
Murat Osmanoglu

Public-Key
Cryptography

ENCRYPTION
ALGORITHM

m

k

c

DECRYPTION
ALGORITHM

c

k m

Symmetric Encryption

Same key for
both sides

Dec (c, k) = m

Enc (m, k) = c

ENCRYPTION
ALGORITHM

m

k

c

DECRYPTION
ALGORITHM

c

k m

Symmetric Encryption

Same key for
both sides

Dec (c, k) = m

Enc (m, k) = c

 How do the users generate the secret key ?

	

Key Exchange

U1	

U2	

U3	

A naïve approach	

Key Exchange

k13	

k12	

k23	

U1	

U2	

•  each pair of users should share a
secret key for secret communication	

U3	

A naïve approach	

Key Exchange

k13	

k12	

k23	

U1	

U2	

•  each pair of users should share a
secret key for secret communication	

•  each user should store O(n) secret keys 	

U3	

A naïve approach	

Key Exchange

U1	

U2	

U3	

Trusted Third Party 	

TTP	

Key Exchange

k1	

U1	

U2	

U3	

Trusted Third Party 	

TTP	
k2	

k3	

Key Exchange

k1	

U1	

U2	

U3	

Trusted Third Party 	

TTP	
k2	

k3	

k12	

Key Exchange

k1	

U1	

U2	

U3	

Trusted Third Party 	

TTP	
k2	

k3	

k12	

•  How U1 and U2 generate the secret key k12 ?	

Key Exchange

U1	

U2	

Trusted Third Party 	

TTP	

k1	and	k2	

Key Exchange

U1	

U2	

Trusted Third Party 	

TTP	

k1	and	k2	

•  TTP chooses a random
secret k12

Key Exchange

U1	

U2	

Trusted Third Party 	

TTP	

k1	and	k2	

•  TTP chooses a random
secret k12

•  TTP computes
 E1 = Enc(k1, ‘Users ll k12’)
 E2 = Enc(k2, ‘Users ll k12’) 	

Key Exchange

U1	

U2	

Trusted Third Party 	

TTP	

k1	and	k2	

•  TTP chooses a random
secret k12

•  TTP computes
 E1 = Enc(k1, ‘Users ll k12’)
 E2 = Enc(k2, ‘Users ll k12’) 	

E2	

Key Exchange

U1	

U2	

Trusted Third Party 	

TTP	

k1	and	k2	

•  TTP chooses a random
secret k12

•  TTP computes
 E1 = Enc(k1, ‘Users ll k12’)
 E2 = Enc(k2, ‘Users ll k12’) 	

E2	

 TTP should be online for every key exchange
 TTP would know all the session keys

Key Exchange

U1	

U2	

Trusted Third Party 	

TTP	

k1	and	k2	

•  TTP chooses a random
secret k12

•  TTP computes
 E1 = Enc(k1, ‘Users ll k12’)
 E2 = Enc(k2, ‘Users ll k12’) 	

E2	

 TTP should be online for every key exchange
 TTP would know all the session keys

Can we manage key exchange without an
online trusted third party ?

Diffie-Hellman Key Exchange

U1	 U2	

Diffie-Hellman Key Exchange

U1	 U2	

•  U1 and U2 want to share a secret through a communication channel
eavesdropped by an adversary

Diffie-Hellman Key Exchange

U1	 U2	

•  U1 and U2 want to share a secret through a communication channel
eavesdropped by an adversary

•  choose a large prime p (2048 bits ≈ 617 digits in current practice)
•  choose an integer g from {1, 2, …, p - 1}

Diffie-Hellman Key Exchange

U1	 U2	

•  U1 and U2 want to share a secret through a communication channel
eavesdropped by an adversary

•  choose a large prime p (2048 bits ≈ 617 digits in current practice)
•  choose an integer g from {1, 2, …, p - 1}

•  choose a random a
 from {1, 2, …, p – 1}

•  choose a random b
 from {1, 2, …, p – 1}

Diffie-Hellman Key Exchange

U1	 U2	

•  U1 and U2 want to share a secret through a communication channel
eavesdropped by an adversary

•  choose a large prime p (2048 bits ≈ 617 digits in current practice)
•  choose an integer g from {1, 2, …, p - 1}

•  choose a random a
 from {1, 2, …, p – 1}
•  compute A=ga (mod p)

•  choose a random b
 from {1, 2, …, p – 1}
•  compute B=gb (mod p)

Diffie-Hellman Key Exchange

U1	 U2	

•  U1 and U2 want to share a secret through a communication channel
eavesdropped by an adversary

•  choose a large prime p (2048 bits ≈ 617 digits in current practice)
•  choose an integer g from {1, 2, …, p - 1}

•  choose a random a
 from {1, 2, …, p – 1}
•  compute A=ga (mod p)

A	

B	

•  choose a random b
 from {1, 2, …, p – 1}
•  compute B=gb (mod p)

Diffie-Hellman Key Exchange

U1	 U2	

•  U1 and U2 want to share a secret through a communication channel
eavesdropped by an adversary

•  choose a large prime p (2048 bits ≈ 617 digits in current practice)
•  choose an integer g from {1, 2, …, p - 1}

•  choose a random a
 from {1, 2, …, p – 1}
•  compute A=ga (mod p)
•  compute
 Ba=(gb)a=gab(mod p)

A	

B	

•  choose a random b
 from {1, 2, …, p – 1}
•  compute B=gb (mod p)
•  compute
 Ab=(ga)b=gab(mod p)

Diffie-Hellman Key Exchange

U1	 U2	

•  U1 and U2 want to share a secret through a communication channel
eavesdropped by an adversary

•  choose a large prime p (2048 bits ≈ 617 digits in current practice)
•  choose an integer g from {1, 2, …, p - 1}

•  choose a random a
 from {1, 2, …, p – 1}
•  compute A=ga (mod p)
•  compute
 Ba=(gb)a=gab(mod p)

A	

B	

•  choose a random b
 from {1, 2, …, p – 1}
•  compute B=gb (mod p)
•  compute
 Ab=(ga)b=gab(mod p)

 kab = gab(mod p)

Security of Diffie-Hellman

•  the adversary gets : p, g, ga (mod p), gb (mod p)

Security of Diffie-Hellman

•  the adversary gets : p, g, ga (mod p), gb (mod p)

•  can she compute gab (mod p) ?

Security of Diffie-Hellman

•  the adversary gets : p, g, ga (mod p), gb (mod p)

•  can she compute gab (mod p) ?

Diffie-Hellman Function

•  DHg(ga, gb) = gab (mod p)

Security of Diffie-Hellman

•  the adversary gets : p, g, ga (mod p), gb (mod p)

•  can she compute gab (mod p) ?

Diffie-Hellman Function

•  DHg(ga, gb) = gab (mod p)

•  How hard is this function ?

Security of Diffie-Hellman

•  the adversary gets : p, g, ga (mod p), gb (mod p)

•  can she compute gab (mod p) ?

Diffie-Hellman Function

•  DHg(ga, gb) = gab (mod p)

•  How hard is this function ?
 (best known algorithm is General Number Field Sieve that
 takes exp(O(3√n)) –subexponential- for n-bit prime p)

Security of Diffie-Hellman

•  the adversary gets : p, g, ga (mod p), gb (mod p)

•  can she compute gab (mod p) ?

Diffie-Hellman Function

•  DHg(ga, gb) = gab (mod p)

•  How hard is this function ?
 (best known algorithm is General Number Field Sieve that
 takes exp(O(3√n)) –subexponential- for n-bit prime p)

Security of Diffie-Hellman

for 1024-bit prime p it is supposed
 to be e10, however it is ≈ e80

(the power has some other constants)

U1	

Bulletin Board

 	

Diffie-Hellman Key Exchange

U2	 U3	 U4	

U1	

Bulletin Board

 	

a	

Diffie-Hellman Key Exchange

U2	 U3	 U4	

b	 c	 d	

U1	

Bulletin Board

ga gb gc gd
 	

a	

Diffie-Hellman Key Exchange

U2	 U3	 U4	

b	 c	 d	

U1	

Bulletin Board

ga gb gc gd
 	

a	

Diffie-Hellman Key Exchange

U2	 U3	 U4	

b	 c	 d	
K13=(gc)a	

U1	

Bulletin Board

ga gb gc gd
 	

a	

Diffie-Hellman Key Exchange

U2	 U3	 U4	

b	 c	 d	
K13=(gc)a	

Enc	

U1	

Bulletin Board

ga gb gc gd
 	

a	

Diffie-Hellman Key Exchange

U2	 U3	 U4	

b	 c	 d	
K13=(gc)a	 K13=(ga)c	

Enc	

U1	

Bulletin Board

ga gb gc gd
 	

a	

•  Users don’t need to communicate each other to build the key	

Diffie-Hellman Key Exchange

U2	 U3	 U4	

b	 c	 d	
K13=(gc)a	 K13=(ga)c	

Enc	

U1	

Bulletin Board

pub1 pub2 pub3 pub4
 	

Diffie-Hellman Key Exchange

U2	 U3	 U4	

sec1	 sec2	 sec3	 sec4	

K1234 ç (sec1, pub2, pub3, pub4) 		

U1	

Bulletin Board

pub1 pub2 pub3 pub4
 	

Diffie-Hellman Key Exchange

U2	 U3	 U4	

sec1	 sec2	 sec3	 sec4	

K1234 ç (sec1, pub2, pub3, pub4) 		

open problem for n ≥ 4	

SK

PK

M

Public-Key Encryption

SK

PK

M
PK

Public-Key Encryption

SK

PK

M
PK CT

Public-Key Encryption

ENCRYPTION
ALGORITHM

SK

PK

Public-Key Encryption

SK

PK

CT SK M

Public-Key Encryption

DECRYPTION
ALGORITHM

Public-Key Encryption

A public-key encryption consists of three algorithms

Gen : outputs a key pair (pk, sk)

Enc : takes a message m in M and the public key pk as inputs
 and outputs a ciphertext c in C

Dec : takes a ciphertext c and the secret key sk as inputs
 and outputs a message m in M

Correctness

For all (pk, sk) output by Gen and for all m in M

 Dec(sk, Enc(pk, m)) = m

Key Exchange using PKE

U1	 U2	

Key Exchange using PKE

U1	 U2	

‘’U1’’, pk	

(pk,sk) ç Gen(.)

Key Exchange using PKE

U1	 U2	

‘’U1’’, pk	

(pk,sk) ç Gen(.)

•  choose a random x

•  c ç Enc (pk, x)	

Key Exchange using PKE

U1	 U2	

‘’U1’’, pk	

‘’U2’’, c	

(pk,sk) ç Gen(.)

x ç Dec(sk, c)	

•  choose a random x

•  c ç Enc (pk, x)	

Key Exchange using PKE

U1	 U2	

‘’U1’’, pk	

‘’U2’’, c	

 x used as the secret key

(pk,sk) ç Gen(.)

x ç Dec(sk, c)	

•  choose a random x

•  c ç Enc (pk, x)	

Public-Key Encryption

•  the idea first introduced by

W. Diffie and M. E. Hellman,
New Directions in Cryptography
IEEE Transaction on Information Theory, 1976

•  the first construction introduced by

R. Rivest, A. Shamir, L Adelman
A Method for Obtaining Digital Signatures and Public-Key Cryptosystem
Communications of the ACM, 1978

•  security rely on hard problems from number theory and algebra

Factorization Problem, Discrete Logarithm Problem

Public-Key Encryption

•  Let N = p.q where p and q are primes

Public-Key Encryption

•  Let N = p.q where p and q are primes

•  ZN = {0, 1, 2, …, N – 1} and (ZN)* : the set of all invertible

 elements in ZN

Public-Key Encryption

•  Let N = p.q where p and q are primes

•  ZN = {0, 1, 2, …, N – 1} and (ZN)* : the set of all invertible

 elements in ZN
•  if x in (ZN)*, then gcd(x, N) = 1

Public-Key Encryption

•  Let N = p.q where p and q are primes

•  ZN = {0, 1, 2, …, N – 1} and (ZN)* : the set of all invertible

 elements in ZN
•  if x in (ZN)*, then gcd(x, N) = 1

•  l (ZN)* l = phi(N) = (p - 1)(q – 1)

Public-Key Encryption

•  Let N = p.q where p and q are primes

•  ZN = {0, 1, 2, …, N – 1} and (ZN)* : the set of all invertible

 elements in ZN
•  if x in (ZN)*, then gcd(x, N) = 1

•  l (ZN)* l = phi(N) = (p - 1)(q – 1)

 •  Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

•  (Z10)* = {1, 3, 7, 9}, 3.7 = 1 (mod 10)

•  l (Z10)* l = phi(N) = (2 – 1) (5 – 1) = 4

Public-Key Encryption

•  Let N = p.q where p and q are primes

•  ZN = {0, 1, 2, …, N – 1} and (ZN)* : the set of all invertible

 elements in ZN
•  if x in (ZN)*, then gcd(x, N) = 1

•  l (ZN)* l = phi(N) = (p - 1)(q – 1)

•  Euler Theorem

 for all x in (ZN)*, xphi(N) = 1 (mod N)

KeyGen

•  pick two large primes p and q
•  compute N = p.q

RSA

KeyGen

•  pick two large primes p and q
•  compute N = p.q
•  choose an exponent e such that gcd(e,phi(N)) = 1

RSA

KeyGen

•  pick two large primes p and q
•  compute N = p.q
•  choose an exponent e such that gcd(e,phi(N)) = 1
•  choose an exponent d such that e.d = 1 mod phi(N)

RSA

KeyGen

•  pick two large primes p and q
•  compute N = p.q
•  choose an exponent e such that gcd(e,phi(N)) = 1
•  choose an exponent d such that e.d = 1 mod phi(N)

RSA

for the equation a.x = 1 mod N

if gcd(a,N) = 1, then there is a
unique solution

KeyGen

•  pick two large primes p and q
•  compute N = p.q
•  choose an exponent e such that gcd(e,phi(N)) = 1
•  choose an exponent d such that e.d = 1 mod phi(N)
•  keep (d, p, q) as secret key, and publish (N, e) as public key

PK=(N,e)

SK=(d,p,q)

RSA

PK=(N,e)

SK=(d,p,q)

RSA

PK=(N,e)

SK=(d,p,q)

RSA

Encryption

c = me (mod N) where m in (ZN)*

PK=(N,e)

SK=(d,p,q)

c 	

RSA

Encryption

c = me (mod N) where m in (ZN)*

PK=(N,e)

SK=(d,p,q)

c 	

RSA

Decryption

cd (mod N)

PK=(N,e)

SK=(d,p,q)

c 	

RSA

Decryption

cd (mod N) = med (mod N)

PK=(N,e)

SK=(d,p,q)

c 	

RSA

Decryption

cd (mod N) = med (mod N)
 = m1 + k.phi(N) (mod N)

e.d = 1 mod phi(N)

PK=(N,e)

SK=(d,p,q)

c 	

RSA

Decryption

cd (mod N) = med (mod N)
 = m1 + k.phi(N) (mod N)

 = m . mphi(N).k (mod N)

PK=(N,e)

SK=(d,p,q)

c 	

RSA

Decryption

cd (mod N) = med (mod N)
 = m1 + k.phi(N) (mod N)

 = m . mphi(N).k (mod N)
 = m (mod N)

xphi(N) = 1 (mod N)

•  If you factor N, you can break RSA

RSA in Practice

•  If you factor N, you can break RSA

 if you have N = p.q, then you can compute

 Φ(N)=(p-1)(q-1)

RSA in Practice

•  If you factor N, you can break RSA

 if you have N = p.q, then you can compute

 Φ(N)=(p-1)(q-1)

 if you have Φ(N), then you can find the secret key d by

 solving the equation e.d = 1 (mod Φ(N))

RSA in Practice

Factorization

•  Let D be the number of decimal digits, Y be the year the

factorization occurs. From the running time of NFS and assuming
Moore’s law, Brent derived a formula

RSA in Practice

Factorization

•  Let D be the number of decimal digits, Y be the year the

factorization occurs. From the running time of NFS and assuming
Moore’s law, Brent derived a formula

 Y = 13.24 x D1/3 + 1928.6

RSA in Practice

Factorization

•  Let D be the number of decimal digits, Y be the year the

factorization occurs. From the running time of NFS and assuming
Moore’s law, Brent derived a formula

 Y = 13.24 x D1/3 + 1928.6

•  According to the formula :

RSA in Practice

Factorization

•  Let D be the number of decimal digits, Y be the year the

factorization occurs. From the running time of NFS and assuming
Moore’s law, Brent derived a formula

 Y = 13.24 x D1/3 + 1928.6

•  According to the formula :

 512-bit number would be factored by 1999
 (RSA-155 [512-bit] was factored by Lenstra in 1999

RSA in Practice

Factorization

•  Let D be the number of decimal digits, Y be the year the

factorization occurs. From the running time of NFS and assuming
Moore’s law, Brent derived a formula

 Y = 13.24 x D1/3 + 1928.6

•  According to the formula :

 512-bit number would be factored by 1999
 (RSA-155 [512-bit] was factored by Lenstra in 1999
 768-bit number would be factored by 2010
 (RSA-768 [232 digits] was factored by Lenstra in 2009

RSA in Practice

Factorization

•  Let D be the number of decimal digits, Y be the year the

factorization occurs. From the running time of NFS and assuming
Moore’s law, Brent derived a formula

 Y = 13.24 x D1/3 + 1928.6

•  According to the formula :

 512-bit number would be factored by 1999
 (RSA-155 [512-bit] was factored by Lenstra in 1999
 768-bit number would be factored by 2010
 (RSA-768 [232 digits] was factored by Lenstra in 2009
 1024-bit number would be factored by 2018
 2048-bit number would be factored by 2041

RSA in Practice

RSA-768 [232 digits] was factored by Lenstra in 2009

•  They spent half a year on 80 processors on polynomial
selection. This was about 3% of the main task, the sieving,
which was done on many hundreds of machines and took
almost two years.

•  On a single core 2.2 GHz AMD Opteron processor with 2 GB
RAM, sieving would have taken about fifteen hundred years.

RSA in Practice

RSA-768 [232 digits] was factored by Lenstra in 2009

•  They spent half a year on 80 processors on polynomial
selection. This was about 3% of the main task, the sieving,
which was done on many hundreds of machines and took
almost two years.

•  On a single core 2.2 GHz AMD Opteron processor with 2 GB
RAM, sieving would have taken about fifteen hundred years.

•  Factoring a 1024-bit RSA modulus would be about a thousand
times harder, and a 768-bit RSA modulus is several
thousands times harder to factor than a 512-bit one

•  They suggest to leave 1024-bit modulus within the next
three to four years (by 2013-2014)

RSA in Practice

RSA in Practice

AES key size : 80 bits
 128 bits
 256 bits

RSA modulus size : 1024 bits
 3072 bits
 15360 bits

•  AES-128 for 5K file : 7.40 ms
•  AES-192 for 5K file : 7.55 ms
•  AES-256 for 5K file : 7.73 ms

RSA in Practice

•  RSA-1024 for 5K file : 50 ms
•  RSA-2048 for 5K file : 100 ms
•  RSA-3072 for 5K file : 150 ms

RSA in Practice

Digital Signature Scheme
signing by hand

Digital Signature Scheme
signing by hand

Digital Signature Scheme
signing by hand

Digital Signature Scheme
signing by hand

verify the signature

Digital Signature Scheme
signing electronically

Digital Signature Scheme
signing electronically

electronic
signature

Digital Signature Scheme
signing electronically

electronic
signature

•  signature can be easily copied

•  it should be a function of the
message

Digital Signature Scheme

PK, SK

Signature

SIGNING
ALGORITHM

PK, SK

SK

Digital Signature Scheme

PK, SK

Digital Signature Scheme

VERIFICATION
ALGORITHM

PK 1 or 0

Digital Signature Scheme

PK, SK

A digital signature scheme consists of three algorithms

Gen : outputs a key pair (pk, sk)

Sign :takes a message m in M and the signing key sk as inputs
 and outputs a signature σ on m

Verify : takes a signature σ, the public key pk, and a message
 m as inputs and outputs 1 or 0

Correctness

For all (pk, sk) output by Gen and for all m in M

 Verify(pk, m, Sign(sk, m)) = 1

Digital Signature Scheme

A digital signature scheme consists of three algorithms

Gen : outputs a key pair (pk, sk)

Sign :takes a message m in M and the signing key sk as inputs
 and outputs a signature σ on m

Verify : takes a signature σ, the public key pk, and a message
 m as inputs and outputs 1 or 0

Correctness

For all (pk, sk) output by Gen and for all m in M

 Verify(pk, m, Sign(sk, m)) = 1

Digital Signature Scheme

•  Integrity
•  Authenticity
•  Non-repudiation

KeyGen

•  pick two large primes p and q
•  compute N = p.q
•  choose an exponent e such that gcd(e,phi(N)) = 1
•  choose an exponent d such that e.d = 1 mod phi(N)

RSA Signature

KeyGen

•  pick two large primes p and q
•  compute N = p.q
•  choose an exponent e such that gcd(e,phi(N)) = 1
•  choose an exponent d such that e.d = 1 mod phi(N)
•  keep (N, d) as secret key, and publish (N, e) as public key

PK=(N,e)

SK=(N, d)

RSA Signature

KeyGen

•  pick two large primes p and q
•  compute N = p.q
•  choose an exponent e such that gcd(e,phi(N)) = 1
•  choose an exponent d such that e.d = 1 mod phi(N)
•  keep (N, d) as secret key, and publish (N, e) as public key

PK=(N,e)

SK=(N, d)

RSA Signature

1024-bit	prime	p	(309	digits)	:	
	

14926660406676521425746589984505259593698043308528112047243863356010910984506208081319
56748971365259498401849653125052988699487229776494690230843615504129894860602079175805
40454081140587353862234445577520476872543676486167892443872308705026778461121261224322
495328346630383486386663628878772838449087770123303	
	

1024-bit	prime	q	(309	digits)	:	
	

11613613323752462862307997343676166615781213580255442213388439971627821582770818854043
09941587431632243604740043902608510350793965690708054362041417166453772064699311683053
51122258807934047024235765278566582937247825531441295648260124631056178986340098086793
666788683120626019654875802245983332214723863553333		
	

2048-bit	N	=	p*q	(617	digits)	:	
	

17335246217810680499565282364130282347913694411139706552337646969996795185310539972695
21358952194887788871014810831418332247519311546653852372027284816592666735822538434338
92884640596924123847468319293906862022798176422316189203111527718629657728492287223809
26373552800043250590230507345247504584516585217552163181827225685419709962073929610117
85207875481813218795712875845153649877824714771313687872723823283851257056268551307467
39659929219301975845456600691347974780165760856198842806361918614258903112139836688041
47423192923778212236303196414996652277121672303217925415867248268691221399027188630076
689585126618899		
	

e=	65537		
d=156889308164396431400692065987710672887346835620783590145841716088838352812353946228
91972529034215081468682805358018205828859592737807144047750439346373279344813134904276
35456103680016686842205912449803850909739266099781320495323886360922086895776441251828
09693149600565934559448607974452395629861213088638273908322193647517562366779545756246
94333459199323797014292572744820690951743368632774427103258270737146365143542038629603
86987521680125465264397787114761980772967265876932453895158342739562236679770844723218
94791941724936692758146268591864077998906212085463254632733257316467651948214324936532
49128075792100409		

PK=(N,e)

SK=(N, d)

RSA Signature

PK=(N,e)

SK=(N, d)

RSA Signature

Signing

σ = md (mod N) where m in (ZN)*

PK=(N,e)

SK=(N, d)

RSA Signature

m, σ	

PK=(N,e)

SK=(N, d)

RSA Signature

Verification

if m = σe (mod N), then output 1;

otherwise, output 0

KeyGen

•  pick two large primes p and q
•  compute N = p.q
•  choose an exponent e such that gcd(e,phi(N)) = 1
•  choose an exponent d such that e.d = 1 mod phi(N)
•  choose a function H : {0,1}* è ZN*
•  keep (N, H, d) as secret key, and publish (N, H, e) as public key

PK=(N, H, e)

SK=(N, H, d)

RSA-FDH

PK=(N, H, e)

SK=(N, H, d)

RSA-FDH

Signing

σ = H(m)d (mod N) where m in {0,1}*

PK=(N, H, e)

SK=(N, H, d)

RSA-FDH

σ	

PK=(N, H, e)

SK=(N, H, d)

RSA-FDH

Verification

if H(m) = σe (mod N), then output 1;

otherwise, output 0

