
Murat Osmanoglu 

Cryptographic 
Foundations 



Hash Functions 

h(m)	m	 hash  
function	

•  maps inputs of some length to short, fixed-length output in 
deterministic 

sometimes called digest	

h : {0,1}* → {0,1}n  	



Hash Functions 

h(m)	m	 hash  
function	

•  maps inputs of some length to short, fixed-length output in 
deterministic 

•  originally proposed to provide input to digital signature schemes, by 
Diffie-Hellman in 1976 

sometimes called digest	

h : {0,1}* → {0,1}n  	



Hash Functions 

h(m)	m	 hash  
function	

•  maps inputs of some length to short, fixed-length output in 
deterministic 

•  originally proposed to provide input to digital signature schemes, by 
Diffie-Hellman in 1976 

•  security features for hash functions 

    pre-image resistance,  
 

    weak collusion resistance,  
 

    collusion resistance 

sometimes called digest	

h : {0,1}* → {0,1}n  	



Hash Functions 

•  pre-image resistance; given d, it should be hard to find a message 
m such that h(m) = d 

    it is required in Proof of Work algorithm in Bitcoin, i.e. if the  
    underlying hash functions does not satisfy that feature, it would 
    be much easier to solve the cryptographic puzzle to create blocks 
 

    



Hash Functions 

•  pre-image resistance; given d, it should be hard to find a message 
m such that h(m) = d 

    it is required in Proof of Work algorithm in Bitcoin, i.e. if the  
    underlying hash functions does not satisfy that feature, it would 
    be much easier to solve the cryptographic puzzle to create blocks 
 
•  weak collision resistance; given m1, it should be hard to find m2 

such that h(m1) = h(m2) 

    



Hash Functions 

•  pre-image resistance; given d, it should be hard to find a message 
m such that h(m) = d 

    it is required in Proof of Work algorithm in Bitcoin, i.e. if the  
    underlying hash functions does not satisfy that feature, it would 
    be much easier to solve the cryptographic puzzle to create blocks 
 
•  weak collision resistance; given m1, it should be hard to find m2 

such that h(m1) = h(m2) 
 
•  strong collision resistance; it should be hard to find m1 ≠ m2 such 

that h(m1) = h(m2) 

    it is required for a digital signature scheme to provide non- 
    repudiation, i.e. the signer can produce two messages m1 and m2,  
    and signs one of them. Later he can deny his signature and claim he  
    signed the other one 
    it is required for an immutable distributed ledger 



Hash Functions 

•  pre-image resistance; given d, it should be hard to find a message 
m such that h(m) = d 

    it is required in Proof of Work algorithm in Bitcoin, i.e. if the  
    underlying hash functions does not satisfy that feature, it would 
    be much easier to solve the cryptographic puzzle to create blocks 
 
•  weak collision resistance; given m1, it should be hard to find m2 

such that h(m1) = h(m2) 
 
•  strong collision resistance; it should be hard to find m1 ≠ m2 such 

that h(m1) = h(m2) 

    it is required for a digital signature scheme to provide non- 
    repudiation, i.e. the signer can produce two messages m1 and m2,  
    and signs one of them. Later he can deny his signature and claim he  
    signed the other one 

 

•  since the domain is larger than the range, the collision 
must exist  

•  but, if the range is large enough, it is computationally 
hard to find collisions  

 
	



Applications 
•  Virus fingerprinting   

-  keep a database containing the hashes of known viruses 
-  look up the hash of a downloaded application or an email 

attachment in the database to detect a virus 
-  for each virus, a short string needs to be stored, thus the 

overhead is feasible 
 

 



Applications 
•  Virus fingerprinting   

-  keep a database containing the hashes of known viruses 
-  look up the hash of a downloaded application or an email 

attachment in the database to detect a virus 
-  for each virus, a short string needs to be stored, thus the 

overhead is feasible 

•  Password Protection 
-  store the hash of the password instead of password itself in a file 
-  when users enter the passwords, check whether the hash equals 

the value stored in the corresponding file before granting the 
access  

 



Applications 
•  Virus fingerprinting   

-  keep a database containing the hashes of known viruses 
-  look up the hash of a downloaded application or an email 

attachment in the database to detect a virus 
-  for each virus, a short string needs to be stored, thus the 

overhead is feasible 

•  Password Protection 
-  store the hash of the password instead of password itself in a file 
-  when users enter the passwords, check whether the hash equals 

the value stored in the corresponding file before granting the 
access  

•  Authentication Protocol 

Alice	 Bob	
hello, a	

h(K ll a), b  	

h(K ll b)  	



Applications 
Merkle Tree 
 
•  check the integrity of a file using hash function   

Client	 Server	



Applications 
Merkle Tree 
 
•  check the integrity of a file using hash function   

Client	 Server	

H(F) = d  	

keep d	



Applications 
Merkle Tree 
 
•  check the integrity of a file using hash function   

Client	 Server	

write file 	

H(F) = d  	

keep d	



Applications 
Merkle Tree 
 
•  check the integrity of a file using hash function   

Client	 Server	

write file 	

H(F) = d  	
read file (F ’) 	

keep d	



Applications 
Merkle Tree 
 
•  check the integrity of a file using hash function   

Client	 Server	

write file 	

H(F) = d  	
read file (F ’) 	

keep d	

check d = h(F ’) 	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

. . . 	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

. . . 	

H(F1) = d1  	

H(F2) = d2  	

H(Fn) = dn  	

. . . 	

keep d1,d2,…,dn	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

write files 	

. . . 	

H(F1) = d1  	

H(F2) = d2  	

H(Fn) = dn  	

. . . 	

keep d1,d2,…,dn	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

write files 	

read file (Fi ’) 	. . . 	

H(F1) = d1  	

H(F2) = d2  	

H(Fn) = dn  	

. . . 	

keep d1,d2,…,dn	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

write files 	

read file (Fi ’) 	. . . 	

H(F1) = d1  	

H(F2) = d2  	

H(Fn) = dn  	

. . . 	

keep d1,d2,…,dn	

check di = h(Fi ’) for each i 	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

write files 	

read file (Fi ’) 	. . . 	

H(F1) = d1  	

H(F2) = d2  	

H(Fn) = dn  	

. . . 	

keep d1,d2,…,dn	

check di = h(Fi ’) for each i 	

	

•  fast to check integrity of a single file  
 

•  but linear storage    
 



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

h(F1llF2ll…llFn) = D  	

keep D	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

write files 	

h(F1llF2ll…llFn) = D  	

keep D	

F1	

F2	

Fn	

. . . 	

. . . 	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

write files 	

read files (F1 ’,..., Fn ’) 	
h(F1llF2ll…llFn) = D  	

keep D	

F1	

F2	

Fn	

. . . 	

. . . 	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

write files 	

read files (F1 ’,..., Fn ’) 	
h(F1llF2ll…llFn) = D  	

keep D	

check h(F1 'llF2 'll…llFn ') = D  	

F1	

F2	

Fn	

. . . 	

. . . 	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

write files 	

read files (F1 ’,..., Fn ’) 	
h(F1llF2ll…llFn) = D  	

keep D	

check h(F1 'llF2 'll…llFn ') = D  	

	

•  linear time to check integrity 
 

•  small storage    
 

F1	

F2	

Fn	

. . . 	

. . . 	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

F1	 F2	 F3	 F4	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

h(F1)  	 h(F2)  	 h(F3)  	 h(F4)  	

F1	 F2	 F3	 F4	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

h(F1)  	 h(F2)  	 h(F3)  	 h(F4)  	

F1	 F2	 F3	 F4	

A = h(h(F1) ll h(F2))  	 h(h(F3) ll h(F4)) = B  	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

h(F1)  	

keep the root	

h(F2)  	 h(F3)  	 h(F4)  	

F1	 F2	 F3	 F4	

A = h(h(F1) ll h(F2))  	 h(h(F3) ll h(F4)) = B  	

h(A ll B)  	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

h(F1)  	

keep the root	

h(F2)  	 h(F3)  	 h(F4)  	

F1	 F2	 F3	 F4	

A = h(h(F1) ll h(F2))  	 h(h(F3) ll h(F4)) = B  	

h(A ll B)  	 F1	

F2	

F3	

F4	

write files and all the hashes 	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

h(F1)  	

keep the root	

h(F2)  	 h(F3)  	 h(F4)  	

F1	 F2	 F3	 F4	

A = h(h(F1) ll h(F2))  	 h(h(F3) ll h(F4)) = B  	

h(A ll B)  	 F1	

F2	

F3	

F4	

write files and all the hashes 	

for the file F3, 
read F3, h(F4), A 	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

h(F1)  	

keep the root	

h(F2)  	 h(F3)  	 h(F4)  	

F1	 F2	 F3	 F4	

A = h(h(F1) ll h(F2))  	 h(h(F3) ll h(F4)) = B  	

h(A ll B)  	 F1	

F2	

F3	

F4	

write files and all the hashes 	

for the file F3, 
read F3, h(F4), A 	



Applications 
Merkle Tree 
 
•  check the integrity of multiple files using hash function   

Client	 Server	

h(F1)  	

keep the root	

h(F2)  	 h(F3)  	 h(F4)  	

F1	 F2	 F3	 F4	

A = h(h(F1) ll h(F2))  	 h(h(F3) ll h(F4)) = B  	

h(A ll B)  	 F1	

F2	

F3	

F4	

write files and all the hashes 	

for the file F3, 
read F3, h(F4), A 	

	

•  logarithmic time to check integrity 
 

•  small storage    
 



Digital Signature Scheme 
signing by hand 



Digital Signature Scheme 
signing by hand 



Digital Signature Scheme 
signing by hand 



Digital Signature Scheme 
signing by hand 

verify the signature 



Digital Signature Scheme 
signing electronically 



Digital Signature Scheme 
signing electronically 

electronic  
signature 



Digital Signature Scheme 
signing electronically 

electronic  
signature 

•  signature can be easily copied 

•  it should be a function of the 
message  



Digital Signature Scheme 

PK, SK 



Signature 

SIGNING 
ALGORITHM 

PK, SK 

SK 

Digital Signature Scheme 



PK, SK 

Digital Signature Scheme 



VERIFICATION 
ALGORITHM 

PK 1 or 0 

Digital Signature Scheme 

PK, SK 



A digital signature scheme consists of three algorithms 
 

Gen : outputs a key pair (pk, sk) 
 

Sign :takes a message m in M and the signing key sk as inputs 
        and outputs a signature σ on m 
 

Verify : takes a signature σ, the public key pk, and a message 
             m as inputs and outputs 1 or 0   
 
Correctness 
 
For all (pk, sk) output by Gen and for all m in M 
 
                          Verify(pk, m, Sign(sk, m)) = 1 
 

Digital Signature Scheme 



A digital signature scheme consists of three algorithms 
 

Gen : outputs a key pair (pk, sk) 
 

Sign :takes a message m in M and the signing key sk as inputs 
        and outputs a signature σ on m 
 

Verify : takes a signature σ, the public key pk, and a message 
             m as inputs and outputs 1 or 0   
 
Correctness 
 
For all (pk, sk) output by Gen and for all m in M 
 
                          Verify(pk, m, Sign(sk, m)) = 1 
 

Digital Signature Scheme 

 

•  Integrity 
•  Authenticity 
•  Non-repudiation 

 



KeyGen 
 
•  pick two large primes p and q 
•  compute N = p.q 
•  choose an exponent e such that gcd(e,phi(N)) = 1 
•  choose an exponent d such that  e.d = 1 mod phi(N) 

RSA Signature 



KeyGen 
 
•  pick two large primes p and q 
•  compute N = p.q 
•  choose an exponent e such that gcd(e,phi(N)) = 1 
•  choose an exponent d such that  e.d = 1 mod phi(N) 
•  keep (N, d) as secret key, and publish (N, e) as public key      

PK=(N,e) 

SK=(N, d) 

RSA Signature 



PK=(N,e) 

SK=(N, d) 

RSA Signature 

Signing 
 

σ = md (mod N) where m in (ZN)*  



PK=(N,e) 

SK=(N, d) 

RSA Signature 

m, σ	



PK=(N,e) 

SK=(N, d) 

RSA Signature 

Verification 
 

if m = σe (mod N), then output 1; 
 

otherwise, output 0 



Charlie 
(Challenger)	

Adversary	

no-message attack	

Attack on RSA Signature 



Charlie 
(Challenger)	

Adversary	

(pk,sk) ç Gen(.) 
where  

pk = (N, e) and sk = (N, d) 
	

(N,e)	

no-message attack	

Attack on RSA Signature 



Charlie 
(Challenger)	

Adversary	

(pk,sk) ç Gen(.) 
where  

pk = (N, e) and sk = (N, d) 
	

m in Q 	

(N,e)	

no-message attack	

Attack on RSA Signature 



Charlie 
(Challenger)	

Adversary	

(pk,sk) ç Gen(.) 
where  

pk = (N, e) and sk = (N, d) 
	

m in Q 	

(m, σ)	

(N,e)	

no-message attack	

Attack on RSA Signature 



Charlie 
(Challenger)	

Adversary	

(pk,sk) ç Gen(.) 
where  

pk = (N, e) and sk = (N, d) 
	

m in Q 	

(m, σ)	

(N,e)	

choose σ’ in ZN* 
compute m’ = (σ’)e mod N  	

no-message attack	

Attack on RSA Signature 



Charlie 
(Challenger)	

Adversary	

(pk,sk) ç Gen(.) 
where  

pk = (N, e) and sk = (N, d) 
	

m in Q 	

(m, σ)	

(m’, σ’)	

(N,e)	

choose σ’ in ZN* 
compute m’ = (σ’)e mod N  	

no-message attack	

Attack on RSA Signature 



Charlie 
(Challenger)	

Adversary	

(pk,sk) ç Gen(.) 
where  

pk = (N, e) and sk = (N, d) 
	

m in Q 	

since m’ = (σ’)e mod N,  adversary can produce  
a valid signature for a message	

(m, σ)	

(m’, σ’)	

(N,e)	

choose σ’ in ZN* 
compute m’ = (σ’)e mod N  	

no-message attack	

Attack on RSA Signature 



Charlie 
(Challenger)	

Adversary	

(pk,sk) ç Gen(.) 
where  

pk = (N, e) and sk = (N, d) 
	

m in Q 	

since m’ = (σ’)e mod N,  adversary wins the game	

(m, σ)	

(m’, σ’)	

(N,e)	

choose σ’ in ZN* 
compute m’ = (σ’)e mod N  	

no-message attack	

 

the adversary has no control over 
the message 

	

Attack on RSA Signature 



Attack on RSA Signature 

Charlie 
(Challenger)	

Adversary	

forging a signature on an arbitrary message	



Charlie 
(Challenger)	

Adversary	

(pk,sk) ç Gen(.) 
where  

pk = (N, e) and sk = (N, d) 
	

(N,e)	

forging a signature on an arbitrary message	

Attack on RSA Signature 



Charlie 
(Challenger)	

Adversary	

(pk,sk) ç Gen(.) 
where  

pk = (N, e) and sk = (N, d) 
	

m1, m2 	

(N,e)	

forging a signature on an arbitrary message	

for a message m 
 

choose m1, m2 in ZN* 
 

s.t. m = m1.m2 mod N 

Attack on RSA Signature 



Charlie 
(Challenger)	

Adversary	

(pk,sk) ç Gen(.) 
where  

pk = (N, e) and sk = (N, d) 
	

m1, m2 	

(m1, σ1) and (m2, σ2)	

(N,e)	

forging a signature on an arbitrary message	

for a message m 
 

choose m1, m2 in ZN* 
 

s.t. m = m1.m2 mod N 

Attack on RSA Signature 



Charlie 
(Challenger)	

Adversary	

(pk,sk) ç Gen(.) 
where  

pk = (N, e) and sk = (N, d) 
	

m1, m2 	

(m1, σ1) and (m2, σ2)	

(m, σ)	

(N,e)	

compute σ = σ1. σ2 mod N  	

forging a signature on an arbitrary message	

for a message m 
 

choose m1, m2 in ZN* 
 

s.t. m = m1.m2 mod N 

Attack on RSA Signature 



Charlie 
(Challenger)	

Adversary	

(pk,sk) ç Gen(.) 
where  

pk = (N, e) and sk = (N, d) 
	

m1, m2 	

since σe = (σ1. σ2)e = (m1
d. m2

d)e  
        = m1.m2 mod N = m 

   adversary wins the game	

(m1, σ1) and (m2, σ2)	

(m, σ)	

(N,e)	

compute σ = σ1. σ2 mod N  	

forging a signature on an arbitrary message	

for a message m 
 

choose m1, m2 in ZN* 
 

s.t. m = m1.m2 mod N 

Attack on RSA Signature 



KeyGen 
 
•  pick two large primes p and q 
•  compute N = p.q 
•  choose an exponent e such that gcd(e,phi(N)) = 1 
•  choose an exponent d such that  e.d = 1 mod phi(N) 
•  choose a function H : {0,1}* è ZN* 
•  keep (N, H, d) as secret key, and publish (N, H, e) as public key      

PK=(N, H, e) 

SK=(N, H, d) 

RSA-FDH 



PK=(N, H, e) 

SK=(N, H, d) 

RSA-FDH 

Signing 
 

σ = H(m)d (mod N) where m in {0,1}*  



PK=(N, H, e) 

SK=(N, H, d) 

RSA-FDH 

σ	



PK=(N, H, e) 

SK=(N, H, d) 

RSA-FDH 

Verification 
 

if H(m) = σe (mod N), then output 1; 
 

otherwise, output 0 



PK=(N, H, e) 

SK=(N, H, d) 

RSA-FDH 

Verification 
 

if H(m) = σe (mod N), then output 1; 
 

otherwise, output 0 

 

•  to prevent no-message attack, it should be 
infeasible for the adversary to invert H 

    ---- find m from H(m) ---- 
 



PK=(N, H, e) 

SK=(N, H, d) 

RSA-FDH 

Verification 
 

if H(m) = σe (mod N), then output 1; 
 

otherwise, output 0 

 

•  to prevent no-message attack, it should be 
infeasible for the adversary to invert H 

    ---- find m from H(m) ---- 

•  to prevent the second attack, it should be 
hard to find three message m, m1, m2 such 
that H(m) = H(m1).H(m2) mod N 

 



PK=(N, H, e) 

SK=(N, H, d) 

RSA-FDH 

Verification 
 

if H(m) = σe (mod N), then output 1; 
 

otherwise, output 0 

 

•  to prevent no-message attack, it should be 
infeasible for the adversary to invert H 

    ---- find m from H(m) ---- 

•  to prevent the second attack, it should be 
hard to find three message m, m1, m2 such 
that H(m) = H(m1).H(m2) mod N 

•  also, it should be hard to find collusion: 
    ---- find m1, m2 s.t. H(m1) = H(m2) ----   
 


