
Brute Force and
Exhaustive Search

II

Murat Osmanoglu

Graph Theory

•  Königsberg was a city in Germany in 18th century. There
was a river named Pregel that divided the city into four
distinct regions.

Graph Theory

•  Königsberg was a city in Germany in 18th century. There
was a river named Pregel that divided the city into four
distinct regions.

•  There was a natural question for the people of Königsberg :

 ‘Is it possible to take a walk around the city that crosses
 each bridge exaactly once?’

Graph Theory

•  The problem was solved by Swiss mathematician Leonard
Euler. His works are considered as the beginning of Graph
Theory.

Graph Theory

•  The problem was solved by Swiss mathematician Leonard
Euler. His works are considered as the beginning of Graph
Theory.

•  Euler represented four distinct lands with four points (or
nodes), and seven bridges with seven lines connecting those
points.

Graph Theory

•  The problem was solved by Swiss mathematician Leonard
Euler. His works are considered as the beginning of Graph
Theory.

•  Euler represented four distinct lands with four points (or
nodes), and seven bridges with seven lines connecting those
points.

 ‘Can you find a path that includes every edge exactly once?’

 ‘Is the given graph traversable?’

Graph Theory

G = (V, E)

set of nodes (or vertices) set of edges (or arc)

Graph Theory

G = (V, E)

set of nodes (or vertices) set of edges (or arc)

1

3

2

4

5

undirected graph

Graph Theory

G = (V, E)

set of nodes (or vertices) set of edges (or arc)

1

3

2

4

4

3

2

5

1 5

directed graph undirected graph

Graph Theory

G = (V, E)

set of nodes (or vertices) set of edges (or arc)

1

3

2

4

4

3

2

5

1 5

directed graph undirected graph

deg(v)= # of edges at that vertex

Graph Theory

G = (V, E)

set of nodes (or vertices) set of edges (or arc)

1

3

2

4

4

3

2

5

1 5

directed graph undirected graph

deg(v)= # of edges at that vertex degin (v) = # of incoming edges

degout (v) = # of outgoing edges

Graph Theory

G = (V, E)

set of nodes (or vertices) set of edges (or arc)

1

3

2

4

4

3

2

5

1 5

directed graph undirected graph

deg(v)= # of edges at that vertex

Σ deg(v) = 2 lEl

degin (v) = # of incoming edges

degout (v) = # of outgoing edges

Graph Theory

G = (V, E)

set of nodes (or vertices) set of edges (or arc)

1

3

2

4

4

3

2

5

1 5

directed graph undirected graph

deg(v)= # of edges at that vertex

Σ deg(v) = 2 lEl

degin (v) = # of incoming edges

degout (v) = # of outgoing edges

Σ degin(v) = Σ degin(v) = lEl

Graph Theory

G = (V, E)

set of nodes (or vertices) set of edges (or arc)

1

3

2

4

4

3

2

5

1 5

directed graph undirected graph

deg(v)= # of edges at that vertex

Σ deg(v) = 2 lEl

degin (v) = # of incoming edges

degout (v) = # of outgoing edges

Σ degin(v) = Σ degin(v) = lEl
•  a vertex v is called odd vertex if deg(v) is odd
•  a vertex v is called even vertex if deg(v) is even

Graph Theory

Graph Theory

•  Euler showed that a graph can be traversable if it has no
odd vertex or exactly two odd vertices.

Graph Theory

•  Euler showed that a graph can be traversable if it has no
odd vertex or exactly two odd vertices.

•  Königsberg graph is not traversable since it has four odd
vertices.

Graph Theory

•  Euler showed that a graph can be traversable if it has no
odd vertex or exactly two odd vertices.

•  Königsberg graph is not traversable since it has four odd
vertices.

Graph Theory

•  Euler showed that a graph can be traversable if it has no
odd vertex or exactly two odd vertices.

•  Königsberg graph is not traversable since it has four odd
vertices.

Can you draw an envelope
without lifting your pen from the paper?

Graph Theory

1

3

2

4

4

3

2

1

Adjacency List Adjacency List

Graph Theory

1

3

2

4

4

3

2

1

Adjacency List Adjacency List

1 - 2,4
2 - 1,4
3 - 4
4 - 1,2,3

1 - 3
2 -
3 - 4
4 - 1,2

Graph Theory

1

3

2

4

4

3

2

1

Adjacency List Adjacency List

1 - 2,4
2 - 1,4
3 - 4
4 - 1,2,3

1 - 3
2 -
3 - 4
4 - 1,2

Adjacency Matrix Adjacency Matrix
1 2 3 4

1 0 1 0 1
2 1 0 0 1
3 0 0 0 1
4 1 1 1 0

1 2 3 4
1 0 0 1 0
2 0 0 0 0
3 0 0 0 1
4 1 1 0 0

Graph Theory

 Adjacency List Adjacency Matrix

Graph Theory

 Adjacency List

•  retrieving all neighbors of a
given node u

Adjacency Matrix

O(deg(u))

O(lVl)

Graph Theory

 Adjacency List

•  retrieving all neighbors of a
given node u

•  given nodes u and v, checking
if u and v are adjacent

Adjacency Matrix

O(deg(u))

O(deg(u))

O(lVl)

O(1)

Graph Theory

 Adjacency List

•  retrieving all neighbors of a
given node u

•  given nodes u and v, checking
if u and v are adjacent

•  space

Adjacency Matrix

O(deg(u))

O(deg(u))

O(lEl+lVl)

O(lVl)

O(1)

O(lVl2)

Graph Theory

 Adjacency List

•  retrieving all neighbors of a
given node u

•  given nodes u and v, checking
if u and v are adjacent

•  space

Adjacency Matrix

If graph is sparse, use adjacency list;
if graph is dense, use adjacency matrix

O(deg(u))

O(deg(u))

O(lEl+lVl)

O(lVl)

O(1)

O(lVl2)

Graph Theory

1

3

2

4

5

G

•  a path in a graph is a sequence of nodes v1, v2, …, vk such that
 (vi, vj) is an edge in the graph.
 a path is simple if all nodes are distinct

Graph Theory

1

3

2

4

5
5, 3, 4, 1 is a simple path in G

G

•  a path in a graph is a sequence of nodes v1, v2, …, vk such that
 (vi, vj) is an edge in the graph.
 a path is simple if all nodes are distinct

Graph Theory

1

3

2

4

5

G

•  a path in a graph is a sequence of nodes v1, v2, …, vk such that
 (vi, vj) is an edge in the graph.
 a path is simple if all nodes are distinct

•  nodes u and v are called connected if there is a path between

them. A graph is connected if there is a path between every pair
of nodes

Graph Theory

1

3

2

4

5

G

•  a path in a graph is a sequence of nodes v1, v2, …, vk such that
 (vi, vj) is an edge in the graph.
 a path is simple if all nodes are distinct

•  nodes u and v are called connected if there is a path between

them. A graph is connected if there is a path between every pair
of nodes

•  a cycle is a path v1, v2, …, vk such that v1 = vk . A cycle is simple if
first k-1 nodes are distinct

Graph Theory

1

3

2

4

5

G

4, 1, 2, 4 is a simple cycle in G

•  a path in a graph is a sequence of nodes v1, v2, …, vk such that
 (vi, vj) is an edge in the graph.
 a path is simple if all nodes are distinct

•  nodes u and v are called connected if there is a path between

them. A graph is connected if there is a path between every pair
of nodes

•  a cycle is a path v1, v2, …, vk such that v1 = vk . A cycle is simple if
first k-1 nodes are distinct

Graph Theory

1

3

2

4

5

G

•  a path in a graph is a sequence of nodes v1, v2, …, vk such that
 (vi, vj) is an edge in the graph.
 a path is simple if all nodes are distinct

•  nodes u and v are called connected if there is a path between

them. A graph is connected if there is a path between every pair
of nodes

•  a cycle is a path v1, v2, …, vk such that v1 = vk . A cycle is simple if
first k-1 nodes are distinct

•  length of a path is the number of edges in the path

Graph Theory

1

3

2

4

5

G

4, 1, 2, 4 is a simple cycle with length 3

•  a path in a graph is a sequence of nodes v1, v2, …, vk such that
 (vi, vj) is an edge in the graph.
 a path is simple if all nodes are distinct

•  nodes u and v are called connected if there is a path between

them. A graph is connected if there is a path between every pair
of nodes

•  a cycle is a path v1, v2, …, vk such that v1 = vk . A cycle is simple if
first k-1 nodes are distinct

•  length of a path is the number of edges in the path

Graph Traversal
•  One of the most fundemantal graph problems is to

traverse every edge and every vertex in a graph

Graph Traversal
•  One of the most fundemantal graph problems is to

traverse every edge and every vertex in a graph

•  Explore the graph in a systematic way :
 make sure that each edge visited at most twice
 don’t miss anything

Graph Traversal
•  One of the most fundemantal graph problems is to

traverse every edge and every vertex in a graph

•  Explore the graph in a systematic way :
 make sure that each edge visited at most twice
 don’t miss anything

Graph Traversal
•  One of the most fundemantal graph problems is to

traverse every edge and every vertex in a graph

•  Explore the graph in a systematic way :
 make sure that each edge visited at most twice
 don’t miss anything

•  each vertex denotes a junction and each
edge denotes a hallway

Graph Traversal
•  One of the most fundemantal graph problems is to

traverse every edge and every vertex in a graph

•  Explore the graph in a systematic way :
 make sure that each edge visited at most twice
 don’t miss anything

•  each vertex denotes a junction and each
edge denotes a hallway

•  any traversal algorithm can be sufficient
to get us out of any maze

Graph Traversal
•  One of the most fundemantal graph problems is to

traverse every edge and every vertex in a graph

•  Explore the graph in a systematic way :
 make sure that each edge visited at most twice
 don’t miss anything

•  each vertex denotes a junction and each
edge denotes a hallway

•  any traversal algorithm can be sufficient
to get us out of any maze

•  For efficieny, make sure you don’t get
stuck (visiting same place over and over
again)

Graph Traversal
•  One of the most fundemantal graph problems is to

traverse every edge and every vertex in a graph

•  Explore the graph in a systematic way :
 make sure that each edge visited at most twice
 don’t miss anything

•  each vertex denotes a junction and each
edge denotes a hallway

•  any traversal algorithm can be sufficient
to get us out of any maze

•  For efficieny, make sure you don’t get
stuck (visiting same place over and over
again)

•  For correctness, we do the traversal in a
way that we get out of the maze

Graph Traversal
the key idea

Graph Traversal
the key idea

•  mark each vertex when you first visit it
•  keep track of what you haven’t yet completely explored

Graph Traversal
the key idea

•  mark each vertex when you first visit it
•  keep track of what you haven’t yet completely explored

possible three states for each vertex

Graph Traversal
the key idea

•  mark each vertex when you first visit it
•  keep track of what you haven’t yet completely explored

possible three states for each vertex

undiscovered discovered processed

Graph Traversal
the key idea

•  mark each vertex when you first visit it
•  keep track of what you haven’t yet completely explored

possible three states for each vertex

undiscovered discovered processed

initial state
for a vertex

the vertex has been
visited but all of its
incident edges have

not been checked out

the vertex and all
of its incident edges

have been visited

Graph Traversal
the key idea

•  mark each vertex when you first visit it
•  keep track of what you haven’t yet completely explored

possible three states for each vertex

undiscovered discovered processed

initial state
for a vertex

the vertex has been
visited but all of its
incident edges have

not been checked out

the vertex and all
of its incident edges

have been visited

state of each vertex changes from left to right

Breadth First Search
•  instead of going deep in a graph, just go in cross-wise fashion

Breadth First Search
•  instead of going deep in a graph, just go in cross-wise fashion

•  explore the graph outward from a starting point (a node s) in all

possible directions

s

L0

Breadth First Search
•  instead of going deep in a graph, just go in cross-wise fashion

•  explore the graph outward from a starting point (a node s) in all

possible directions – add one layer of nodes at a time

s

L0 L1

Breadth First Search
•  instead of going deep in a graph, just go in cross-wise fashion

•  explore the graph outward from a starting point (a node s) in all

possible directions – add one layer of nodes at a time

s

L0 L1 L2

Breadth First Search
•  instead of going deep in a graph, just go in cross-wise fashion

•  explore the graph outward from a starting point (a node s) in all

possible directions – add one layer of nodes at a time

. . . s

L0 L1 L2 Li

Breadth First Search
•  instead of going deep in a graph, just go in cross-wise fashion

•  explore the graph outward from a starting point (a node s) in all

possible directions – add one layer of nodes at a time

. . . s

all nodes have
an edge to a node in Li-1

and don’t belong to
any earlier layer

L0 L1 L2 Li

Breadth First Search
•  every node u is associated with three parameters :

 distance parent color

Breadth First Search
•  every node u is associated with three parameters :

 distance parent color

The length of
the shortest path

from s to u

u’s predecessor on
the shortest path

from s to u

shows the state of u
white : undiscovered
gray : discovered
Black : processed

Breadth First Search
•  every node u is associated with three parameters :

 distance parent color

The length of
the shortest path

from s to u

u’s predecessor on
the shortest path

from s to u

shows the state of u
white : undiscovered
gray : discovered
Black : processed BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
 . . .

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a b

c d

e

f

g

s

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,∞ b,∞

c,∞ d,∞

e,∞

f,∞

g,∞

s,0

Q = { }

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,∞ b,∞

c,∞ d,∞

e,∞

f,∞

g,∞

s,0

Q = {s}

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,∞ b,∞

c,∞ d,∞

e,∞

f,∞

g,∞

s,0

Q = { } s

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,∞ b,∞

c,1 d,∞

e,1

f,∞

g,1

s,0

Q = { } s

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,∞ b,∞

c,1 d,∞

e,1

f,∞

g,1

s,0

Q = { } s

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,∞ b,∞

c,1 d,∞

e,1

f,∞

g,1

s,0

Q = {c g e} s

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,∞ b,∞

c,1 d,∞

e,1

f,∞

g,1

s,0

Q = {c g e} s

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,∞ b,∞

c,1 d,∞

e,1

f,∞

g,1

s,0

Q = {g e} c

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,∞ b,∞

c,1 d,∞

e,1

f,∞

g,1

s,0

Q = {g e} c

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,∞

g,1

s,0

Q = {g e} c

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,∞

g,1

s,0

Q = {g e} c

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,∞

g,1

s,0

Q = {g e a d} c

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,∞

g,1

s,0

Q = {g e a d} c

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,∞

g,1

s,0

Q = {e a d} g

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,∞

g,1

s,0

Q = {e a d} g

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,2

g,1

s,0

Q = {e a d} g

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,2

g,1

s,0

Q = {e a d} g

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,2

g,1

s,0

Q = {e a d f} g

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,2

g,1

s,0

Q = {e a d f} g

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,2

g,1

s,0

Q = {a d f} e

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,2

g,1

s,0

Q = {a d f} e

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,2

g,1

s,0

Q = {d f} a

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,∞

c,1 d,2

e,1

f,2

g,1

s,0

Q = {d f} a

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,3

c,1 d,2

e,1

f,2

g,1

s,0

Q = {d f} a

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,3

c,1 d,2

e,1

f,2

g,1

s,0

Q = {d f} a

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,3

c,1 d,2

e,1

f,2

g,1

s,0

Q = {d f b} a

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,3

c,1 d,2

e,1

f,2

g,1

s,0

Q = {d f b} a

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,3

c,1 d,2

e,1

f,2

g,1

s,0

Q = { } b

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,3

c,1 d,2

e,1

f,2

g,1

s,0

Q = { } b

O(lVl)

O(1)

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,3

c,1 d,2

e,1

f,2

g,1

s,0

Q = { } b

O(lVl)

O(1)

O(lEl)

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,3

c,1 d,2

e,1

f,2

g,1

s,0

Q = { } b

total O(lVl + lEl)

O(lVl)

O(1)

O(lEl)

Breadth First Search
BFS(G,s)

for each vertex u of V
 u.color = white
 u.dis = ∞
 u.par = nil
s.color = gray
s.dis = 0
initialize an empty queue Q
Enqueu(Q,s)
while 𝑄≠ ∅
 u = Dequeu(Q)
 for each 𝑣∈𝐴𝑑𝑗(𝑢)
 if v.color = white
 v.color = gray
 v.dis = u.dis + 1
 v.par = u
 Enqueue(Q,v)
 u.color = black

a,2 b,3

c,1 d,2

e,1

f,2

g,1

s,0

Q = { } b

parent pointer used
to find the shortest path

total O(lVl + lEl)

O(lVl)

O(1)

O(lEl)

Connected Components
•  a connected component is a maximal subgraph where there is a path

between any two nodes of it

Connected Components
•  a connected component is a maximal subgraph where there is a path

between any two nodes of it
•  a graph can be made up of seperate connected components

G

Connected Components
•  a connected component is a maximal subgraph where there is a path

between any two nodes of it
•  a graph can be made up of seperate connected components

G

•  find the number of connected components
of a given graph (use BFS)

Connected Components
•  a connected component is a maximal subgraph where there is a path

between any two nodes of it
•  a graph can be made up of seperate connected components

G

•  find the number of connected components
of a given graph (use BFS)

•  start from the first vertex; any vertex we
have discovered during this search should
be part of same component.

Connected Components
•  a connected component is a maximal subgraph where there is a path

between any two nodes of it
•  a graph can be made up of seperate connected components

G

•  find the number of connected components
of a given graph (use BFS)

•  start from the first vertex; any vertex we
have discovered during this search should
be part of same component.

•  so, repeat the process with an undiscovered
vertex.

Connected Components
•  a connected component is a maximal subgraph where there is a path

between any two nodes of it
•  a graph can be made up of seperate connected components

G

•  find the number of connected components
of a given graph (use BFS)

•  start from the first vertex; any vertex we
have discovered during this search should
be part of same component.

•  so, repeat the process with an undiscovered
vertex.

 int num = 0
 for (i=1 to n)
 if (vi has not been discovered)
 num = num + 1
 BFS(G, vi)
 return num

Connected Components
•  a connected component is a maximal subgraph where there is a path

between any two nodes of it
•  a graph can be made up of seperate connected components

G

•  It would be useful to clasify each vertex by
which connected component it belongs

•  When we run BFS on G from v, we mark each
vertex as being owned by v.

•  If we iterate through all vertices, each vertex
will be marked by its owner that represents a
different connected component

Depth First Search
•  instead of going cross-wise, just go deep in the graph

Depth First Search
•  instead of going cross-wise, just go deep in the graph

•  when we process a node u, we pick each neighbor v of u in
order

Depth First Search
•  instead of going cross-wise, just go deep in the graph

•  when we process a node u, we pick each neighbor v of u in
order

 at the time of checking each v, we check again each
 neighbor of v in order

 only after processing all descendants of v, we pass to
 the next neighbor of u

Depth First Search
•  instead of going cross-wise, just go deep in the graph

•  when we process a node u, we pick each neighbor v of u in
order

 at the time of checking each v, we check again each
 neighbor of v in order

 only after processing all descendants of v, we pass to
 the next neighbor of u

•  the process continues until all verices reachable from the

source have been discovered

•  if any undiscovered vertices remain, choose one of them as
new source and repeat the process

Depth First Search
•  every node u is associated with four parameters :

Depth First Search
•  every node u is associated with four parameters :

 discovery finish parent color

Depth First Search
•  every node u is associated with four parameters :

 discovery finish parent color

the time we have
discovered the node u u’s predecessor on

the shortest path
from s to u

shows the state of u
white : undiscovered
gray : discovered
Black : processed

the time we have
processed the node u

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a b

c d

e

f

g

s
DFS_Visit(u)
u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a b

c d

e

f

g

s
DFS_Visit(u)
u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 0

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c d

e

f

g

s
DFS_Visit(u)
u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 1

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c d

e

f

g

s
DFS_Visit(u)
u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 1

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d

e

f

g

s
DFS_Visit(u)
u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 2

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d

e

f

g

s
DFS_Visit(u)
u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 2

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d

e

f

g
3

s
DFS_Visit(u)
u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 3

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d

e

f

g
3

s
DFS_Visit(u)
u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 3

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d

e

f

g
3

s
4 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 4

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d

e

f

g
3

s
4 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 4

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d

e
5

f

g
3

s
4 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 5

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d

e
5

f

g
3

s
4 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 5

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d

e
5

f
6

g
3

s
4 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 6

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d

e
5

f
6/7

g
3

s
4 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 7

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d

e
5/8

f
6/7

g
3

s
4 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 8

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d

e
5/8

f
6/7

g
3

s
4/9 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 9

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d

e
5/8

f
6/7

g
3/10

s
4/9 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 10

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d
11

e
5/8

f
6/7

g
3/10

s
4/9 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 11

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 12

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b

c
2/13

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 13

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b
14

c
2/13

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 14

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1

b
14/15

c
2/13

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 15

Depth First Search
DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
time = 0
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

a
1/16

b
14/15

c
2/13

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9 DFS_Visit(u)

u.color = gray
time = time + 1
u.dis = time
for each v in Adj(u)
 if (v.color = white)
 v.par = u
 DFS_Visit(v)
u.color = black
time = time + 1
u.fin = time

time = 15

Depth First Search
a

1/16
b

14/15

c
2/13

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9

a

b c

d g

e

s

f

depth-first
tree

Depth First Search

tree-edge
(u,v) is called tree-edge if it was
first discovered by exploring edge

a
1/16

b
14/15

c
2/13

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9

a

b c

d g

e

s

f

depth-first
tree

Depth First Search

tree-edge
(u,v) is called tree-edge if it was
first discovered by exploring edge

a
1/16

b
14/15

c
2/13

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9

a

b c

d g

e

s

f

TE

depth-first
tree

Depth First Search

tree-edge
(u,v) is called tree-edge if it was
first discovered by exploring edge

back-edge
(u,v) is called back-edge if it’s
connecting vertex u to an ancestor v
in depth-first tree

a
1/16

b
14/15

c
2/13

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9

a

b c

d g

e

s

f

depth-first
tree

TE

Depth First Search

tree-edge
(u,v) is called tree-edge if it was
first discovered by exploring edge

back-edge
(u,v) is called back-edge if it’s
connecting vertex u to an ancestor v
in depth-first tree

a
1/16

b
14/15

c
2/13

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9

a

b c

d g

e

s

f

depth-first
tree

TE

BE

Depth First Search

tree-edge
(u,v) is called tree-edge if it was
first discovered by exploring edge

back-edge
(u,v) is called back-edge if it’s
connecting vertex u to an ancestor v
in depth-first tree

forward-edge
(u,v) is called forward-edge if it’s a
nontree-edge connecting vertex u to
a decendant v in depth-first tree

a
1/16

b
14/15

c
2/13

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9

a

b c

d g

e

s

f

depth-first
tree

TE

BE

Depth First Search

tree-edge
(u,v) is called tree-edge if it was
first discovered by exploring edge

back-edge
(u,v) is called back-edge if it’s
connecting vertex u to an ancestor v
in depth-first tree

forward-edge
(u,v) is called forward-edge if it’s a
nontree-edge connecting vertex u to
a decendant v in depth-first tree

a
1/16

b
14/15

c
2/13

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9

a

b c

d g

e

s

f

depth-first
tree

TE

BE

FE

Depth First Search

tree-edge
(u,v) is called tree-edge if it was
first discovered by exploring edge

back-edge
(u,v) is called back-edge if it’s
connecting vertex u to an ancestor v
in depth-first tree

forward-edge
(u,v) is called forward-edge if it’s a
nontree-edge connecting vertex u to
a decendant v in depth-first tree

cross-edge
(u,v) is called cross-edge if it’s
connecting vertex u to vertex v such
that there is no ancestor/
descendant relation between them

a
1/16

b
14/15

c
2/13

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9

a

b c

d g

e

s

f

depth-first
tree

TE

BE

FE

Depth First Search

tree-edge
(u,v) is called tree-edge if it was
first discovered by exploring edge

back-edge
(u,v) is called back-edge if it’s
connecting vertex u to an ancestor v
in depth-first tree

forward-edge
(u,v) is called forward-edge if it’s a
nontree-edge connecting vertex u to
a decendant v in depth-first tree

cross-edge
(u,v) is called cross-edge if it’s
connecting vertex u to vertex v such
that there is no ancestor/
descendant relation between them

a
1/16

b
14/15

c
2/13

d
11/12

e
5/8

f
6/7

g
3/10

s
4/9

a

b c

d g

e

s

f

depth-first
tree

TE

BE

CE

FE

Cycle Detection
•  There is a cycle in the graph only if there is back edge in the graph

Cycle Detection

DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

DFS_Visit(u)
u.color = gray
for each v in Adj(u)
 if (v.color = gray)
 output ‘cycle found’
 else
 v.par = u
 DFS_Visit(v)
u.color = black

•  There is a cycle in the graph only if there is back edge in the graph

Cycle Detection

a b

c d

e

f

g

s

DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

DFS_Visit(u)
u.color = gray
for each v in Adj(u)
 if (v.color = gray)
 output ‘cycle found’
 else
 v.par = u
 DFS_Visit(v)
u.color = black

•  There is a cycle in the graph only if there is back edge in the graph

Cycle Detection

a b

c d

e

f

g

s

DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

DFS_Visit(u)
u.color = gray
for each v in Adj(u)
 if (v.color = gray)
 output ‘cycle found’
 else
 v.par = u
 DFS_Visit(v)
u.color = black

•  There is a cycle in the graph only if there is back edge in the graph

Cycle Detection

a b

c d

e

f

g

s

DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

DFS_Visit(u)
u.color = gray
for each v in Adj(u)
 if (v.color = gray)
 output ‘cycle found’
 else
 v.par = u
 DFS_Visit(v)
u.color = black

•  There is a cycle in the graph only if there is back edge in the graph

Cycle Detection

a b

c d

e

f

g

s

DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

DFS_Visit(u)
u.color = gray
for each v in Adj(u)
 if (v.color = gray)
 output ‘cycle found’
 else
 v.par = u
 DFS_Visit(v)
u.color = black

•  There is a cycle in the graph only if there is back edge in the graph

Cycle Detection

a b

c d

e

f

g

s

DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

DFS_Visit(u)
u.color = gray
for each v in Adj(u)
 if (v.color = gray)
 output ‘cycle found’
 else
 v.par = u
 DFS_Visit(v)
u.color = black

•  There is a cycle in the graph only if there is back edge in the graph

Cycle Detection

a b

c d

e

f

g

s

DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

DFS_Visit(u)
u.color = gray
for each v in Adj(u)
 if (v.color = gray)
 output ‘cycle found’
 else
 v.par = u
 DFS_Visit(v)
u.color = black

•  There is a cycle in the graph only if there is back edge in the graph

Cycle Detection

a b

c d

e

f

g

s

DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

DFS_Visit(u)
u.color = gray
for each v in Adj(u)
 if (v.color = gray)
 output ‘cycle found’
 else
 v.par = u
 DFS_Visit(v)
u.color = black

•  There is a cycle in the graph only if there is back edge in the graph

Cycle Detection

a b

c d

e

f

g

s

DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

DFS_Visit(u)
u.color = gray
for each v in Adj(u)
 if (v.color = gray)
 output ‘cycle found’
 else
 v.par = u
 DFS_Visit(v)
u.color = black

•  There is a cycle in the graph only if there is back edge in the graph

Cycle Detection

a b

c d

e

f

g

s

DFS(G)
for each vertex u of V
 u.color = white
 u.par = nil
for each vertex u of V
 if u.color = white
 DFS_Visit(u)

DFS_Visit(u)
u.color = gray
for each v in Adj(u)
 if (v.color = gray)
 output ‘cycle found’
 else
 v.par = u
 DFS_Visit(v)
u.color = black

•  There is a cycle in the graph only if there is back edge in the graph

