PROBLEM 3.109

ENOWN: Diameter and base temperature of a silicon carbide nanowire, required temperature of
the catalyst tip.

FIND: Maximum length of a nanowire that may be grown under specified conditions.

SCHEMATIC: 00 K < T_< 3000 K

—e T_=8000K
— h=10°W/m*K

D=15x10"m

» = 2400 K

ASSUMPTIONS: (1) Nanowire stops growing when T. = T(x=L) = 3000 K, (2) Constant
properties, (3) One-dimensional heat transfer, (4) Convection from the tip of the nanowire, (5)
Nanowire grows very slowly, (6) Negligible impact of nanoscale heat transfer effects.

PROPERTIES: Table A 2, silicon carbide (1500 K): k=30 Wm-K.

ANALYSIS: The tip of the nanowire is initially at T = 2400 K, and increases in temperature as
the nanowire becomes longer. At steady-state, the tip reaches T = 3000 E. The temperature
distribution at steady-state is given by Eq. 3.75:

i= coshm (L -x)+ (b /mk) sinhm (L -x)

1

By cosh mL + (b / mk) sinh mL o
where

n 12 b A 2 12
m=(hp] =(ﬂ) [ 4x10° W -Kg — 043 % 10° o]
kA, kD 30Wm-KEx15x10" m
and
5 2

mk 043x10°m” x30 Wm-K
Equation 1, evaluated atx=1L 15

6 _ (3000-8000)K _ oo _ 1

8y (2400-8000)K cosh (943 x 10° x L) + 3.53 x 10™sinh (943 = 10° x L)
A tnal-and-error solution yields L = 510 x 10°m =510 nm <



PROBLEM 3.109 (Cont.)

COMMENTS: (1) The importance of radiation heat transfer may be ascertained by evaluating
Eq. 1.9. Assuming large swroundings at a temperature of T,. = 8000 K and an emissivity of
unity, the radiation heat transfer coefficient at the fin tip is

B = eo(T(x = L) + Tue)[ T (x=1) + T |
=5.67 « 10® Wm?-K* « (3000 K + 8000 K) = [(3000 K)? + (3000 x)2] =45x10" Wwm? K

We see that h, < b but radiation may be important. (2) The thermal conductivity has been
evaluated at 1500 K and extrapolated to a much higher temperature. More accurate values of the
thermal conductivity, accounting for the high temperature and possible nanoscale heat transfer
effects, are desirable. (3) If the nanowire were to grow rapidly, the transient temperature
distribution within the nanowire would need to be evaluated.



PROBLEM 3.116

KNOWN: Thermal conductivity, diameter and length of a wire which is annealed by passing an
electrical current through the wire.

FIND: (a) Steady-state temperature distribution along wire, (b) Maximum wire temperature, (c)
Average wire temperature.

SCHEMATIC:

\ h, T _D L | _f _ci?mnv
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ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction along the wire, (3)
Constant properties, (4) Negligible radiation, (5) Uniform convection coefficient h.

ANALYSIS: (a) Applying conservation of energy to a differential control volume,
Ax '*'Eg —d9cony ~Gx+dx =0
Ox+dx =Gx +d—:-;¢: ax =—k(z D2 /4)<mdx

Qcony =B(7 Dx) (T-T,)  Eg-q[x D?/4)ax

Hence,
k(x D2 f4) dx+q( x D?/4)dx—b(x Dax) (T-Tex)=0
. a% 4n

with 6=T-T,,, 24

or, Wi @ dxz kDG X =0

The solution (general and particular) to this nonhomogeneous equation is of the form

6=Cp ™ +Cy ™+ 2

2
km
where m* = (4b/kD). The boundary conditions are:
:: =0=mC1 eo—mC2 eo—) Cl C‘)
x=0

; ifkm
6(L)=0=0 e‘“L+e"“L)+L—> q=—3 __c,
( km2 emI'+e'mI‘

Continued. ..



PROBLEM 3.116 (Cont.)

The temperature distribution has the form

- m .m -
_r _ 4 e +e o _ @ coshmx_ <
e | [

(b) The maximum wire temperature exists at x = 0. Hence,

_q cosh(O)___q‘;- <
Tox = T(x=0) =T ;f[_cosh(ml) l] = km= ! cosh(mL) l]

(c) The average wire temperature may be obtained by evaluating the expression
— 1L 1L q | cosh(mx)
T-— | T = L_o[r. —;T[m-l]]dx

q q
-T,'l'?— m(mL)m <

COMMENTS: (1) This process is commonly used to anneal wire and spring products. It is also used
for flow measurement based upon the principle that the maximum or average wire temperature vanes
with the value of m and, hence, the convective heat transfer coefficient & and, ultimately, the fluid
velocity. (2) To check the result of part (a), note that T{L) = I'(-L) = T=.



PROBLEM 3.98

KNOWN: Radu and thermal conductivities of reactor fuel element and cladding. Fuel heat generation
rate. Temperature and convection coefficient of coolant.

FIND: (2) Expressions for temperature dismbutions m fuel and claddmmg, (b) Maximum fuel element
temperature for prescribed conditions, (¢) Effect of h on temperature distnbution.
SCHEMATIC:

Coolant
=
Q=9mm

ry=6mm

Cladding

Fudl (ke = 25 WImK)

element -
(k= 2 WimK, g = 2x108 Wim3)

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Negligible contact
resistance, (4) Constant properties.

ANALYSIS: (2) From Eqs. 3.54 and 3.28, the heat equations for the fuel (f) and claddmmg (c) are

%%(,%)?k_‘lf (0<r<n) li(,£)=o (n=rin)

r __&« .G _e.q

- = 2kf+kfr Tf %f+kf lnr+C2 (1,2
i _G =G

T LeREeG G4

The comresponding boundary conditions are:
dTy fdr),_o =0 Te(n)=Tc(n) .6
ol a2 % L R _
kg e )r-q ke & )r-q ke & )r-q h[Tc (1‘2) Tm] (7.8)

Note that Eqs. (7) and (8) are obtained from surface energy balances at ) and r;, respectively. Applying
Eq. (5) to Eq. (1), 1t follows that C, = 0. Hence,

T =——+C
£ oy 2 ®
From Eq. (6), it follows that
. 2
“H =8B, 0
4kf kt:

Contmmued. ..



Also, from Eq. (7),
a. G
2 n 2

Fina]ly,ﬁumEq.(‘S),—&= [ Inrp+C4- ]amhsﬁtuﬁngforC;zndsolvingﬁxCa

n

|:5

an

or 3=

af @
Co=I_, 1ot 12
4 2mb | 2k, n+l, (12)

Substituting Eqgs. (ll)and(l")into(lO) it follows that
2 2 .2
Cz_q'l quhrl+q=1 cmlmﬂ_nm
kg 2"‘c 2'2" ke
-2

@ @ o @
=21, ,2,9 . 13)
2 %k 2k 'n  2mb To ¢

Substituting Eq. (13) into (9),
. .2 - 2
=9 (2_2|+98 2. 9 <
T “f(q ')+zkchq+2qh”° 14)
Substituting Ees. (11) and (17) into (4),

_q’l n q‘l <
T.= 2kchr+2qh+T“’ (15
(b) Applying Eq. (14) at r = 0, the maximum fuel temperature for h = 2000 W/m K is

2x10° W/ x(0.006m)* | 2x10° W/w® x(0.006m)”  0.009m
4x2W/m K 2%25W/m K 0.006m
 2x10° W/m® (0.006m)>
" 2%(0.009m) 2000 W/ m? -K
T; (0) =(900+ 58.4+ 200+ 300) K =1458K . <

T (0)=

+300K



