'cycle found'
    else
```

```
eise
v.par = u
DFS_Visit(v)
u.color = black
```

