
Murat Osmanoglu 

Public-Key 
Cryptography 



ENCRYPTION 
ALGORITHM 

m 

k 

c 

DECRYPTION  
ALGORITHM 

c 

k m 

Symmetric Encryption 

Same key for 
both sides 

 

Dec (c, k) = m 

Enc (m, k) = c 



ENCRYPTION 
ALGORITHM 

m 

k 

c 

DECRYPTION  
ALGORITHM 

c 

k m 

Symmetric Encryption 

Same key for 
both sides 

 

Dec (c, k) = m 

Enc (m, k) = c 

 

  How do the users generate the secret key ? 
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Can we manage key exchange without an 
online trusted third party ? 
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   kab = gab(mod p) 
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•  How hard is this function ? 
    (best known algorithm is General Number Field Sieve that 
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Security of Diffie-Hellman 

 

for 1024-bit prime p it is supposed 
   to be e10, however it is ≈ e80  

(the power has some other constants ) 
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open problem for n ≥ 4	
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Public-Key Encryption 

A public-key encryption consists of three algorithms 
 

Gen : outputs a key pair (pk, sk) 
 

Enc : takes a message m in M and the public key pk as inputs 
        and outputs a ciphertext c in C 
 

Dec : takes a ciphertext c and the secret key sk as inputs 
        and outputs a message m in M   
 
Correctness 
 
For all (pk, sk) output by Gen and for all m in M 
 
                          Dec(sk, Enc(pk, m)) = m 
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 x used as the secret key 
 

(pk,sk) ç Gen(.) 
 

x ç Dec(sk, c)	

•  choose a random x  
 

•  c ç Enc (pk, x)	



Public-Key Encryption 

•  the idea first introduced by 
 

W. Diffie and M. E. Hellman, 
New Directions in Cryptography 
IEEE Transaction on Information Theory, 1976 
 
•  the first construction introduced by 
 

R. Rivest, A. Shamir, L Adelman 
A Method for Obtaining Digital Signatures and Public-Key Cryptosystem 
Communications of the ACM, 1978 
 
•  security rely on hard problems from number theory and algebra 

Factorization Problem, Discrete Logarithm Problem  
  



Public-Key Encryption 

•  Let N = p.q  where p and q are primes 
 

 



Public-Key Encryption 

•  Let N = p.q  where p and q are primes 
 
•  ZN = {0, 1, 2, …, N – 1}   and   (ZN)* : the set of all invertible  

                        elements in ZN  

 



Public-Key Encryption 

•  Let N = p.q  where p and q are primes 
 
•  ZN = {0, 1, 2, …, N – 1}   and   (ZN)* : the set of all invertible  

                        elements in ZN  
•  if x in (ZN)*, then gcd(x, N) = 1 

 



Public-Key Encryption 

•  Let N = p.q  where p and q are primes 
 
•  ZN = {0, 1, 2, …, N – 1}   and   (ZN)* : the set of all invertible  

                        elements in ZN  
•  if x in (ZN)*, then gcd(x, N) = 1 

•  l (ZN)* l = phi(N) = (p - 1)(q – 1)   

 



Public-Key Encryption 

•  Let N = p.q  where p and q are primes 
 
•  ZN = {0, 1, 2, …, N – 1}   and   (ZN)* : the set of all invertible  

                        elements in ZN  
•  if x in (ZN)*, then gcd(x, N) = 1 

•  l (ZN)* l = phi(N) = (p - 1)(q – 1)   

 •  Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

•  (Z10)* = {1, 3, 7, 9},   3.7 = 1 (mod 10) 

•  l (Z10)* l = phi(N) = (2 – 1) (5 – 1) = 4 



Public-Key Encryption 

•  Let N = p.q  where p and q are primes 
 
•  ZN = {0, 1, 2, …, N – 1}   and   (ZN)* : the set of all invertible  

                        elements in ZN  
•  if x in (ZN)*, then gcd(x, N) = 1 

•  l (ZN)* l = phi(N) = (p - 1)(q – 1)   

•  Euler Theorem 

  for all x in (ZN)*, xphi(N) = 1 (mod N)  
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for the equation a.x = 1 mod N 
 

if gcd(a,N) = 1, then there is a 
unique solution   
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cd (mod N) = med (mod N) 
                           = m1 + k.phi(N) (mod N) 

                             = m . mphi(N).k (mod N) 
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xphi(N) = 1 (mod N)  
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•  If you factor N, you can break RSA 
 

 if you have N = p.q, then you can compute  
                              
                           Φ(N)=(p-1)(q-1) 
         
     if you have Φ(N), then you can find the secret key d by 
         
              solving the equation  e.d = 1 (mod Φ(N)) 
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factorization occurs. From the running time of NFS and assuming 
Moore’s law, Brent derived a formula  

 
                                Y = 13.24 x D1/3 + 1928.6 
 
•  According to the formula : 

                   512-bit number would be factored by 1999 
                   (RSA-155 [512-bit] was factored by Lenstra in 1999 
                   768-bit number would be factored by 2010 
                   (RSA-768 [232 digits] was factored by Lenstra in 2009 
                   1024-bit number would be factored by 2018 
                   2048-bit number would be factored by 2041 
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RSA-768 [232 digits] was factored by Lenstra in 2009 

•  They spent half a year on 80 processors on polynomial 
selection. This was about 3% of the main task, the sieving, 
which was done on many hundreds of machines and took 
almost two years.  

•  On a single core 2.2 GHz AMD Opteron processor with 2 GB 
RAM, sieving would have taken about fifteen hundred years. 
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RSA-768 [232 digits] was factored by Lenstra in 2009 

•  They spent half a year on 80 processors on polynomial 
selection. This was about 3% of the main task, the sieving, 
which was done on many hundreds of machines and took 
almost two years.  

•  On a single core 2.2 GHz AMD Opteron processor with 2 GB 
RAM, sieving would have taken about fifteen hundred years. 

•  Factoring a 1024-bit RSA modulus would be about a thousand 
times harder, and a 768-bit RSA modulus is several 
thousands times harder to factor than a 512-bit one 

•  They suggest to leave 1024-bit modulus within the next 
three to four years (by 2013-2014)  
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RSA in Practice 

AES key size :  80 bits 
                       128 bits 
                       256 bits  

RSA modulus size : 1024 bits   
                              3072 bits 
                             15360 bits 



•  AES-128 for 5K file : 7.40 ms 
•  AES-192 for 5K file : 7.55 ms 
•  AES-256 for 5K file : 7.73 ms 
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•  RSA-1024 for 5K file : 50 ms 
•  RSA-2048 for 5K file : 100 ms 
•  RSA-3072 for 5K file : 150 ms 

RSA in Practice 
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electronic  
signature 

•  signature can be easily copied 

•  it should be a function of the 
message  
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A digital signature scheme consists of three algorithms 
 

Gen : outputs a key pair (pk, sk) 
 

Sign :takes a message m in M and the signing key sk as inputs 
        and outputs a signature σ on m 
 

Verify : takes a signature σ, the public key pk, and a message 
             m as inputs and outputs 1 or 0   
 
Correctness 
 
For all (pk, sk) output by Gen and for all m in M 
 
                          Verify(pk, m, Sign(sk, m)) = 1 
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•  Integrity 
•  Authenticity 
•  Non-repudiation 
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1024-bit	prime	p	(309	digits)	:	
	

14926660406676521425746589984505259593698043308528112047243863356010910984506208081319
56748971365259498401849653125052988699487229776494690230843615504129894860602079175805
40454081140587353862234445577520476872543676486167892443872308705026778461121261224322
495328346630383486386663628878772838449087770123303	
	

1024-bit	prime	q	(309	digits)	:	
	

11613613323752462862307997343676166615781213580255442213388439971627821582770818854043
09941587431632243604740043902608510350793965690708054362041417166453772064699311683053
51122258807934047024235765278566582937247825531441295648260124631056178986340098086793
666788683120626019654875802245983332214723863553333		
	

2048-bit	N	=	p*q	(617	digits)	:	
	

17335246217810680499565282364130282347913694411139706552337646969996795185310539972695
21358952194887788871014810831418332247519311546653852372027284816592666735822538434338
92884640596924123847468319293906862022798176422316189203111527718629657728492287223809
26373552800043250590230507345247504584516585217552163181827225685419709962073929610117
85207875481813218795712875845153649877824714771313687872723823283851257056268551307467
39659929219301975845456600691347974780165760856198842806361918614258903112139836688041
47423192923778212236303196414996652277121672303217925415867248268691221399027188630076
689585126618899		
	

e=	65537		
d=156889308164396431400692065987710672887346835620783590145841716088838352812353946228
91972529034215081468682805358018205828859592737807144047750439346373279344813134904276
35456103680016686842205912449803850909739266099781320495323886360922086895776441251828
09693149600565934559448607974452395629861213088638273908322193647517562366779545756246
94333459199323797014292572744820690951743368632774427103258270737146365143542038629603
86987521680125465264397787114761980772967265876932453895158342739562236679770844723218
94791941724936692758146268591864077998906212085463254632733257316467651948214324936532
49128075792100409		



PK=(N,e) 

SK=(N, d) 

RSA Signature 



PK=(N,e) 

SK=(N, d) 

RSA Signature 

Signing 
 

σ = md (mod N) where m in (ZN)*  
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RSA Signature 

m, σ	



PK=(N,e) 

SK=(N, d) 

RSA Signature 

Verification 
 

if m = σe (mod N), then output 1; 
 

otherwise, output 0 



KeyGen 
 
•  pick two large primes p and q 
•  compute N = p.q 
•  choose an exponent e such that gcd(e,phi(N)) = 1 
•  choose an exponent d such that  e.d = 1 mod phi(N) 
•  choose a function H : {0,1}* è ZN* 
•  keep (N, H, d) as secret key, and publish (N, H, e) as public key      

PK=(N, H, e) 

SK=(N, H, d) 

RSA-FDH 



PK=(N, H, e) 

SK=(N, H, d) 

RSA-FDH 

Signing 
 

σ = H(m)d (mod N) where m in {0,1}*  



PK=(N, H, e) 

SK=(N, H, d) 

RSA-FDH 

σ	



PK=(N, H, e) 

SK=(N, H, d) 

RSA-FDH 

Verification 
 

if H(m) = σe (mod N), then output 1; 
 

otherwise, output 0 


