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•  since the domain is larger than the range, the collision 
must exist  

•  but, if the range is large enough, it is computationally 
hard to find collisions  
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-  keep a database containing the hashes of known viruses 
-  look up the hash of a downloaded application or an email 

attachment in the database to detect a virus 
-  for each virus, a short string needs to be stored, thus the 

overhead is feasible 

•  Password Protection 
-  store the hash of the password instead of password itself in a file 
-  when users enter the passwords, check whether the hash equals 

the value stored in the corresponding file before granting the 
access  

•  Authentication Protocol 

Alice	 Bob	
hello, a	

h(K ll a), b  	

h(K ll b)  	
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•  logarithmic time to check integrity 
 

•  small storage    
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electronic  
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•  signature can be easily copied 

•  it should be a function of the 
message  
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A digital signature scheme consists of three algorithms 
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Sign :takes a message m in M and the signing key sk as inputs 
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•  Integrity 
•  Authenticity 
•  Non-repudiation 
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Verification 
 

if m = σe (mod N), then output 1; 
 

otherwise, output 0 
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if H(m) = σe (mod N), then output 1; 
 

otherwise, output 0 

 

•  to prevent no-message attack, it should be 
infeasible for the adversary to invert H 

    ---- find m from H(m) ---- 

•  to prevent the second attack, it should be 
hard to find three message m, m1, m2 such 
that H(m) = H(m1).H(m2) mod N 

•  also, it should be hard to find collusion: 
    ---- find m1, m2 s.t. H(m1) = H(m2) ----   
 


