Public-Key Cryptography

Murat Osmanoglu

<u>A naïve approach</u>

 U_1

<u>A naïve approach</u>

 U_1

 each pair of users should share a secret key for secret communication

<u>A naïve approach</u>

U1

 each pair of users should share a secret key for secret communication

• each user should store O(n) secret keys

 U_1

• How U_1 and U_2 generate the secret key k_{12} ?

TTP

 k_1 and k_2

 TTP chooses a random secret k₁₂

 k_1 and k_2

- TTP chooses a random secret k₁₂
- TTP computes $E_1 = Enc(k_1, 'Users || k_{12}')$ $E_2 = Enc(k_2, 'Users || k_{12}')$

 \mathbf{k}_1 and \mathbf{k}_2

U_1

 U₁ and U₂ want to share a secret through a communication channel eavesdropped by an adversary

- U₁ and U₂ want to share a secret through a communication channel eavesdropped by an adversary
- choose a large prime p (2048 bits \approx 617 digits in current practice)
- choose an integer g from {1, 2, ..., p 1}

- U₁ and U₂ want to share a secret through a communication channel eavesdropped by an adversary
- choose a large prime p (2048 bits \approx 617 digits in current practice)
- choose an integer g from {1, 2, ..., p 1}

 choose a random a from {1, 2, ..., p - 1}

 choose a random b from {1, 2, ..., p - 1}

- U₁ and U₂ want to share a secret through a communication channel eavesdropped by an adversary
- choose a large prime p (2048 bits \approx 617 digits in current practice)
- choose an integer g from {1, 2, ..., p 1}

- choose a random a from {1, 2, ..., p - 1}
- compute A=g^a (mod p)

- choose a random b from {1, 2, ..., p - 1}
- compute B=g^b (mod p)

- U₁ and U₂ want to share a secret through a communication channel eavesdropped by an adversary
- choose a large prime p (2048 bits \approx 617 digits in current practice)
- choose an integer g from {1, 2, ..., p 1}

compute <mark>A=g^a (mod p)</mark>

compute B=g^b (mod p)

<u>Diffie-Hellman Key Exchange</u>

- U_1 and U_2 want to share a secret through a communication channel eavesdropped by an adversary
- choose a large prime p (2048 bits \approx 617 digits in current practice) ٠
- choose an integer g from {1, 2, ..., p 1} ٠

 $B^{a}=(q^{b})^{a}=q^{ab} (mod p)$

compute

compute B=q^b (mod p)

 $A^{b}=(q^{a})^{b}=q^{ab} (mod p)$

compute

- U₁ and U₂ want to share a secret through a communication channel eavesdropped by an adversary
- choose a large prime p (2048 bits \approx 617 digits in current practice)
- choose an integer g from {1, 2, ..., p 1}

the adversary gets : p, g, g^a (mod p), g^b (mod p)

- the adversary gets : $p, g, g^a \pmod{p}, g^b \pmod{p}$
- can she compute g^{ab} (mod p)?

- the adversary gets : $p, g, g^a \pmod{p}, g^b \pmod{p}$
- can she compute g^{ab} (mod p)?

Diffie-Hellman Function

• $DH_g(g^a, g^b) = g^{ab} \pmod{p}$

- the adversary gets : $p, g, g^a \pmod{p}, g^b \pmod{p}$
- can she compute g^{ab} (mod p) ?

Diffie-Hellman Function

- $DH_g(g^a, g^b) = g^{ab} \pmod{p}$
- How hard is this function?

- the adversary gets : $p, g, g^a \pmod{p}, g^b \pmod{p}$
- can she compute g^{ab} (mod p) ?

Diffie-Hellman Function

- $DH_g(g^a, g^b) = g^{ab} \pmod{p}$
- How hard is this function ? (best known algorithm is General Number Field Sieve that takes exp(O(³√n)) -subexponential- for n-bit prime p)

- the adversary gets : $p, g, g^a \pmod{p}, g^b \pmod{p}$
- can she compute g^{ab} (mod p¹)

Diffie-Hellman Function

• $DH_g(g^a, g^b) = g^{ab} \pmod{p}$

for 1024-bit prime p it is supposed to be e^{10} , however it is $\approx e^{80}$ (the power has some other constants)

 How hard is this function ? (best known algorithm is General Number Field Sieve that takes exp(O(³√n)) -subexponential- for n-bit prime p)

Bulletin Board

Bulletin Board

• Users don't need to communicate each other to build the key

 $K_{1234} \leftarrow (sec_1, pub_2, pub_3, pub_4)$

 $K_{1234} \leftarrow (sec_1, pub_2, pub_3, pub_4)$

open problem for $n \ge 4$

Μ

SK

- A public-key encryption consists of three algorithms
- Gen : outputs a key pair (pk, sk)
- Enc : takes a message m in M and the public key pk as inputs and outputs a ciphertext c in C
- Dec : takes a ciphertext c and the secret key sk as inputs and outputs a message m in M

<u>Correctness</u>

For all (pk, sk) output by Gen and for all m in M

Dec(sk, Enc(pk, m)) = m

$(pk,sk) \leftarrow Gen(.)$

$(pk,sk) \leftarrow Gen(.)$

- choose a random x
- c ← Enc (pk, x)

 $(pk,sk) \leftarrow Gen(.)$

 $x \leftarrow Dec(sk, c)$

- choose a random x
- c ← Enc (pk, x)

x used as the secret key

• the idea first introduced by

W. Diffie and M. E. Hellman, New Directions in Cryptography IEEE Transaction on Information Theory, 1976

• the first construction introduced by

R. Rivest, A. Shamir, L Adelman A Method for Obtaining Digital Signatures and Public-Key Cryptosystem Communications of the ACM, 1978

• security rely on hard problems from number theory and algebra

Factorization Problem, Discrete Logarithm Problem

• Let N = p.q where p and q are primes

- Let N = p.q where p and q are primes
- $Z_N = \{0, 1, 2, ..., N 1\}$ and $(Z_N)^*$: the set of all invertible elements in Z_N

- Let N = p.q where p and q are primes
- $Z_N = \{0, 1, 2, ..., N 1\}$ and $(Z_N)^*$: the set of all invertible elements in Z_N
- if x in $(Z_N)^*$, then gcd(x, N) = 1

- Let N = p.q where p and q are primes
- $Z_N = \{0, 1, 2, ..., N 1\}$ and $(Z_N)^*$: the set of all invertible elements in Z_N
- if x in $(Z_N)^*$, then gcd(x, N) = 1
- $|(Z_N)^*| = phi(N) = (p 1)(q 1)$

- Let N = p.q where p and q are primes
- $Z_N = \{0, 1, 2, ..., N 1\}$ and $(Z_N)^*$: the set of all invertible elements in Z_N
- if x in $(Z_N)^*$, then gcd(x, N) = 1
- $|(Z_N)^*| = phi(N) = (p 1)(q 1)$
 - $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - $(Z_{10})^* = \{1, 3, 7, 9\}, 3.7 = 1 \pmod{10}$
 - $|(Z_{10})^*| = phi(N) = (2 1)(5 1) = 4$

- Let N = p.q where p and q are primes
- $Z_N = \{0, 1, 2, ..., N 1\}$ and $(Z_N)^*$: the set of all invertible elements in Z_N
- if x in $(Z_N)^*$, then gcd(x, N) = 1
- $|(Z_N)^*| = phi(N) = (p 1)(q 1)$
- Euler Theorem

for all x in $(Z_N)^*$, $x^{\text{phi}(N)} = 1 \pmod{N}$

- pick two large primes p and q
- compute N = p.q

- pick two large primes p and q
- compute N = p.q
- choose an exponent e such that gcd(e,phi(N)) = 1

- pick two large primes p and q
- compute N = p.q
- choose an exponent e such that gcd(e,phi(N)) = 1
- choose an exponent d such that e.d = 1 mod phi(N)

for the equation $a.x = 1 \mod N$

if gcd(a,N) = 1, then there is a unique solution

- pick two large primes p and q
- compute N = p.q
- choose an exponent e such that gcd(e,phi(N)) = 1
- choose an exponent d such that e.d = 1 mod phi(N)

- pick two large primes p and q
- compute N = p.q
- choose an exponent e such that gcd(e,phi(N)) = 1
- choose an exponent d such that e.d = 1 mod phi(N)
- keep (d, p, q) as secret key, and publish (N, e) as public key

Encryption

 $c = m^e \pmod{N}$ where m in $(Z_N)^*$

Encryption

 $c = m^e \pmod{N}$ where m in $(Z_N)^*$

Decryption

c^d (mod N)

Decryption

 $c^{d} \pmod{N} = m^{ed} \pmod{N}$

 $\frac{\text{Decryption}}{c^{d} \pmod{N}} = m^{ed} \pmod{N}$ $= m^{1 + k.phi(N)} \pmod{N}$

<u>Decryption</u>

$$c^{d} \pmod{N} = m^{ed} \pmod{N}$$
$$= m^{1 + k.phi(N)} \pmod{N}$$
$$= m \cdot m^{phi(N).k} \pmod{N}$$

• If you factor N, you can break RSA

• If you factor N, you can break RSA

if you have N = p.q, then you can compute

 $\Phi(N)=(p-1)(q-1)$

• If you factor N, you can break RSA

if you have N = p.q, then you can compute

 $\Phi(N)=(p-1)(q-1)$

if you have $\Phi(N)$, then you can find the secret key d by

solving the equation $e.d = 1 \pmod{\Phi(N)}$

 Let D be the number of decimal digits, Y be the year the factorization occurs. From the running time of NFS and assuming Moore's law, Brent derived a formula

 Let D be the number of decimal digits, Y be the year the factorization occurs. From the running time of NFS and assuming Moore's law, Brent derived a formula

 $Y = 13.24 \times D^{1/3} + 1928.6$

 Let D be the number of decimal digits, Y be the year the factorization occurs. From the running time of NFS and assuming Moore's law, Brent derived a formula

 $Y = 13.24 \times D^{1/3} + 1928.6$

• According to the formula :

 Let D be the number of decimal digits, Y be the year the factorization occurs. From the running time of NFS and assuming Moore's law, Brent derived a formula

 $Y = 13.24 \times D^{1/3} + 1928.6$

• According to the formula :

512-bit number would be factored by 1999 (RSA-155 [512-bit] was factored by Lenstra in 1999

Factorization

 Let D be the number of decimal digits, Y be the year the factorization occurs. From the running time of NFS and assuming Moore's law, Brent derived a formula

 $Y = 13.24 \times D^{1/3} + 1928.6$

• According to the formula :

512-bit number would be factored by 1999 (RSA-155 [512-bit] was factored by Lenstra in 1999 768-bit number would be factored by 2010 (RSA-768 [232 digits] was factored by Lenstra in 2009

Factorization

 Let D be the number of decimal digits, Y be the year the factorization occurs. From the running time of NFS and assuming Moore's law, Brent derived a formula

 $Y = 13.24 \times D^{1/3} + 1928.6$

• According to the formula :

512-bit number would be factored by 1999 (RSA-155 [512-bit] was factored by Lenstra in 1999 768-bit number would be factored by 2010 (RSA-768 [232 digits] was factored by Lenstra in 2009 1024-bit number would be factored by 2018 2048-bit number would be factored by 2041

RSA-768 [232 digits] was factored by Lenstra in 2009

- They spent half a year on 80 processors on polynomial selection. This was about 3% of the main task, the sieving, which was done on many hundreds of machines and took almost two years.
- On a single core 2.2 GHz AMD Opteron processor with 2 GB RAM, sieving would have taken about fifteen hundred years.

RSA-768 [232 digits] was factored by Lenstra in 2009

- They spent half a year on 80 processors on polynomial selection. This was about 3% of the main task, the sieving, which was done on many hundreds of machines and took almost two years.
- On a single core 2.2 GHz AMD Opteron processor with 2 GB RAM, sieving would have taken about fifteen hundred years.
- Factoring a 1024-bit RSA modulus would be about a thousand times harder, and a 768-bit RSA modulus is several thousands times harder to factor than a 512-bit one
- They suggest to leave 1024-bit modulus within the next three to four years (by 2013-2014)

Cryptographic Algorithm	Туре	Purpose	Impact from large-scale quantum computer
AES	Symmetric key	Encryption	Larger key sizes needed
SHA-2, SHA-3		Hash functions	Larger output needed
RSA	Public key	Signatures, key establishment	No longer secure
ECDSA, ECDH (Elliptic Curve Cryptography)	Public key	Signatures, key exchange	No longer secure
DSA (Finite Field Cryptography)	Public key	Signatures, key exchange	No longer secure

AES key size : 80 bits 128 bits 256 bits RSA modulus size : 1024 bits 3072 bits 15360 bits

- AES-128 for 5K file : 7.40 ms
- AES-192 for 5K file : 7.55 ms
- AES-256 for 5K file : 7.73 ms

- RSA-1024 for 5K file : 50 ms
- RSA-2048 for 5K file : 100 ms
- RSA-3072 for 5K file : 150 ms

signing by hand

signing by hand

signing by hand

signing by hand

verify the signature

signing electronically

signing electronically

electronic signature

signing electronically

signature

- signature can be easily copied
- it should be a function of the • message

Signature

- A digital signature scheme consists of three algorithms
- Gen : outputs a key pair (pk, sk)
- Sign :takes a message m in M and the signing key sk as inputs and outputs a signature σ on m
- Verify : takes a signature $\sigma,$ the public key pk, and a message m as inputs and outputs 1 or 0

<u>Correctness</u>

For all (pk, sk) output by Gen and for all m in M

Verify(pk, m, Sign(sk, m)) = 1

- A digital signature scheme consists of three algorithms
- Gen : outputs a key pair (pk, sk)

Correctness

- Sign : takes a message m in M and the signing key sk as inputs and outputs a signature σ on m
- Verify : takes a signature σ , the public key pk, and a message m as inputs and outputs 1 or 0

 - IntegrityAuthenticity

For all (pk, sk) output by Gen and for a • Non-repudiation

Verify(pk, m, Sign(sk, m)) = 1

<u>KeyGen</u>

- pick two large primes p and q
- compute N = p.q
- choose an exponent e such that gcd(e,phi(N)) = 1
- choose an exponent d such that e.d = 1 mod phi(N)

SK=(N, d)

<u>KeyGen</u>

- pick two large primes p and q
- compute N = p.q
- choose an exponent e such that gcd(e,phi(N)) = 1
- choose an exponent d such that e.d = 1 mod phi(N)
- keep (N, d) as secret key, and publish (N, e) as public key

1024-bit prime p (309 digits) :

1024-bit prime q (309 digits) :

 $11613613323752462862307997343676166615781213580255442213388439971627821582770818854043\\09941587431632243604740043902608510350793965690708054362041417166453772064699311683053\\51122258807934047024235765278566582937247825531441295648260124631056178986340098086793\\666788683120626019654875802245983332214723863553333$

2048-bit N = p*q (617 digits) :

<mark>e=</mark> 65537

SK=

d=156889308164396431400692065987710672887346835620783590145841716088838352812353946228

SK=(N, d)

Signing

$\sigma = m^d \pmod{N}$ where m in $(Z_N)^*$

SK=(N, d)

SK=(N, d)

Verification

if m = σ^e (mod N), then output 1; otherwise, output 0

PK=(N, H, e)

SK=(N, H, d)

<u>KeyGen</u>

- pick two large primes p and q
- compute N = p.q
- choose an exponent e such that gcd(e,phi(N)) = 1
- choose an exponent d such that e.d = 1 mod phi(N)
- choose a function $H : \{0,1\}^* \rightarrow Z_N^*$
- keep (N, H, d) as secret key, and publish (N, H, e) as public key

SK=(N, H, d)

<u>Signing</u>

 $\sigma = H(m)^d \pmod{N}$ where m in {0,1}*

SK=(N, H, d)

SK=(N, H, d)

Verification

if H(m) = σ^e (mod N), then output 1; otherwise, output 0