Public-Key Cryptography

Murat Osmanoglu

Symmetric Encryption

Same key for
both sides

Symmetric Encryption

Same key for both sides

How do the users generate the secret key?

Key Exchange

A naïve approach
U_{1}

U_{3}

Key Exchange

A naïve approach
U_{1}

- each pair of users should share a secret key for secret communication

Key Exchange

A naïve approach
U_{1}

- each pair of users should share a secret key for secret communication

- each user should store $O(n)$ secret keys

Key Exchange

Trusted Third Party
U_{1}

$$
U_{2}
$$

Key Exchange

Trusted Third Party

Key Exchange

Trusted Third Party

Key Exchange

Trusted Third Party

- How U_{1} and U_{2} generate the secret key k_{12} ?

Key Exchange

Trusted Third Party

U_{1}

Key Exchange

Trusted Third Party

Key Exchange

Trusted Third Party

Key Exchange

Trusted Third Party

(2)

Key Exchange

Trusted Third Party

Key Exchange

Trusted Third Party

U_{1}

TTP should be online for every key exchange om TTP would know all the session keys
in $r_{1}=$ Fnclk. Usersil $k_{12}{ }^{\prime}$)
Can we manage key exchange without an 'sers II $\mathrm{k}_{12}{ }^{\prime}$) online trusted third party?

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

- U_{1} and U_{2} want to share a secret through a communication channel eavesdropped by an adversary

Diffie-Hellman Key Exchange

- U_{1} and U_{2} want to share a secret through a communication channel eavesdropped by an adversary
- choose a large prime p (2048 bits ≈ 617 digits in current practice)
- choose an integer g from $\{1,2, \ldots, p-1\}$

Diffie-Hellman Key Exchange

- U_{1} and U_{2} want to share a secret through a communication channel eavesdropped by an adversary
- choose a large prime p (2048 bits ≈ 617 digits in current practice)
- choose an integer g from $\{1,2, \ldots, p-1\}$

- choose a random a from $\{1,2, \ldots, p-1\}$
- choose a random b from $\{1,2, \ldots, p-1\}$

Diffie-Hellman Key Exchange

- U_{1} and U_{2} want to share a secret through a communication channel eavesdropped by an adversary
- choose a large prime p (2048 bits ≈ 617 digits in current practice)
- choose an integer g from $\{1,2, \ldots, p-1\}$

- choose a random a from $\{1,2, \ldots, p-1\}$
- compute $A=g^{a}(\bmod p)$
- choose a random b from $\{1,2, \ldots, p-1\}$
- compute $B=g^{b}(\bmod p)$

Diffie-Hellman Key Exchange

- U_{1} and U_{2} want to share a secret through a communication channel eavesdropped by an adversary
- choose a large prime p (2048 bits ≈ 617 digits in current practice)
- choose an integer g from $\{1,2, \ldots, p-1\}$

- choose a random a from $\{1,2, \ldots, p-1\}$
- compute $A=g^{a}(\bmod p)$
- choose a random b from $\{1,2, \ldots, p-1\}$
- compute $B=g^{b}(\bmod p)$

Diffie-Hellman Key Exchange

- U_{1} and U_{2} want to share a secret through a communication channel eavesdropped by an adversary
- choose a large prime p (2048 bits ≈ 617 digits in current practice)
- choose an integer g from $\{1,2, \ldots, p-1\}$

- choose a random a from $\{1,2, \ldots, p-1\}$
- compute $A=g^{a}(\bmod p)$
- compute

$$
B^{a}=\left(g^{b}\right)^{a}=g^{a b}(\bmod p)
$$

- choose a random b from $\{1,2, \ldots, p-1\}$
- compute $B=g^{b}(\bmod p)$
- compute

$$
A^{b}=\left(g^{a}\right)^{b}=g^{a b}(\bmod p)
$$

Diffie-Hellman Key Exchange

- U_{1} and U_{2} want to share a secret through a communication channel eavesdropped by an adversary
- choose a large prime p (2048 bits ≈ 617 digits in current practice)
- choose an integer g from $\{1,2, \ldots, p-1\}$

- choose a random a from $\{1,2, \ldots, p-1\}$

$$
k_{a b}=g^{a b}(\bmod p)
$$

pose a random b
$m\{1,2, \ldots, p-1\}$

- compute $A=g^{a}(\bmod p)$
- compute

$$
B^{a}=\left(g^{b}\right)^{a}=g^{a b}(\bmod p)
$$

- compute $B=g^{b}(\bmod p)$
- compute

$$
A^{b}=\left(g^{a}\right)^{b}=g^{a b}(\bmod p)
$$

Security of Diffie-Hellman

Security of Diffie-Hellman

- the adversary gets $: p, g, g^{a}(\bmod p), g^{b}(\bmod p)$

Security of Diffie-Hellman

- the adversary gets : $p, g, g^{a}(\bmod p), g^{b}(\bmod p)$
- can she compute $g^{a b}(\bmod p)$?

Security of Diffie-Hellman

- the adversary gets : $p, g, g^{a}(\bmod p), g^{b}(\bmod p)$
- can she compute $g^{a b}(\bmod p)$?

Diffie-Hellman Function

- $\mathrm{DH}_{g}\left(g^{a}, g^{b}\right)=g^{a b}(\bmod p)$

Security of Diffie-Hellman

- the adversary gets : $p, g, g^{a}(\bmod p), g^{b}(\bmod p)$
- can she compute $g^{a b}(\bmod p)$?

Diffie-Hellman Function

- $\mathrm{DH}_{g}\left(g^{a}, g^{b}\right)=g^{a b}(\bmod p)$
- How hard is this function?

Security of Diffie-Hellman

- the adversary gets : $p, g, g^{a}(\bmod p), g^{b}(\bmod p)$
- can she compute $g^{a b}(\bmod p)$?

Diffie-Hellman Function

- $\mathrm{DH}_{g}\left(g^{a}, g^{b}\right)=g^{a b}(\bmod p)$
- How hard is this function?
(best known algorithm is General Number Field Sieve that takes $\exp (O(\sqrt[3]{n}))$-subexponential- for n-bit prime p)

Security of Diffie-Hellman

- the adversary gets : $p, g, g^{a}(\bmod p), g^{b}(\bmod p)$
- can she compute $g^{a b}(\bmod p)$)

Diffie-Hellman Function

- $\mathrm{DH}_{g}\left(g^{a}, g^{b}\right)=g^{a b}(\bmod p)$
for 1024-bit prime p it is supposed to be e^{10}, however it is $\approx e^{80}$
(the power has some other constants)
- How hard is this function?
(best known algorizhm is General Number Field Sieve that takes $\exp (O(\sqrt[3]{n}))$-subexponential- for n-bit prime $p)$

Diffie-Hellman Key Exchange

Bulletin Board

Diffie-Hellman Key Exchange

Bulletin Board

a

b

C

d

Diffie-Hellman Key Exchange

- Users don't need to communicate each other to build the key

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

open problem for $n \geq 4$

Public-Key Encryption

Public-Key Encryption

Public-Key Encryption

ENCRYPTION ALGORITHM

Public-Key Encryption

SK

Public-Key Encryption

Public-Key Encryption

A public-key encryption consists of three algorithms
Gen : outputs a key pair (pk, sk)
Enc: takes a message m in M and the public key pk as inputs and outputs a ciphertext c in C
Dec: takes a ciphertext c and the secret key sk as inputs and outputs a message m in M

Correctness
For all (pk, sk) output by Gen and for all m in M

$$
\operatorname{Dec}(s k, \operatorname{Enc}(p k, m))=m
$$

Key Exchange using PKE

Key Exchange using PKE

(pk,sk) $\leftarrow \operatorname{Gen}($.

Key Exchange using PKE

$(\mathrm{pk}, \mathrm{sk}) \leftarrow \operatorname{Gen}($.

- choose a random x
- $c \leftarrow E n c$ (pk, x)

Key Exchange using PKE

(pk,sk) $\leftarrow \operatorname{Gen}($.
$x \leftarrow \operatorname{Dec}(s k, c)$

- choose a random x
- $c \leftarrow \operatorname{Enc}(\mathrm{pk}, \mathrm{x})$

Key Exchange using PKE

(pk,sk) $\leftarrow \operatorname{Gen}($.

- choose a random x
- $c \leftarrow E n c(p k, x)$

x used as the secret key

Public-Key Encryption

- the idea first introduced by
W. Diffie and M. E. Hellman,

New Directions in Cryptography
IEEE Transaction on Information Theory, 1976

- the first construction introduced by
R. Rivest, A. Shamir, L Adelman

A Method for Obtaining Digital Signatures and Public-Key Cryptosystem Communications of the ACM, 1978

- security rely on hard problems from number theory and algebra

Factorization Problem, Discrete Logarithm Problem

Public-Key Encryption

- Let $N=p . q$ where p and q are primes

Public-Key Encryption

- Let $N=p . q$ where p and q are primes
- $Z_{N}=\{0,1,2, \ldots, N-1\}$ and $\left(Z_{N}\right)^{*}$: the set of all invertible elements in Z_{N}

Public-Key Encryption

- Let $N=p . q$ where p and q are primes
- $Z_{N}=\{0,1,2, \ldots, N-1\}$ and $\left(Z_{N}\right)^{*}$: the set of all invertible elements in Z_{N}
- if x in $\left(Z_{N}\right)^{\star}$, then $\operatorname{gcd}(x, N)=1$

Public-Key Encryption

- Let $N=p . q$ where p and q are primes
- $Z_{N}=\{0,1,2, \ldots, N-1\}$ and $\left(Z_{N}\right)^{*}$: the set of all invertible elements in Z_{N}
- if x in $\left(Z_{N}\right)^{*}$, then $\operatorname{gcd}(x, N)=1$
- $I\left(Z_{N}\right)^{\star} I=\operatorname{phi}(N)=(p-1)(q-1)$

Public-Key Encryption

- Let $N=p . q$ where p and q are primes
- $Z_{N}=\{0,1,2, \ldots, N-1\}$ and $\left(Z_{N}\right)^{*}$: the set of all invertible elements in Z_{N}
- if x in $\left(Z_{N}\right)^{*}$, then $\operatorname{gcd}(x, N)=1$
- $I\left(Z_{N}\right)^{\star} I=\operatorname{phi}(N)=(p-1)(q-1)$
- $Z_{10}=\{0,1,2,3,4,5,6,7,8,9\}$
- $\left(Z_{10}\right)^{\star}=\{1,3,7,9\}, 3.7=1(\bmod 10)$
- $I\left(Z_{10}\right)^{\star} I=\operatorname{phi}(N)=(2-1)(5-1)=4$

Public-Key Encryption

- Let $N=p . q$ where p and q are primes
- $Z_{N}=\{0,1,2, \ldots, N-1\}$ and $\left(Z_{N}\right)^{*}$: the set of all invertible elements in Z_{N}
- if x in $\left(Z_{N}\right)^{*}$, then $\operatorname{gcd}(x, N)=1$
- $I\left(Z_{N}\right)^{\star} I=\operatorname{phi}(N)=(p-1)(q-1)$
- Euler Theorem
for all $x \operatorname{in}\left(Z_{N}\right)^{\star}, x^{\text {phi }(N)}=1(\bmod N)$

RSA

KeyGen

- pick two large primes p and q
- compute $\mathrm{N}=\mathrm{p} . q$

RSA

KeyGen

- pick two large primes p and q
- compute $\mathrm{N}=\mathrm{p} . q$
- choose an exponent e such that $\operatorname{gcd}(e, p h i(N))=1$

RSA

KeyGen

- pick two large primes p and q
- compute $N=p . q$
- choose an exponent e such that $\operatorname{gcd}(e, p h i(N))=1$
- choose an exponent d such that e.d $=1 \bmod \operatorname{phi}(N)$

RSA

KeyGen
for the equation $a \cdot x=1 \bmod N$ if $\operatorname{gcd}(a, N)=1$, then there is a unique solution

- pick two large primes p and q
- compute $N=p . q$
- choose an exponente such that $\operatorname{gcd}(e$, phi $(N))=1$
- choose an exponent d such that e.d $=1 \bmod \operatorname{phi}(N)$

RSA

$\mathrm{PK}=(\mathrm{N}, \mathrm{e})$

$$
S K=(d, p, q)
$$

KeyGen

- pick two large primes p and q
- compute $N=$ p.q
- choose an exponent e such that $\operatorname{gcd}(e, p h i(N))=1$
- choose an exponent d such that e.d $=1 \bmod \operatorname{phi}(N)$
- keep (d, p, q) as secret key, and publish (N, e) as public key

RSA

$\mathrm{PK}=(\mathrm{N}, \mathrm{e})$

$$
S K=(d, p, q)
$$

RSA

Encryption

$c=m^{e}(\bmod N)$ where m in $\left(Z_{N}\right)^{\star}$

RSA

Encryption

$c=m^{e}(\bmod N)$ where m in $\left(Z_{N}\right)^{\star}$

RSA

Decryption $c^{d}(\bmod N)$

RSA

Decryption

$c^{d}(\bmod N)=m^{e d}(\bmod N)$

RSA

Decryption
e. $\mathrm{d}=1 \bmod \operatorname{phi}(\mathrm{~N})$

$$
\begin{aligned}
c^{d}(\bmod N) & =m^{\text {ed }}(\bmod N) \\
& =m^{1+k \cdot p h i}(\bmod)(\bmod)
\end{aligned}
$$

RSA

Decryption

$$
\begin{aligned}
c^{d}(\bmod N) & =m^{e d}(\bmod N) \\
& =m^{1+k \cdot p h}(N)(\bmod N) \\
& =m \cdot m^{\operatorname{ph}(N) \cdot k}(\bmod N)
\end{aligned}
$$

RSA

$P K=(N, e)$

C

$$
S K=(d, p, q)
$$

Decryption

$$
x^{\text {phi }}(N)=1(\bmod N)
$$

$$
c^{d}(\bmod N)=m^{e d}(\bmod N)
$$

$$
=m^{1+k \cdot p h i}(N)(\bmod N)
$$

$$
=m \cdot m^{\text {phi }}(N) \cdot k(\bmod N)
$$

$$
=m(\bmod N)
$$

RSA in Practice

- If you factor N, you can break RSA

RSA in Practice

- If you factor N, you can break RSA
if you have $N=p . q$, then you can compute

$$
\Phi(N)=(p-1)(q-1)
$$

RSA in Practice

- If you factor N, you can break RSA
if you have $N=p . q$, then you can compute

$$
\Phi(N)=(p-1)(q-1)
$$

if you have $\Phi(N)$, then you can find the secret key d by solving the equation e.d $=1(\bmod \Phi(N))$

RSA in Practice

Factorization

- Let D be the number of decimal digits, y be the year the factorization occurs. From the running time of NFS and assuming Moore's law, Brent derived a formula

RSA in Practice

Factorization

- Let D be the number of decimal digits, y be the year the factorization occurs. From the running time of NFS and assuming Moore's law, Brent derived a formula

$$
y=13.24 \times D^{1 / 3}+1928.6
$$

RSA in Practice

Factorization

- Let D be the number of decimal digits, y be the year the factorization occurs. From the running time of NFS and assuming Moore's law, Brent derived a formula

$$
y=13.24 \times D^{1 / 3}+1928.6
$$

- According to the formula :

RSA in Practice

Factorization

- Let D be the number of decimal digits, y be the year the factorization occurs. From the running time of NFS and assuming Moore's law, Brent derived a formula

$$
y=13.24 \times D^{1 / 3}+1928.6
$$

- According to the formula :

512-bit number would be factored by 1999
(RSA-155 [512-bit] was factored by Lenstra in 1999

RSA in Practice

Factorization

- Let D be the number of decimal digits, y be the year the factorization occurs. From the running time of NFS and assuming Moore's law, Brent derived a formula

$$
y=13.24 \times D^{1 / 3}+1928.6
$$

- According to the formula :

512-bit number would be factored by 1999
(RSA-155 [512-bit] was factored by Lenstra in 1999
768-bit number would be factored by 2010
(RSA-768 [232 digits] was factored by Lenstra in 2009

RSA in Practice

Factorization

- Let D be the number of decimal digits, y be the year the factorization occurs. From the running time of NFS and assuming Moore's law, Brent derived a formula

$$
y=13.24 \times D^{1 / 3}+1928.6
$$

- According to the formula :

512-bit number would be factored by 1999
(RSA-155 [512-bit] was factored by Lenstra in 1999
768-bit number would be factored by 2010
(RSA-768 [232 digits] was factored by Lenstra in 2009
1024-bit number would be factored by 2018
2048-bit number would be factored by 2041

RSA in Practice

RSA-768 [232 digits] was factored by Lenstra in 2009

- They spent half a year on 80 processors on polynomial selection. This was about 3% of the main task, the sieving, which was done on many hundreds of machines and took almost two years.
- On a single core 2.2 GHz AMD Opteron processor with 2 GB RAM, sieving would have taken about fifteen hundred years.

RSA in Practice

RSA-768 [232 digits] was factored by Lenstra in 2009

- They spent half a year on 80 processors on polynomial selection. This was about 3% of the main task, the sieving, which was done on many hundreds of machines and took almost two years.
- On a single core 2.2 GHz AMD Opteron processor with 2 GB RAM, sieving would have taken about fifteen hundred years.
- Factoring a 1024-bit RSA modulus would be about a thousand times harder, and a 768-bit RSA modulus is several thousands times harder to factor than a 512-bit one
- They suggest to leave 1024-bit modulus within the next three to four years (by 2013-2014)

RSA in Practice

Cryptographic Algorithm	Type	Purpose	Impact from large-scale quantum computer
AES	Symmetric key	Encryption	Larger key sizes needed
SHA-2, SHA-3	--------------	Hash functions	Larger output needed
RSA	Public key	Signatures, key establishment	No longer secure
ECDSA, ECDH (Elliptic Curve Cryptography)	Public key	Signatures, key exchange	No longer secure
DSA (Finite Field Cryptography)	Public key	Signatures, key exchange	No longer secure

AES key size : 80 bits
128 bits
256 bits

RSA modulus size : 1024 bits 3072 bits 15360 bits

RSA in Practice

- AES-128 for 5 K file : 7.40 ms
- AES-192 for 5 K file : 7.55 ms
- AES-256 for 5K file : 7.73 ms

RSA in Practice

- RSA-1024 for 5 K file : 50 ms
- RSA-2048 for 5 K file : 100 ms
- RSA-3072 for 5K file : 150 ms

Digital Signature Scheme

signing by hand

Digital Signature Scheme

signing by hand

Digital Signature Scheme

signing by hand

Digital Signature Scheme

signing by hand

Digital Signature Scheme

signing electronically

Digital Signature Scheme

signing electronically

electronic
signature

Digital Signature Scheme

signing electronically

electronic signature

- signature can be easily copied
- it should be a function of the message

Digital Signature Scheme

PK, SK

Digital Signature Scheme

PK, SK

Signature

Digital Signature Scheme

Digital Signature Scheme

PK, SK

VERIFICATION ALGORITHM

Digital Signature Scheme

A digital signature scheme consists of three algorithms
Gen : outputs a key pair (pk, sk)
Sign :takes a message m in M and the signing key sk as inputs and outputs a signature σ on m
Verify : takes a signature σ, the public key pk, and a message m as inputs and outputs 1 or 0

Correctness

For all (pk, sk) output by Gen and for all m in M

$$
\operatorname{Verify}(p k, m, \operatorname{Sign}(s k, m))=1
$$

Digital Signature Scheme

A digital signature scheme consists of three algorithms
Gen : outputs a key pair (pk, sk)
Sign :takes a message m in M and the signing key sk as inputs and outputs a signature σ on m
Verify : takes a signature σ, the public key pk , and a message m as inputs and outputs 1 or 0

Correctness

- Integrity
- Authenticity

For all (pk, sk) output by Gen and for a - Non-repudiation

$$
\operatorname{Verify}(p k, m, \operatorname{Sign}(s k, m))=1
$$

RSA Signature

KeyGen

- pick two large primes p and q
- compute $N=p . q$
- choose an exponent e such that $\operatorname{gcd}(e, p h i(N))=1$
- choose an exponent d such that e.d $=1 \bmod \operatorname{phi}(N)$

RSA Signature

$\mathrm{PK}=(\mathrm{N}, \mathrm{e})$

$$
S K=(N, d)
$$

KeyGen

- pick two large primes p and q
- compute $N=$ p.q
- choose an exponent e such that $\operatorname{gcd}(e, p h i(N))=1$
- choose an exponent d such that e.d $=1 \bmod \operatorname{phi}(N)$
- keep (N, d) as secret key, and publish (N, e) as public key

1024-bit prime p (309 digits) :
14926660406676521425746589984505259593698043308528112047243863356010910984506208081319 56748971365259498401849653125052988699487229776494690230843615504129894860602079175805 40454081140587353862234445577520476872543676486167892443872308705026778461121261224322 495328346630383486386663628878772838449087770123303
1024-bit prime q (309 digits) :
11613613323752462862307997343676166615781213580255442213388439971627821582770818854043 09941587431632243604740043902608510350793965690708054362041417166453772064699311683053 51122258807934047024235765278566582937247825531441295648260124631056178986340098086793 666788683120626019654875802245983332214723863553333
2048-bit N = p* (617 digits) :
17335246217810680499565282364130282347913694411139706552337646969996795185310539972695 21358952194887788871014810831418332247519311546653852372027284816592666735822538434338 92884640596924123847468319293906862022798176422316189203111527718629657728492287223809 26373552800043250590230507345247504584516585217552163181827225685419709962073929610117 85207875481813218795712875845153649877824714771313687872723823283851257056268551307467 39659929219301975845456600691347974780165760856198842806361918614258903112139836688041 47423192923778212236303196414996652277121672303217925415867248268691221399027188630076 689585126618899
e= 65537
$d=156889308164396431400692065987710672887346835620783590145841716088838352812353946228$ 91972529034215081468682805358018205828859592737807144047750439346373279344813134904276 35456103680016686842205912449803850909739266099781320495323886360922086895776441251828 09693149600565934559448607974452395629861213088638273908322193647517562366779545756246 94333459199323797014292572744820690951743368632774427103258270737146365143542038629603 86987521680125465264397787114761980772967265876932453895158342739562236679770844723218 94791941724936692758146268591864077998906212085463254632733257316467651948214324936532 49128075792100409

RSA Signature

$\mathrm{PK}=(\mathrm{N}, \mathrm{e})$

$S K=(N, d)$

RSA Signature

Signing
$\sigma=m^{d}(\bmod N)$ where m in $\left(Z_{N}\right)^{*}$

RSA Signature

$\mathrm{PK}=(\mathrm{N}, \mathrm{e})$

m, σ

$S K=(N, d)$

RSA Signature

Verification

if $m=\sigma^{e}(\bmod N)$, then output 1 ; otherwise, output 0

RSA-FDH

PK=(N, H, e)

$S K=(N, H, d)$

KeyGen

- pick two large primes p and q
- compute $N=$ p.q
- choose an exponent e such that $\operatorname{gcd}(e, p h i(N))=1$
- choose an exponent d such that e.d $=1 \bmod \operatorname{phi}(N)$
- choose a function $H:\{0,1\}^{\star} \rightarrow Z_{N}{ }^{*}$
- keep (N, H, d) as secret key, and publish (N, H, e) as public key

RSA-FDH

Signing

$\sigma=H(m)^{d}(\bmod N)$ where m in $\{0,1\}^{\star}$

RSA-FDH

PK=(N, H, e)

$S K=(N, H, d)$

RSA-FDH

Verification

if $H(m)=\sigma^{e}(\bmod N)$, then output 1 ; otherwise, output 0

