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•  Königsberg was a city in Germany in 18th century. There 
was a river named Pregel that divided the city into four 
distinct regions.  

•  There was a natural question for the people of Königsberg :  
 
      ‘Is it possible to take a walk around the city that crosses 
       each bridge exaactly once?’ 
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•  The problem was solved by Swiss mathematician Leonard 
Euler. His works are considered as the beginning of Graph 
Theory. 

•  Euler represented four distinct lands with four points (or 
nodes), and seven bridges with seven lines connecting those 
points.  

 
    ‘Can you find a path that includes every edge exactly once?’ 

    ‘Is the given graph traversable?’ 
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G = (V, E) 

set of nodes (or vertices) set of edges (or arc) 
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directed graph undirected graph 

deg(v)= # of edges at that vertex  

Σ deg(v) = 2 lEl 

degin (v) = # of incoming edges 

degout (v) = # of outgoing edges 

Σ degin(v) = Σ degin(v) = lEl 
•  a vertex v is called odd vertex if deg(v) is odd 
•  a vertex v is called even vertex if deg(v) is even 
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•  Euler showed that a graph can be traversable if it has no 
odd vertex or exactly two odd vertices.  

•  Königsberg graph is not traversable since it has four odd 
vertices.  

 
     

Can you draw an envelope  
without lifting your pen from the paper? 
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1 - 2,4 
2 - 1,4 
3 - 4 
4 - 1,2,3 

1 - 3 
2 -  
3 - 4 
4 - 1,2 

Adjacency Matrix Adjacency Matrix 
1 2 3 4 

1 0 1 0 1 
2 1 0 0 1 
3 0 0 0 1 
4 1 1 1 0 

1 2 3 4 
1 0 0 1 0 
2 0 0 0 0 
3 0 0 0 1 
4 1 1 0 0 
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 Adjacency List 

•  retrieving all neighbors of a 
given node u 

•  given nodes u and v, checking 
if u and v are adjacent 

•  space  

Adjacency Matrix 

O(deg(u)) 
 
 

O(deg(u)) 
 
 

O(lEl+lVl) 
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Graph Theory 

 Adjacency List 

•  retrieving all neighbors of a 
given node u 

•  given nodes u and v, checking 
if u and v are adjacent 

•  space  

Adjacency Matrix 

If graph is sparse, use adjacency list;  
if graph is dense, use adjacency matrix 

O(deg(u)) 
 
 

O(deg(u)) 
 
 

O(lEl+lVl) 

O(lVl) 
 
 

O(1) 
 
 

O(lVl2) 
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•  a path in a graph is a sequence of nodes v1, v2, …, vk such that  
    (vi, vj) is an edge in the graph. 
    a path is simple if all nodes are distinct 
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•  a path in a graph is a sequence of nodes v1, v2, …, vk such that  
    (vi, vj) is an edge in the graph. 
    a path is simple if all nodes are distinct 
 
•  nodes u and v are called connected if there is a path between 

them. A graph is connected if there is a path between every pair 
of nodes 

•  a cycle is a path v1, v2, …, vk such that v1 = vk . A cycle is simple if 
first k-1 nodes are distinct 

•  length of a path is the number of edges in the path 
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4, 1, 2, 4  is a simple cycle with length 3 

•  a path in a graph is a sequence of nodes v1, v2, …, vk such that  
    (vi, vj) is an edge in the graph. 
    a path is simple if all nodes are distinct 
 
•  nodes u and v are called connected if there is a path between 

them. A graph is connected if there is a path between every pair 
of nodes 

•  a cycle is a path v1, v2, …, vk such that v1 = vk . A cycle is simple if 
first k-1 nodes are distinct 

•  length of a path is the number of edges in the path 
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Graph Traversal 
•  One of the most fundemantal graph problems is to 

traverse every edge and every vertex in a graph  

•  Explore the graph in a systematic way : 
                 make sure that each edge visited at most twice 
                  don’t miss anything 
 

 

•  each vertex denotes a junction and each 
edge denotes a hallway 

•  any traversal algorithm can be sufficient 
to get us out of any maze 

•  For efficieny, make sure you don’t get 
stuck (visiting same place over and over 
again) 

•  For correctness, we do the traversal in a 
way that we get out of the maze  
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Graph Traversal 
the key idea 
 
•  mark each vertex when you first visit it 
•  keep track of what you haven’t yet completely explored 

possible three states for each vertex 
 
undiscovered                 discovered            processed        

initial state  
for a vertex 

the vertex has been 
visited but all of its 
incident edges have 

not been checked out 

the vertex and all  
of its incident edges 

have been visited 

state of each vertex changes from left to right  
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Breadth First Search 
•  instead of going deep in a graph, just go in cross-wise fashion 
 
•  explore the graph outward from a starting point (a node s) in all 

possible directions – add one layer of nodes at a time  
 

. . . s 

all nodes have  
an edge to a node in Li-1 

and don’t belong to  
any earlier layer  

L0 L1 L2 Li 
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Breadth First Search 
•  every node u is associated with three parameters : 

 
    distance                       parent                      color   

The length of  
the shortest path  

from s to u 

u’s predecessor on 
the shortest path 

from s to u 

shows the state of u 
white : undiscovered 
gray : discovered 
Black : processed    BFS(G,s)  

 
for each vertex u of V  
          u.color = white 
          u.dis = ∞ 
          u.par = nil  
s.color = gray 
s.dis = 0  
 . . . 



Breadth First Search 
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        u.color = black         
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•  find the number of connected components 
of a given graph (use BFS) 

•  start from the first vertex; any vertex we 
have discovered during this search should 
be part of same component.  

•  so, repeat the process with an undiscovered 
vertex.  

  
     int num = 0 
     for (i=1 to n) 
            if (vi has not been discovered) 
                   num = num + 1 
                   BFS(G, vi) 
     return num 



Connected Components 
•  a connected component is a maximal subgraph where there is a path 

between any two nodes of it 
•  a graph can be made up of seperate connected components 

G 

•  It would be useful to clasify each vertex by 
which connected component it belongs 

•  When we run BFS on G from v, we mark each 
vertex as being owned by v. 

•  If we iterate through all vertices, each vertex 
will be marked by its owner that represents a 
different connected component 
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•  when we process a node u, we pick each neighbor v of u in 
order  

                
                 at the time of checking each v, we check again each 
                 neighbor of v in order 
           
                 only after processing all descendants of v, we pass to 
                 the next neighbor of u 
 
•  the process continues until all verices reachable from the 

source have been discovered 

•  if any undiscovered vertices remain, choose one of them as 
new source and repeat the process  
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   discovery           finish                parent                   color   

the time we have 
discovered the node u u’s predecessor on 

the shortest path 
from s to u 

shows the state of u 
white : undiscovered 
gray : discovered 
Black : processed    

the time we have 
processed the node u 
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DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil  
time = 0  
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 
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4 DFS_Visit(u)  

u.color = gray 
time = time + 1 
u.dis = time 
for each v in Adj(u) 
       if (v.color = white) 
              v.par = u 
              DFS_Visit(v) 
u.color = black 
time = time + 1 
u.fin = time  

time = 6 



Depth First Search 
DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil  
time = 0  
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 
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4 DFS_Visit(u)  

u.color = gray 
time = time + 1 
u.dis = time 
for each v in Adj(u) 
       if (v.color = white) 
              v.par = u 
              DFS_Visit(v) 
u.color = black 
time = time + 1 
u.fin = time  

time = 7 
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DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil  
time = 0  
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 
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4 DFS_Visit(u)  

u.color = gray 
time = time + 1 
u.dis = time 
for each v in Adj(u) 
       if (v.color = white) 
              v.par = u 
              DFS_Visit(v) 
u.color = black 
time = time + 1 
u.fin = time  

time = 8 



Depth First Search 
DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil  
time = 0  
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 
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4/9 DFS_Visit(u)  

u.color = gray 
time = time + 1 
u.dis = time 
for each v in Adj(u) 
       if (v.color = white) 
              v.par = u 
              DFS_Visit(v) 
u.color = black 
time = time + 1 
u.fin = time  

time = 9 



Depth First Search 
DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil  
time = 0  
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 
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4/9 DFS_Visit(u)  

u.color = gray 
time = time + 1 
u.dis = time 
for each v in Adj(u) 
       if (v.color = white) 
              v.par = u 
              DFS_Visit(v) 
u.color = black 
time = time + 1 
u.fin = time  

time = 10 



Depth First Search 
DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil  
time = 0  
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 
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4/9 DFS_Visit(u)  

u.color = gray 
time = time + 1 
u.dis = time 
for each v in Adj(u) 
       if (v.color = white) 
              v.par = u 
              DFS_Visit(v) 
u.color = black 
time = time + 1 
u.fin = time  

time = 11 



Depth First Search 
DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil  
time = 0  
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 
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u.color = gray 
time = time + 1 
u.dis = time 
for each v in Adj(u) 
       if (v.color = white) 
              v.par = u 
              DFS_Visit(v) 
u.color = black 
time = time + 1 
u.fin = time  

time = 12 



Depth First Search 
DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil  
time = 0  
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 
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4/9 DFS_Visit(u)  

u.color = gray 
time = time + 1 
u.dis = time 
for each v in Adj(u) 
       if (v.color = white) 
              v.par = u 
              DFS_Visit(v) 
u.color = black 
time = time + 1 
u.fin = time  

time = 13 



Depth First Search 
DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil  
time = 0  
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 
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u.color = gray 
time = time + 1 
u.dis = time 
for each v in Adj(u) 
       if (v.color = white) 
              v.par = u 
              DFS_Visit(v) 
u.color = black 
time = time + 1 
u.fin = time  

time = 14 



Depth First Search 
DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil  
time = 0  
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 
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u.color = gray 
time = time + 1 
u.dis = time 
for each v in Adj(u) 
       if (v.color = white) 
              v.par = u 
              DFS_Visit(v) 
u.color = black 
time = time + 1 
u.fin = time  

time = 15 



Depth First Search 
DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil  
time = 0  
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 
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4/9 DFS_Visit(u)  

u.color = gray 
time = time + 1 
u.dis = time 
for each v in Adj(u) 
       if (v.color = white) 
              v.par = u 
              DFS_Visit(v) 
u.color = black 
time = time + 1 
u.fin = time  

time = 15 
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Depth First Search 

tree-edge 
(u,v) is called tree-edge if it was 
first discovered by exploring edge 
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Depth First Search 

tree-edge 
(u,v) is called tree-edge if it was 
first discovered by exploring edge 
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Depth First Search 

tree-edge 
(u,v) is called tree-edge if it was 
first discovered by exploring edge 
 
back-edge 
(u,v) is called back-edge if it’s 
connecting vertex u to an ancestor v 
in depth-first tree 
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Depth First Search 

tree-edge 
(u,v) is called tree-edge if it was 
first discovered by exploring edge 
 
back-edge 
(u,v) is called back-edge if it’s 
connecting vertex u to an ancestor v 
in depth-first tree 
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Depth First Search 

tree-edge 
(u,v) is called tree-edge if it was 
first discovered by exploring edge 
 
back-edge 
(u,v) is called back-edge if it’s 
connecting vertex u to an ancestor v 
in depth-first tree 
 
forward-edge 
(u,v) is called forward-edge if it’s a 
nontree-edge connecting vertex u to 
a decendant v in depth-first tree 
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Depth First Search 

tree-edge 
(u,v) is called tree-edge if it was 
first discovered by exploring edge 
 
back-edge 
(u,v) is called back-edge if it’s 
connecting vertex u to an ancestor v 
in depth-first tree 
 
forward-edge 
(u,v) is called forward-edge if it’s a 
nontree-edge connecting vertex u to 
a decendant v in depth-first tree 
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Depth First Search 

tree-edge 
(u,v) is called tree-edge if it was 
first discovered by exploring edge 
 
back-edge 
(u,v) is called back-edge if it’s 
connecting vertex u to an ancestor v 
in depth-first tree 
 
forward-edge 
(u,v) is called forward-edge if it’s a 
nontree-edge connecting vertex u to 
a decendant v in depth-first tree 
 
cross-edge 
(u,v) is called cross-edge if it’s 
connecting vertex u to vertex v such 
that there is no ancestor/
descendant relation between them 
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Depth First Search 

tree-edge 
(u,v) is called tree-edge if it was 
first discovered by exploring edge 
 
back-edge 
(u,v) is called back-edge if it’s 
connecting vertex u to an ancestor v 
in depth-first tree 
 
forward-edge 
(u,v) is called forward-edge if it’s a 
nontree-edge connecting vertex u to 
a decendant v in depth-first tree 
 
cross-edge 
(u,v) is called cross-edge if it’s 
connecting vertex u to vertex v such 
that there is no ancestor/
descendant relation between them 

a 
1/16 

b 
14/15 

c 
2/13 

d 
11/12 

e 
5/8 

f 
6/7 

g 
3/10 

s 
4/9 

a 

b c 

d g 

e 

s 

f 

depth-first  
tree 

TE 

BE 

CE 

FE 



Cycle Detection 
•  There is a cycle in the graph only if there is back edge in the graph 



Cycle Detection 

DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil   
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 

DFS_Visit(u)  
u.color = gray 
for each v in Adj(u) 
       if (v.color = gray) 
               output ‘cycle found’ 
       else 
              v.par = u 
              DFS_Visit(v) 
u.color = black 

•  There is a cycle in the graph only if there is back edge in the graph 



Cycle Detection 
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DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil   
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 

DFS_Visit(u)  
u.color = gray 
for each v in Adj(u) 
       if (v.color = gray) 
               output ‘cycle found’ 
       else 
              v.par = u 
              DFS_Visit(v) 
u.color = black 

•  There is a cycle in the graph only if there is back edge in the graph 



Cycle Detection 
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DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil   
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 

DFS_Visit(u)  
u.color = gray 
for each v in Adj(u) 
       if (v.color = gray) 
               output ‘cycle found’ 
       else 
              v.par = u 
              DFS_Visit(v) 
u.color = black 

•  There is a cycle in the graph only if there is back edge in the graph 



Cycle Detection 
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DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil   
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 

DFS_Visit(u)  
u.color = gray 
for each v in Adj(u) 
       if (v.color = gray) 
               output ‘cycle found’ 
       else 
              v.par = u 
              DFS_Visit(v) 
u.color = black 

•  There is a cycle in the graph only if there is back edge in the graph 



Cycle Detection 
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DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil   
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 

DFS_Visit(u)  
u.color = gray 
for each v in Adj(u) 
       if (v.color = gray) 
               output ‘cycle found’ 
       else 
              v.par = u 
              DFS_Visit(v) 
u.color = black 

•  There is a cycle in the graph only if there is back edge in the graph 



Cycle Detection 
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DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil   
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 

DFS_Visit(u)  
u.color = gray 
for each v in Adj(u) 
       if (v.color = gray) 
               output ‘cycle found’ 
       else 
              v.par = u 
              DFS_Visit(v) 
u.color = black 

•  There is a cycle in the graph only if there is back edge in the graph 



Cycle Detection 
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DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil   
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 

DFS_Visit(u)  
u.color = gray 
for each v in Adj(u) 
       if (v.color = gray) 
               output ‘cycle found’ 
       else 
              v.par = u 
              DFS_Visit(v) 
u.color = black 

•  There is a cycle in the graph only if there is back edge in the graph 



Cycle Detection 
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DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil   
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 

DFS_Visit(u)  
u.color = gray 
for each v in Adj(u) 
       if (v.color = gray) 
               output ‘cycle found’ 
       else 
              v.par = u 
              DFS_Visit(v) 
u.color = black 

•  There is a cycle in the graph only if there is back edge in the graph 



Cycle Detection 
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DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil   
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 

DFS_Visit(u)  
u.color = gray 
for each v in Adj(u) 
       if (v.color = gray) 
               output ‘cycle found’ 
       else 
              v.par = u 
              DFS_Visit(v) 
u.color = black 

•  There is a cycle in the graph only if there is back edge in the graph 



Cycle Detection 
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DFS(G)  
for each vertex u of V  
          u.color = white 
          u.par = nil   
for each vertex u of V 
         if u.color = white 
                 DFS_Visit(u) 

DFS_Visit(u)  
u.color = gray 
for each v in Adj(u) 
       if (v.color = gray) 
               output ‘cycle found’ 
       else 
              v.par = u 
              DFS_Visit(v) 
u.color = black 

•  There is a cycle in the graph only if there is back edge in the graph 


