Consensus Protocols

Murat Osmanoglu

What is Consensus?

* mechanism executed among nodes in the blockchain
network to achieve an agreement on the current state of
the ledger

What is Consensus?

* mechanism executed among nodes in the blockchain
network to achieve an agreement on the current state of
the ledger

* two properties should be satisfied [1]:

- safety, all nodes agree on total order of transactions
appended to the blockchain

— liveness, all transactions shared in the network will be
eventually appended to the blockchain

System Model

* nodes' failure:

- (crash) nodes may fail while executing the consensus protocol due
to some hardware or software related problem, or some connection
problem

- (Byzantine) nodes may deviate from the protocol o sabotage the
consensus

System Model

* nodes' failure:

(crash) nodes may fail while executing the consensus protocol due
to some hardware or software related problem, or some connection
problem

(Byzantine) nodes may deviate from the protocol to sabotage the
consensus

« two types of blockchain

permissionless, (i) permission not required to register in the system,
(ii) users represented by pseudonymous addresses (providing a degree
of privacy to users), (iii) anyone in the network can access to all
transactions, create transactions, take part in the consensus

permissioned, (i) users should get permission from some authority to
register in, (ii) users present valid identities in the system, (iii) specific
actions may be restricted to certain users

Classical Consensus Protocols - Viewstamped Replication(VR)

 first introduced by Oki and Liskov in 1988 as a server replication
system that handles server crashes [2], later extended to the
current version in 2012 [3]

Assumptions

* nodes can fail independently

Objectives

- safety, all non-faulty replicas agree on a
total order for the execution of requests

despite failures

* liveness, clients eventually receive replies to
their requests

Classical Consensus Protocols - Viewstamped Replication(VR)

request prepare prepare-OK reply

« the replicas move through a succession of configuration called
views

* inaview, one replica will be the primary and the others are
backups

* nodes sorted according to their IP, each one assigned to the
corresponding view as primary

Classical Consensus Protocols - Viewstamped Replication(VR)

request prepare prepare-OK reply

[REQUEST op, c]

Classical Consensus Protocols - Viewstamped Replication(VR)

request prepare prepare-OK reply
C
1
, §
3

[REQUEST op, c]

[PREPARE v, m, n]

Classical Consensus Protocols - Viewstamped Replication(VR)

request prepare prepare-OK reply
C
1 \
5 \ 7
3

[REQUEST op, c]

[PREPARE v, m, n]

[PREPAREOK v, n, i]

Classical Consensus Protocols - Viewstamped Replication(VR)

request prepare prepare-OK reply

C
1
2
3

[REQUEST op, c]

[PREPARE v, m, n]
[PREPAREOK v, n, i]

[REPLY v, s, x]

Classical Consensus Protocols - Viewstamped Replication(VR)

View Change

 if areplica decides on a view change based on its timer,
receives a STARTVIEWCHANGE or DOVIEWCHANGE
message, it sends [STARTVIEWCHANGE v, i]to other replicas
where v is the new view

 if areplica receives f STARTVIEWCHANGE messages for its
view number, it sends [DOVIEWCHANGE v, v', n, i] to the new
primary where v' is the latest normal view, n is the latest op
number and k is the latest commit number

* if the new primary receives f + 1 DOVIEWCHANGE messages,
picks the largest n and k, and sends [STARTVIEW v, n]+to
other replicas

Classical Consensus Protocols - Viewstamped Replication(VR)

Safety

* since the primary only considers the requests for which it receives
f PREPAREOK messages having same op numbers, to be committed,
and there are at most f faulty nodes, the requests will not be
added to the logs with different op numbers.

Liveness

 the protocol also enables backups to move on to the next view
through view change mechanism when the primary fails

 the protocol can provides liveness and safety in presence of at
most f crash faulty nodes when there are 2f + 1 nodes

Classical Consensus Protocols - Raft

introduced by Ongaro and Ousterhout in 2014 as a server replication
system that handles server crashes [4] (similar to VR)

different than VR, it applies randomized election mechanism to
select leaders

each replica will be one of the following three states: follower,
candidate, and leader

Classical Consensus Protocols - Raft

introduced by Ongaro and Ousterhout in 2014 as a server replication
system that handles server crashes [4] (similar to VR)

different than VR, it applies randomized election mechanism to
select leaders

each replica will be one of the following three states: follower,
candidate, and leader

1 t2 13 t4

i

_T / l \ ﬁ:\e

election normal no leader
operations

time divided into terms, and each term begins with an election

Classical Consensus Protocols -

after becoming leader, it sends append entry messages without log
entries to establish its authority and prevent new elections

times out,
new election
times out gets votes from

starts elecﬂV‘\ m ﬂe majority

[Follower] [Candida’re] [Leader'J

discovers server
discovers current with higher term
leader or new term

Classical Consensus Protocols - Raft

« after becoming leader, it sends append entry messages without log
entries to establish its authority and prevent new elections

times out,
new election
times out gets votes from

starts eIecﬂV‘\ ﬂ /—\728 majority

[Follower] [Candidate] [Leader]

discovers server
discovers current with higher term
leader or new term

« if many followers become candidates, votes will be split, no one
gets majority

Classical Consensus Protocols - Raft

« after becoming leader, it sends append entry messages without log
entries to establish its authority and prevent new elections

times out,

new election

times out gets votes from

starts elecfiV\ the majority
[Follower] [Candidate] [Leader]

discovers server

discovers current with higher term
leader or new term

« if many followers become candidates, votes will be split, no one
gets majority
« to prevent split votes, replicas chooses random timeouts (from

150-300 ms) at the beginning of an election and waits for timeout
to elapse before sending request for vote

Classical Consensus Protocols - Raft

 similar o VR protocol, leader assigns a sequence number to each
request it receives, and sends it to other replicas with this
sequence humber and term number

 replicas adds this request to their log with this sequence number
and inform the leader about it

Classical Consensus Protocols -

Raft

 similar o VR protocol, leader assigns a sequence number to each
request it receives, and sends it to other replicas with this
sequence humber and term number

 replicas adds this request to their log with this sequence number
and inform the leader about it

* if leader gets confirmations from majority of the replicas, it
considers it to be committed

* it then executes the request, and returns the result to the client

Classical Consensus Protocols - Raft

Safety

* since the leader only considers the requests for which it receives f
confirmations for same sequence number, to be committed, and
there are at most f faulty nodes, the requests will not be added to
the logs with different sequence numbers.

Liveness

 the protocol also enables candidate o move on to the next view by
initiating a new election when not receiving any message from the
current leader

 the protocol can provides liveness and safety in presence of at
most f crash faulty nodes when there are 2f + 1 nodes

Classical Consensus Protocols - PBFT

* introduced by Castro and Liskov in 1999 as a server replication system that
can tolerate Byzantine faults [5]

Assumptions
* nodes can be failures independently

* there is a very strong adversary that can coordinate faulty nodes,
delay communication, or delay correct nodes

« the adversary is computationally bound :
- cannot produce a valid signature of a non-faulty node
- cannot compute an input of the hash function from the output
- cannot find two messages having the same hash value

Objectives

* the algorithm provides safety and liveness assuming no more than m
Byzantine faulty replicas when there are 3m+1 replicas at total

Classical Consensus Protocols -

PBFT

The Algorithm

the set of replicas is denotedas R={0, 1, ..., IRl -1}

IRl = 3f + 1 where f is the maximum number of replicas that
may be faulty

the replicas move through a succession of configuration called
views

in a view, one replica will be the primary and the others are
backups
the primary of a view will be the replica p such that

p = v mod IRI

where v is the view number

Classical Consensus Protocols - PBFT

Classical Consensus Protocols - PBFT

Classical Consensus Protocols

PBFT

(3f + 1) replicas

Classical Consensus Protocols

PBFT

(3f + 1) replicas

Classical Consensus Protocols

PBFT

Classical Consensus Protocols

PBFT

Classical Consensus Protocols - PBFT

* the client waits for f +1
replies from different replicas
with the same result

Classical Consensus Protocols

PBFT

request pre-prepare prepare

commit

reply

A w O~ O

Classical Consensus Protocols

PBFT

request pre-prepare

prepare

commit

reply

"--‘~‘-€i

A w O~ O

[REQUEST, o, 1, clszg

Classical Consensus Protocols

PBFT

request pre-prepare prepare

commit

reply

\

A w O~ O

NN
N\

[REQUEST, o, 1, clszg

[[PRE-PREPARE, v, n, d]szz, m]

Classical Consensus Protocols

PBFT

request pre-prepare prepare

commit

reply

\

N

AN

A w O~ O

N

[REQUEST, o, 1, clszg

[[PRE-PREPARE, v, n, d]szz, m]

[PREPARE, v, n, d, ilszc.i

Classical Consensus Protocols - PBFT

request pre-prepare prepare commit reply

\
¥
N

A w O~ O

[REQUEST, o, 1, clszg

[[PRE-PREPARE, v, n, d]szz, m]
[PREPARE, v, n, d, ilsge.

[COMMIT, v, n, d, ilsc.

Classical Consensus Protocols - PBFT

request pre-prepare prepare commit reply

\
¥
N

A w O~ O

[REQUEST, o, 1, clszg

[REPLY, v, t,c,r,ilse.i
[[PRE-PREPARE, v, n, dlszz, m]

[PREPARE, v, n, d, ilszc.i

[COMMIT, v, n, d, ilsc.

Classical Consensus Protocols - PBFT

View Changes(Liveness)

Backups use a timer to check whether the primary fails or not

when the timer of backup i expires in view v, the backup
starts a view change to move the system to view v + 1 by
broadcasting VIEW CHANGE message to others

when the primary p of v + 1 receives 2f valid view-change
messages from other replicas, it broadcasts NEW VIEW
message to others to start the new view

Classical Consensus Protocols - PBFT

Why 2f + 1 (Safety)?

f messages as f messages as
[PREPARE, v, n, dy, ils1s.; [PREPARE, v, n, d,, ils1s.;

A

f faulty nodes

 the protocol can provides liveness and safety in presence of at
most f Byzantine faulty nodes when there are 3f + 1 nodes

Classical Consensus Protocols - RBFT

* infroduced by Aublin et al. [6] as an extension of PBFT in 2013

Motivation

* replicas monitor the throughput of the primary and trigger the
recovery mechanism when the primary is slow

but it is not possible for replicas to guess the throughput of a non-
malicious primary would be

* although PBFT can tolerate Byzantine faults, malicious primaries
can still damage the protocol for f consecutive views in the worst
case

« key idea : run multiple instances of the same protocol in parallel.

nodes compare the throughput achieved by the different instances
to know whether a protocol instance change is required or not.

Classical Consensus Protocols - RBFT

The Algorithm
« the set of replicas is denotedas R={0, 1, ..., IRI -1}

* |RI= 3f + 1 where f is the maximum number of replicas that
may be faulty

* the replicas move through a succession of configuration called
views

Classical Consensus Protocols

RBFT

request propagate | pre-prepare

prepare

commit

reply

A w PO~ O

Classical Consensus Protocols

RBFT

A w O~ O

request propagate

pre-prepare

prepare

commit

reply

x

AN

N

[REQUEST, o, 1, clse

Classical Consensus Protocols

RBFT

A w O~ O

request propagate | pre-prepare

prepare

commit

reply

AN

Ny

|

[REQUEST, o, 1, clse

[PROPAGATE, m, ilsc..

Classical Consensus Protocols

RBFT

request propagate | pre-prepare

prepare

commit |

reply

AN

Ny AN

/

A w O~ O

N

N

[REQUEST, o, 1, clse

[PROPAGATE, m, ilsc..

« same as Practical Byzantine Fault Tolerance

Classical Consensus Protocols - RBFT

Monitoring

it detects whether the master protocol instance is faulty or
not.

 each node keeps a counter for each protocol instance i, that
corresponds to the number of requests that have been
ordered by the replica of the corresponding instance

for which 2f + 1 commit messages have been collected

 if the ration between the throughput of master instance and
average throughput of the backup instances is lower than a
given threshold, then the primary of master is suspected to
be malicious, and the node initiates a protocol instance change

