
Consensus Protocols

Murat Osmanoglu

•  mechanism executed among nodes in the blockchain
network to achieve an agreement on the current state of
the ledger

What is Consensus?

•  mechanism executed among nodes in the blockchain
network to achieve an agreement on the current state of
the ledger

•  two properties should be satisfied [1]:

-  safety, all nodes agree on total order of transactions
appended to the blockchain

-  liveness, all transactions shared in the network will be
eventually appended to the blockchain

What is Consensus?

•  nodes’ failure:
-  (crash) nodes may fail while executing the consensus protocol due

to some hardware or software related problem, or some connection
problem

-  (Byzantine) nodes may deviate from the protocol to sabotage the
consensus

System Model

•  nodes’ failure:
-  (crash) nodes may fail while executing the consensus protocol due

to some hardware or software related problem, or some connection
problem

-  (Byzantine) nodes may deviate from the protocol to sabotage the
consensus

•  two types of blockchain

•  permissionless, (i) permission not required to register in the system,
(ii) users represented by pseudonymous addresses (providing a degree
of privacy to users), (iii) anyone in the network can access to all
transactions, create transactions, take part in the consensus

•  permissioned, (i) users should get permission from some authority to
register in, (ii) users present valid identities in the system, (iii) specific
actions may be restricted to certain users

System Model

•  first introduced by Oki and Liskov in 1988 as a server replication
system that handles server crashes [2], later extended to the
current version in 2012 [3]

Assumptions

•  nodes can fail independently

Objectives

•  safety, all non-faulty replicas agree on a
total order for the execution of requests
despite failures

•  liveness, clients eventually receive replies to
their requests

Classical Consensus Protocols - Viewstamped Replication(VR)

request prepare prepare-OK reply
C	

1	

2	

3	

•  the replicas move through a succession of configuration called
views

•  in a view, one replica will be the primary and the others are
backups

•  nodes sorted according to their IP, each one assigned to the
corresponding view as primary

Classical Consensus Protocols - Viewstamped Replication(VR)

request prepare prepare-OK reply
C	

1	

2	

3	

[REQUEST op, c]

Classical Consensus Protocols - Viewstamped Replication(VR)

request prepare prepare-OK reply
C	

1	

2	

3	

[PREPARE v, m, n]

Classical Consensus Protocols - Viewstamped Replication(VR)

[REQUEST op, c]

request prepare prepare-OK reply
C	

1	

2	

3	

Classical Consensus Protocols - Viewstamped Replication(VR)

[PREPAREOK v, n, i]	

[PREPARE v, m, n]

[REQUEST op, c]

request prepare prepare-OK reply
C	

1	

2	

3	

Classical Consensus Protocols - Viewstamped Replication(VR)

[REPLY v, s, x]

[PREPAREOK v, n, i]	

[PREPARE v, m, n]

[REQUEST op, c]

View Change

•  if a replica decides on a view change based on its timer,

receives a STARTVIEWCHANGE or DOVIEWCHANGE
message, it sends [STARTVIEWCHANGE v, i] to other replicas
where v is the new view

•  if a replica receives f STARTVIEWCHANGE messages for its
view number, it sends [DOVIEWCHANGE v, v’, n, i] to the new
primary where v’ is the latest normal view, n is the latest op
number and k is the latest commit number

•  if the new primary receives f + 1 DOVIEWCHANGE messages,
picks the largest n and k, and sends [STARTVIEW v, n] to
other replicas

Classical Consensus Protocols - Viewstamped Replication(VR)

Safety

•  since the primary only considers the requests for which it receives

f PREPAREOK messages having same op numbers, to be committed,
and there are at most f faulty nodes, the requests will not be
added to the logs with different op numbers.

Liveness

•  the protocol also enables backups to move on to the next view

through view change mechanism when the primary fails

•  the protocol can provides liveness and safety in presence of at
most f crash faulty nodes when there are 2f + 1 nodes

Classical Consensus Protocols - Viewstamped Replication(VR)

•  introduced by Ongaro and Ousterhout in 2014 as a server replication
system that handles server crashes [4] (similar to VR)

•  different than VR, it applies randomized election mechanism to
select leaders

•  each replica will be one of the following three states: follower,
candidate, and leader

Classical Consensus Protocols - Raft

•  introduced by Ongaro and Ousterhout in 2014 as a server replication
system that handles server crashes [4] (similar to VR)

•  different than VR, it applies randomized election mechanism to
select leaders

•  each replica will be one of the following three states: follower,
candidate, and leader

•  time divided into terms, and each term begins with an election

Classical Consensus Protocols - Raft

•  after becoming leader, it sends append entry messages without log
entries to establish its authority and prevent new elections

Classical Consensus Protocols - Raft

•  after becoming leader, it sends append entry messages without log
entries to establish its authority and prevent new elections

•  if many followers become candidates, votes will be split, no one
gets majority

Classical Consensus Protocols - Raft

•  after becoming leader, it sends append entry messages without log
entries to establish its authority and prevent new elections

•  if many followers become candidates, votes will be split, no one
gets majority

•  to prevent split votes, replicas chooses random timeouts (from
150-300 ms) at the beginning of an election and waits for timeout
to elapse before sending request for vote

Classical Consensus Protocols - Raft

•  similar to VR protocol, leader assigns a sequence number to each
request it receives, and sends it to other replicas with this
sequence number and term number

•  replicas adds this request to their log with this sequence number
and inform the leader about it

Classical Consensus Protocols - Raft

•  similar to VR protocol, leader assigns a sequence number to each
request it receives, and sends it to other replicas with this
sequence number and term number

•  replicas adds this request to their log with this sequence number
and inform the leader about it

•  if leader gets confirmations from majority of the replicas, it
considers it to be committed

•  it then executes the request, and returns the result to the client

Classical Consensus Protocols - Raft

Safety

•  since the leader only considers the requests for which it receives f

confirmations for same sequence number, to be committed, and
there are at most f faulty nodes, the requests will not be added to
the logs with different sequence numbers.

Liveness

•  the protocol also enables candidate to move on to the next view by

initiating a new election when not receiving any message from the
current leader

•  the protocol can provides liveness and safety in presence of at

most f crash faulty nodes when there are 2f + 1 nodes

Classical Consensus Protocols - Raft

Assumptions

•  nodes can be failures independently
•  there is a very strong adversary that can coordinate faulty nodes,

delay communication, or delay correct nodes
•  the adversary is computationally bound :

-  cannot produce a valid signature of a non-faulty node
-  cannot compute an input of the hash function from the output
-  cannot find two messages having the same hash value

Objectives

•  the algorithm provides safety and liveness assuming no more than m
Byzantine faulty replicas when there are 3m+1 replicas at total

•  introduced by Castro and Liskov in 1999 as a server replication system that
can tolerate Byzantine faults [5]

Classical Consensus Protocols - PBFT

The Algorithm

•  the set of replicas is denoted as R = {0, 1, . . ., lRl – 1}

•  lRl = 3f + 1 where f is the maximum number of replicas that
may be faulty

•  the replicas move through a succession of configuration called
views

•  in a view, one replica will be the primary and the others are
backups

•  the primary of a view will be the replica p such that

 p = v mod lRl

 where v is the view number

Classical Consensus Protocols - PBFT

Classical Consensus Protocols - PBFT

(3f + 1) replicas 	

Classical Consensus Protocols - PBFT

primary	

backup	

backup	

backup	

(3f + 1) replicas 	

Classical Consensus Protocols - PBFT

primary	

backup	

backup	

backup	

(3f + 1) replicas 	

Classical Consensus Protocols - PBFT

primary	

backup	

backup	

backup	

(3f + 1) replicas 	

Classical Consensus Protocols - PBFT

primary	

backup	

backup	

backup	

(3f + 1) replicas 	

Classical Consensus Protocols - PBFT

primary	

backup	

backup	

backup	

(3f + 1) replicas 	

•  the client waits for f + 1
replies from different replicas
with the same result	

Classical Consensus Protocols - PBFT

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

Classical Consensus Protocols - PBFT

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

Classical Consensus Protocols - PBFT

[REQUEST, o, t, c]SIG 	

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

Classical Consensus Protocols - PBFT

 [[PRE-PREPARE, v, n, d]SIG, m] 	

[REQUEST, o, t, c]SIG 	

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

Classical Consensus Protocols - PBFT

 [PREPARE, v, n, d, i]SIG-i 	

 [[PRE-PREPARE, v, n, d]SIG, m] 	

[REQUEST, o, t, c]SIG 	

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

Classical Consensus Protocols - PBFT

[COMMIT, v, n, d, i]SIG-i 	

 [PREPARE, v, n, d, i]SIG-i 	

 [[PRE-PREPARE, v, n, d]SIG, m] 	

[REQUEST, o, t, c]SIG 	

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

Classical Consensus Protocols - PBFT

 [REPLY, v, t, c, r, i]SIG-i 	

[COMMIT, v, n, d, i]SIG-i 	

 [PREPARE, v, n, d, i]SIG-i 	

 [[PRE-PREPARE, v, n, d]SIG, m] 	

[REQUEST, o, t, c]SIG 	

View Changes(Liveness)

•  Backups use a timer to check whether the primary fails or not

•  when the timer of backup i expires in view v, the backup
starts a view change to move the system to view v + 1 by
broadcasting VIEW CHANGE message to others

•  when the primary p of v + 1 receives 2f valid view-change
messages from other replicas, it broadcasts NEW VIEW
message to others to start the new view

Classical Consensus Protocols - PBFT

Why 2f + 1 (Safety)?

f messages as

[PREPARE, v, n, d1, i]SIG-i
f messages as

[PREPARE, v, n, d2, i]SIG-i

f faulty nodes

•  the protocol can provides liveness and safety in presence of at
most f Byzantine faulty nodes when there are 3f + 1 nodes

Classical Consensus Protocols - PBFT

•  introduced by Aublin et al. [6] as an extension of PBFT in 2013

Motivation

•  replicas monitor the throughput of the primary and trigger the
recovery mechanism when the primary is slow

but it is not possible for replicas to guess the throughput of a non-
malicious primary would be

•  although PBFT can tolerate Byzantine faults, malicious primaries
can still damage the protocol for f consecutive views in the worst
case

•  key idea : run multiple instances of the same protocol in parallel.

nodes compare the throughput achieved by the different instances
to know whether a protocol instance change is required or not.

Classical Consensus Protocols - RBFT

The Algorithm

•  the set of replicas is denoted as R = {0, 1, . . ., lRl – 1}

•  lRl = 3f + 1 where f is the maximum number of replicas that
may be faulty

•  the replicas move through a succession of configuration called
views

Classical Consensus Protocols - RBFT

request propagate pre-prepare prepare commit reply
C	
1	
2	
3	
4	

Classical Consensus Protocols - RBFT

request propagate pre-prepare prepare commit reply
C	
1	
2	
3	
4	

Classical Consensus Protocols - RBFT

[REQUEST, o, t, c]SIG 	

request propagate pre-prepare prepare commit reply
C	
1	
2	
3	
4	

Classical Consensus Protocols - RBFT

[PROPAGATE, m, i]SIG-i 	

[REQUEST, o, t, c]SIG 	

request propagate pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  same as Practical Byzantine Fault Tolerance

Classical Consensus Protocols - RBFT

[PROPAGATE, m, i]SIG-i 	

[REQUEST, o, t, c]SIG 	

Monitoring

•  it detects whether the master protocol instance is faulty or
not.

•  each node keeps a counter for each protocol instance i, that
corresponds to the number of requests that have been
ordered by the replica of the corresponding instance

for which 2f + 1 commit messages have been collected

•  if the ration between the throughput of master instance and
average throughput of the backup instances is lower than a
given threshold, then the primary of master is suspected to
be malicious, and the node initiates a protocol instance change

Classical Consensus Protocols - RBFT

