

RECEPTORS AND SIGNAL TRANSDUCTION

Cell Biology

Assoc. Prof. Güvem GÜMÜŞ AKAY guvemakay@gmail.com

Ankara University School of Medicine

Department of Physiology

- ✓ Cell-to-cell communication
- ✓ Signal transmission systems
- ✓ All cells can take information and process it

Different Types of Cellular Communication

- Direct cellular communication with cell-cell contact (Juxtacrine)
 - Cellular connections
 - Cell-to-cell recognition
 - Nanotubes
- 2) Indirect cellular communication that does not require Cell-Cell contact
 - Chemical signals
 - Autocrine
 - Paracrine
 - Neurotransmitters (Synaptic transmission)
 - Hormones (Endocrine)

Direct cellular communication (Juxtacrine) that requires physical cell-cell contact

Gap junctions

- ✓ Enable the passage of small molecules (<1.2-2 nm) and ions by providing a connection between the cytoplasm of two cells.</p>
- ✓ Building blocks of macromolecules, cAMP, Ca2 + etc.
- ✓ Provides metabolic and electrical coupling.
- ✓ Allow a large number of cells to function as a single functional unit.

Ex: Heart muscle, smooth muscle

Cell-to-Cell Recognition

- The cell membrane contains surface carbohydrate molecules (glycolipids, glycoproteins) that generate signals for other cells.
- Recognition of self and non-self cells in the immune system
- Regulation of cellular migration with Ephrin proteins and receptors during embryonic development

Tunnel Formation via Nanotubes

- ✓ Filamentous membrane extensions
- ✓ lons, organelles
- Embryonic development, maintenance of homeostasis, spread of infectious agents, drug resistance, etc.

Indirect Cellular Communication that DOES NOT require physical cell-cell contact

Communication with Chemical Signals

✓ Chemical signals are secreted from one cell and target another cell.

✓ It often requires **ligand-receptor interaction**.

- Ligands: Extracellular chemicals that act as signal transduction molecules.
- **Receptors:** Proteins found in the target cell membrane/cytoplasm/nucleus that specifically bind the ligand.

Chemical Communication

- Local Signaling
 - Autocrine
 - Paracrine
 - Neurotransmitters (Synaptic transmission)
- Long-Distance (Endocrine) Signaling
 - Hormones
 - Neurohormones

Local Signaling

• Autocrine: The ligand affects the cell that secretes it.

• Paracrine: After being secreted, the ligand diffuses and acts on nearby cells.

Neurotransmitters (Synaptic Transmission)

- A special type of paracrine signaling.
- NTs are secreted by neuronal cells and by diffusion they affect nearby the neuron / gland / muscle cell.

Long-Distance (Endocrine) Signaling

Hormones

- Chemical messengers secreted by the endocrine glands.
- Act on target cells over long distances through the bloodstream.

Neurohormones:

- Chemicals secreted from neuronal cells.
- Act on target cells at long distances through the bloodstream.

Chemical Messengers (Signaling molecules/Ligands)

Amines: Ex. Epinephrine
Peptides and Proteins: Ex. Angiotensin II, Insulin
Steroids: Ex. Aldosterone, Estrogen
Other small molecules: Ex. Amino acids, Nucleotides, Ions, and Gases

Plasma membrane receptors

•Intracellular Receptors / Nuclear Receptors:

Channel coupled receptors:

Ligand-gated ion channels (ionotropic receptors)

- The receptor and channel are the same protein.
- The effect is direct.
- Binding of the ligand causes the channel to open / close.
- The response is fast.
- AMPAR, NMDAR etc.

Enzyme coupled receptors: Catalytic receptors

- Cytosolic domains have intrinsic enzymatic activity or are directly associated with an enzyme.
- Usually contain one transmembrane segment.
- Binding of the ligand causes conformational change in the receptor, inducing enzymatic activity.
- The effect is direct.
- Activated enzyme causes target response

Enzyme coupled receptors: Catalytic receptors

5 main types of catalytic receptors in mammalian cells.

- Receptor tyrosine kinases
- Tyrosine-kinase-associated receptors (Non-receptor tyrosine kinases)
- Receptor serine / threonine kinases
- Receptor guanylate kinases
- Receptor tyrosine phosphatases

Many extracellular signal proteins (insulin, EGF, FGF, HGF, VEGF, IGF1, MCSF, NGF etc.) show their effects through RTKs.

G-protein Coupled Receptors

- Largest family of cell surface receptors.
- Activated by signals from the extracellular matrix and other cells (hormones, neurotransmitters and local mediators).
- Sight, smell, taste
- ~ 700 in man; only about smell in mouse ~ 1000
- Most of the known drugs act through GPCRs or signaling pathways activated by GPCRs.

Transduction

- Cascades of molecular interactions relay signals from receptors to target molecules in the cell
- A multistep pathway involving many molecules
- Activation of proteins by addition or removal of phosphate groups or release of other small molecules or ions that act as messengers
- Multistep amplifies the signal

Second messengers

- Signaling molecules with short halflives.
- Small, non-protein, water-soluble molecules or ions
- Their increased concentration causes rapid changes in the activity of one or more cellular enzymes.
- Participate in G-protein coupled receptor and receptor tyrosine kinase pathways
- Removal or disruption of the second messengers terminates the cellular response.

Important second messengers in the cell

- Cyclic nucleotides
 - cAMP
 - cGMP
- Membrane lipid derivatives
 - DAG
 - Phosphatidylinositols: IP₃
 ve PIP₃
 - AA
- Ca²⁺
- NO/CO

cAMP

Target enzymes of cAMP

cAMP dependent protein kinase: Protein kinase A

- Tetramer: Inactive
- Regulatory (2x) and Catalytic (2x) subunits
- cAMP binds to regultory subunits
- Free catalytic subunits: Active
- Phosphorylates target proteins at serine amino acids

- Calcium is even more widely used than cAMP as a second messenger
- Increase in the cytosolic concentration of Ca²⁺
- Most of its effects occur through the Ca²⁺ binding protein «calmodulin».
- Second messenger in both GPCRs and RTKs
- ✓ Protein kinases: Ca²⁺/calmodulin-dependent kinases
 ✓ Ex. Myosisn light-chain kinase
- ✓ Muscle cell contraction, secretion of certain substances, cell division...

The sensitivity of cells to a specific signal can change overtime.

✓Adaptation/ Desensitization: Decreased response of the cell to the stimulus because of prolonged exposure

✓ Allows the cell to respond to changes in concentration of the signaling molecule

References

ALBERTS, B., JOHNSON, A., LEWIS, J., RAFF, M., ROBERTS, K., & WALTER, P. (2008). *Molecular biology of the cell*. New York, Garland Science.

Walter F. Boron and Emile L. Boulpaep. Medical Physiology: A Cellular and Molecular Approach. (2017). Saunders Elsevier

Widmaier E.P., Raff H., Strang K.T. (2019) Vander's Human Physiology. Mc Graw Hill Education.