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1.1 INTRODUCTION
1.1.1 Fundamental physical constants

❑ Avogadro’s number: NA = 6.022 × 1023 atoms/mol

❑ Speed of light in vacuum: c ≈ 3 × 108 m/s

❑ Electron charge: e = 1.602 × 10–19 C

❑ Electron/positron rest mass: me = 0.511 MeV/c2

❑ Proton rest mass: mp = 938.3 MeV/c2

❑ Neutron rest mass: mn = 939.6 MeV/c2
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1.1 INTRODUCTION
1.1.1 Fundamental physical constants

❑ Atomic mass unit: u = 931.5 MeV/c2

❑ Planck’s constant: h = 6.626 × 10–34 J · s

❑ Electric constant: ε0 = 8.854 × 10–12 C · V–1 · m–1

(permittivity of vacuum):

❑ Magnetic constant: m0 = 4p × 10–7 V · s · A–1 · m–1

(permeability of vacuum)

❑ Gravitation constant: G = 6.672 × 10–11 m3 · kg–1 · s–2
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1.1 INTRODUCTION
1.1.2. Physical quantities and units

The SI system of units is founded on base units for seven 

physical quantities:

Quantity SI unit

Length l meter (m)

mass m kilogram (kg)

time t second (s)

electric current I Ampère (A)

temperature T kelvin (K)

amount of substance mole (mol)

luminous intensity candela (cd)
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1.1 INTRODUCTION
1.1.2. Physical quantities and units

Basic quantities and 

several derived 

physical quantities 

and their units in SI 

units:
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1.1 INTRODUCTION
1.1.4. Classification of ionizing radiation

❑ Ionizing radiation carries enough energy per quantum to 

remove an electron from an atom or molecule

• Introduces reactive and potentially damaging ion into the 

environment of the irradiated medium

• Can be categorized into two types: 

• Directly ionizing radiation 

• Indirectly ionizing radiation

• Both can traverse human tissue

• Can be used in medicine for imaging & therapy
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1.1 INTRODUCTION
1.1.5. Classification of indirectly ionizing photon radiation

❑ Consists of three main categories:

• Ultraviolet: limited use in medicine

• X ray: used in disease imaging and/or treatment 

• Emitted by orbital or accelerated electrons

•  ray: used in disease imaging and/or treatment 

• Emitted by the nucleus or particle decays

• Difference between X and  rays is based on the radiation’s origin

❑ The origin of these photons fall into 4 categories:

• Characteristic (fluorescence) X rays

• Bremsstrahlung X rays

• From nuclear transitions

• Annihilation quanta
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1.1 INTRODUCTION
1.1.6. Characteristic X rays

❑ Orbital electrons inhabit atom’s minimal energy state

❑ An ionization or excitation process leads to an open 

vacancy 

❑ An outer shell electron transitions to fill vacancy (~nsec) 

❑ Liberated energy may be in the form of:

• Characteristic photon (fluorescence)

• Energy = initial state binding energy - final state binding energy

• Photon energy is characteristic of the atom

• Transferred to orbital electron that 

• Emitted with kinetic energy = transition energy - binding energy

• Called an Auger electron 
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1.1 INTRODUCTION
1.1.7. Bremsstrahlung

❑ Translated from German as 'breaking radiation'

❑ Light charged particles (b- & b+) slowed down by 

interactions with other charged particles in matter 

(e.g. atomic nuclei)

❑ Kinetic energy loss converted to electromagnetic radiation

❑ Bremsstrahlung energy spectrum

• Non-discrete (i.e. continuous) 

• Ranges: zero - kinetic energy of initial charged particle

❑ Central to modern imaging and therapeutic technology

• Can be used to produce X rays from an electrical energy source
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1.1 INTRODUCTION
1.1.8. Gamma rays

❑ Nuclear reaction or spontaneous nuclear decay may leave 

product (daughter) nucleus in excited state

❑ The nucleus can transition to a more stable state by 

emitting a  ray

❑ Emitted photon energy is characteristic of nuclear energy 

transition

❑  ray energy typically > 100 keV & wavelengths < 0.1 Å
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1.1 INTRODUCTION
1.1.9. Annihilation quanta 

❑ Positron results from:

• b+ nuclear decay 

• high energy photon interacts with nucleus or orbital electron electric 

field 

❑ Positron kinetic energy (EK) loss in absorber medium by 

Coulomb interactions:

• Collisional loss when interaction is with orbital electron 

• Radiation loss (bremsstrahlung) when interaction is with the nucleus 

• Final  collision (after all EK lost) with orbital electron (due to Coulomb 

attraction) called positron annihilation
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1.1 INTRODUCTION
1.1.9. Annihilation quanta 

❑ During annihilation

• Positron & electron disappear 

• Replaced by 2 oppositely directed annihilation quanta (photons)

• Each has energy = 0.511 MeV

• Conservation laws obeyed:

• Electric charge, linear momentum, angular momentum, total 

energy 

❑ In-flight annihilation

• Annihilation can occur while positron still has kinetic energy

• 2 quanta emitted 

• Not of identical energies 

• Do not necessarily move at 180º
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1.1 INTRODUCTION
1.1.10. Radiation quantities and units

❑ Exposure: X 

• Ability of photons to ionize air

❑ Kerma: K (acronym for Kinetic Energy Released in MAtter) 

• Energy transferred to charged particles per unit mass of the 

absorber

• Defined for indirectly ionizing radiation

❑ Dose (also referred to as absorbed dose):

• Energy absorbed per unit mass of medium
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❑ Equivalent dose: 𝐻T
• Dose multiplied by radiation weighting factor wR

• When different types of radiation are present, 𝐻T is the 

sum of all of the individual weighted contributions

❑ Effective dose: E 

• 𝐻𝑇 multiplied by a tissue weighting factor wT

❑ Activity: A

• Number of nuclear decays per unit time

• Its SI unit, becquerel (Bq), corresponds to one decay per 

second

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –

1.1 INTRODUCTION
1.1.10. Radiation quantities and units
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1.1 INTRODUCTION
1.1.10. Radiation quantities and units
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1.2 BASIC DEFINITIONS FOR ATOMIC STRUCTURE 

❑ Constituent particles forming an atom are:

• Proton

• Neutron

• Electron

❑ mp/me = 1836

❑ Atomic number: Z

• Number of protons and number of electrons in an atom

❑ Atomic mass number: A

• Number of nucleons in an atom = Z + N

• Z = number of protons

• N = number of neutrons

known as nucleons
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❑ Atomic mass: ma

• Mass of an atomic particle or molecule is expressed in atomic mass 

units u

• 1 u

• 1/12th mass of carbon-12 atom

• 931.5 MeV/𝑐2

• ma < sum of masses of constituent particles: intrinsic energy 

associated with binding the particles (nucleons) in the nucleus

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –

1.2 BASIC DEFINITIONS FOR ATOMIC STRUCTURE 
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❑ Molecular mole 

• For a given molecular compound, there are NA molecules per mole 

of the compound

• NA = 6.022 X1023 mol-1

❑ The mass of a molecular mole will be the sum of the 

atomic mass numbers of the constituent atoms in the 

molecule

❑ For example:

• 1 mole of water (H2O) is 18 g of water

• 1 mole of CO2 is 44 g of carbon dioxide

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –

1.2 BASIC DEFINITIONS FOR ATOMIC STRUCTURE 
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❑ For all elements the ratio Z/A  0.4-0.5 with 1 notable 

exception:

• Hydrogen, for which Z/A = 1

❑ The ratio Z/A gradually decreases with increasing Z:

• From ~0.5 for low Z elements

• To ~0.4 for high Z elements

❑ For example: 

• Z/A = 0.50 for

• Z/A = 0.45 for

• Z/A = 0.39 for

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –

4

2 He

60

27 Co

235

92 U

1.2 BASIC DEFINITIONS FOR ATOMIC STRUCTURE 
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❑ Most of the atomic mass is concentrated in the atomic 

nucleus

❑ Nucleus consists 

• Z protons 

• A - Z neutrons, 

where Z  = atomic number and A = atomic mass

❑ Protons and neutrons 

• Commonly called nucleons 

• Bound to the nucleus with the strong force

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE
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❑ Nuclear physics conventions 

• Designate a nucleus X as

❑ For example:

• Cobalt-60 nucleus 

• Z = 27 & A = 60 (i.e. 33 neutrons)

• identified as:

• Radium-226 

• Z = 88 & A = 226 (i.e.138 neutrons)

• identified as:

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE

XA

Z

Co60

27

Ra226

88
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❑ Classifications

• Isotopes of an element

• Atoms with same Z, but different number of neutrons (and A)

• e.g.

• ‘Nuclide’ refers to an atomic species, defined by its makeup of 

protons, neutrons, and energy state

• ‘Isotope’ refers to various atomic forms of a given chemical 

element 

• Isobars

• Common atomic mass number A

• e.g. 60Co and 60Ni 

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE

Co59

27 Co60

27
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❑ Classifications

• Isotones

• Common number  of neutrons

• e.g. 3H (tritium) and 4He

• Isomeric (metastable) state

• Excited nuclear state that exists for some time

• e.g 99mTc is an isomeric state of 99Tc

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE
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❑ EB/A (Binding energy per nucleon)

• Varies with A 

• ~8 MeV/nucleon

• Rises rapidly at small A

• Broad maximum 

• ~ 8.7 MeV/nucleon 

• A ≈ 60 

• Gradual decrease at large A

• Larger value implies atom more stable

• Most stable nuclei have A ≈ 60 

• Fe, Co, Ni

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE 
1.3.2. Nuclear binding energy
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❑ EB/A vs. A curve suggests 2 methods for mass to energy 

conversion:

1) Fusion of low A nuclei 
• Creates a more massive nucleus 

• Releases energy 

• Presently, controlled fusion for energy production not 

successful in net energy generation

• Remains active field of research 

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE 
1.3.3. Nuclear fusion and fission

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –

2) Fission of large A nuclei
• Bombardment of large mass elements (e.g. 235U) by thermal 

neutrons will create 2 more stable nuclei with lower mass

• Process transforms some mass into kinetic energy

• Fission reactors are important means of production of 

electrical power
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❑ 2 particle collision 

• Projectile: mass m1, velocity 1, kinetic energy (EK)1

• Stationary target : mass m2 & 2 = 0

• Results in intermediate compound 

• Decays into 2 reaction products: (m3, 3) and (m4, 4)

• Cross-section (probability for collision) & collision outcome 

depends on:

• Projectile mass, charge, velocity, kinetic energy

• Stationary target mass, charge

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE 
1.3.4. Two-particle collisions and nuclear reactions
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❑ Projectile + target collision: 

most general case

• Results in intermediate compound 

• Decays into 2 reaction products: 

• m3 ejected with 3 at q to  incident 

projectile direction

• m4 ejected with 4 at f to incident 

projectile direction

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE 
1.3.4. Two-particle collisions and nuclear reactions
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❑ Two-particle collisions classified into 3 categories:

1) Elastic 

• Products after identical to products before collision

• m3 = m1 and m4 = m2

• Total kinetic energy & momentum before & after 

collision are equal

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE 
1.3.4. Two-particle collisions and nuclear reactions

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –

2) Inelastic projectile scattering

• Products after identical to products 

before collision

• Incident projectile transfers portion 

of its EK to target as EK + intrinsic 

excitation energy E*
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3) Nuclear reaction

• 2 products m3 + m4, with new Z

• Physical quantities must be conserved

• Charge

• Linear momentum

• Mass–energy

• Sum of Z’s & sum of A’s

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE 
1.3.4. Two-particle collisions and nuclear reactions
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❑ is calculated from the relativistic invariant = smallest 

value of projectile EK at which reaction will take place:

❑ m1c
2, m2c

2, m3c
2 and m4c

2 are rest energies of projectile 

m1, target m2 & reaction products m3 and m4, respectively
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1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE 
1.3.4. Two-particle collisions and nuclear reactions
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❑ Decay of radioactive parent P into stable daughter D, with decay 

constant lP:

❑ Rate of depletion of the number of radioactive parent nuclei, NP(t), is 
equal to the activity AP(t) at time t:

❑ Fundamental differential equation for NP(t) can be rewritten in integral 

form: 

• NP(0) is the initial number of parent nuclei at time t = 0

1.4. RADIOACTIVITY

1.4.1. Decay of radioactive parent into a stable or unstable daughter 
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❑ Number of radioactive parent nuclei as a function of time t, assuming 

that lP is constant, is:

❑ Activity of the radioactive parent AP(t) as a function of time t:

• where AP(0) is the initial activity at time t = 0

❑ Decay law applies to all radioactive nuclides irrespective of decay 

mode

1.4. RADIOACTIVITY

1.4.1. Decay of radioactive parent into a stable or unstable daughter 
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❑ Half-life, (T1/2)P,of radioactive parent P is the time during 

which the number of radioactive parent nuclei decays from 

the initial value, NP(0), at time t = 0 to half the initial value
(AP(t) also decreases to half of its initial value)

❑ lP & (T1/2)P are related as follows:

1.4. RADIOACTIVITY

1.4.1. Decay of radioactive parent into a stable or unstable daughter 
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❑ Mean (average) life tP of a radioactive parent P is the time 

during which the number NP of radioactive nuclei or its 
activity AP falls to 1/e = 0.368 (or 36.8%) of NP(0) or of 

AP(0), respectively

❑ lP & (T1/2)P are related as follows:

1.4. RADIOACTIVITY

1.4.1. Decay of radioactive parent into a stable or unstable daughter 
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❑ Activity AP(t) plotted against time t for a simple decay of a 

radioactive parent P to stable or unstable daughter D:

Illustrates:

• Concept of (T1/2)P 

• Concept of tP

• Exponential decay 

• Area under curve from t = 0 to t = ∞ is equal to AP(t) x tP

• Slope of tangent to decay curve at t = 0 is lP x AP(0)

• Abscissa intercept at t = tP

1.4. RADIOACTIVITY

1.4.1. Decay of radioactive parent into a stable or unstable daughter 
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❑ Decay of radioactive parent P into unstable daughter D which in turn 

decays into granddaughter G:

❑ Rate of change dNP/dt in the number of daughter nuclei D equals to 

supply of new daughter nuclei through decay of P given as λPNP(t) & the 

loss of daughter nuclei D from the decay of D to G given as -λDND(t) 

1.4. RADIOACTIVITY

1.4.2. Radioactive series decay
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❑ Number of daughter nuclei is, assuming no daughter D nuclei present 

initially, i.e. ND(0) = 0:

❑ Activity of the daughter nuclei is:

• AD(t)  = activity at time t of daughter = lDND(t)

• AP(0) = initial activity of parent at time t = 0

• AP(t)  = activity of parent at time t = lPNP(t)
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1.4. RADIOACTIVITY

1.4.2. Radioactive series decay
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❑ Daughter activity AD(t) vs time 

• For the case AD(0) = 0

• Daughter activity initially rises with time t

• Reaches maximum at characteristic time 

t = (tmax)D

• Diminishes to reach 0 at t = ∞
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l

l
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1.4. RADIOACTIVITY

1.4.2. Radioactive series decay

Parent and daughter activities 

against time for

P D G
lP lD
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❑ Radioactive equilibrium 

• Occurs in many P → D → G relationships

• Parent & daughter activities reach constant ratio after a certain time t

❑ AD(t)/AP(t) ratio behaviour:

1.4. RADIOACTIVITY

1.4.3. Equilibrium in parent — daughter activities

   tt

t

t )(

D

P

)(

PD

D

P

D PDPD e1

1

1
e1

)(

)( llll

l

lll

l ----
-

-

=-
-

=
A

A

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 – Slide 40/101



IAEA

❑ Nuclear activation

• Bombardment of a stable nuclide with a suitable energetic particle or 

high energy photons to induce a nuclear transformation

• Neutrons from nuclear reactors for neutron activation

• Protons from cyclotrons or synchrotrons for proton activation

• X rays from high energy linear accelerators for nuclear 

photoactivation

1.4. RADIOACTIVITY

1.4.4. Production of radionuclides (nuclear activation) 
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❑ Neutron activation important in production of radionuclides 

used for
• External beam radiotherapy

• Brachytherapy

• Therapeutic nuclear medicine

• Nuclear medicine imaging  (molecular imaging)

❑ Proton activation important in production of positron 

emitters used in 

• Positron emission tomography (PET) imaging

❑ Nuclear photoactivation important from a radiation 

protection point of view

• Components of high energy radiotherapy machines become 

activated during patient treatment 

• Potential radiation risk to staff using equipment

1.4. RADIOACTIVITY

1.4.4. Production of radionuclides (nuclear activation) 
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❑ Nucleons are bound together to form nucleus by strong 

nuclear force

• At least two orders of magnitude larger than proton–proton 

Coulomb repulsive force

• Extremely short range (a few femtometres)

❑ A delicate equilibrium between number of protons and 

number of neutrons must exist to bind the nucleons into a 

stable nucleus

• Configurations to form stable nuclei

• For low A nuclei → Z = N

• For A ≥ 40 → N > Z (in order to overcome proton-proton Coulomb 

repulsion)

1.4. RADIOACTIVITY

1.4.5. Modes of radioactive decay 
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❑ If there is no proton-neutron optimal equilibrium:

• Nucleus is unstable (radioactive)

• Nucleus decays with a specific decay constant l into more stable 

configuration that may also be unstable and decay further, forming a 

decay chain that eventually ends with a stable nuclide 

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –

1.4. RADIOACTIVITY

1.4.5. Modes of radioactive decay 
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❑ Radioactive decay is a process by which unstable 

(radioactive) nuclei reach a more stable configuration 

❑ Radioactive decay processes 

• Medically important

• Alpha (a) decay

• Beta (b) decay

• Beta plus decay

• Beta minus decay

• Electron capture

• Gamma (γ) decay

• Pure gamma decay

• Internal conversion

• Less important

• Spontaneous fission
.

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –

1.4. RADIOACTIVITY

1.4.5. Modes of radioactive decay 
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❑ Neutron-rich nuclides have excess number of neutrons 

❑ Proton-rich nuclides have excess number of protons 

❑ Decays:

• Slight Proton–neutron imbalance:

• Proton into a neutron in b+ decay

• Neutron into a proton in b– decay

• Large proton–neutron imbalance: 

• a particles in a decay OR protons in proton emission decay

• Neutrons in neutron emission decay 

• Very large A nuclides (A > 230)

• Spontaneous fission competing with a decay

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –

1.4. RADIOACTIVITY

1.4.5. Modes of radioactive decay 
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❑ Excited nuclei decay to ground state via  decay

• Most of these occur immediately upon excited state production by a

or b decay

• A few have delayed decays governed by their own decay constants 

• Referred to as metastable states (e.g. 99mTc)

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –
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❑ Nuclear transformations are usually accompanied by 

emission of energetic particles (charged particles, neutral 

particles, photons, neutrinos)

❑ Radioactive decay Emitted particles
• Alpha decay a particle  

• Beta plus decay b+ particle (positron), neutrino

• Beta minus decay b- particle (electron), antineutrino

• Electron capture Neutrino

• Pure gamma decay Photon

• Internal conversion Orbital electron

• Spontaneous fission Fission products, neutrons, heavier nuclei 

• Neutron emission decay Neutron

• Proton emission decay Proton
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❑ In each nuclear transformation a number of physical 

quantities must be conserved

❑ The most important conserved physical quantities are:

• Total energy

• Momentum

• Charge

• Atomic number

• Atomic mass number (number of nucleons)
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❑ Total energy of particles released by the transformation process 

is equal to the net decrease in the rest energy of the neutral 

atom, from parent P to daughter D

❑ Decay energy (Q value) is given as:

M(P), M(D), and m are the nuclear rest masses of the parent, daughter 

and emitted particles, respectively (in unified atomic mass units u) 

❑ Radioactive decay energetically possible if Q > 0, thus

• Spontaneous radioactive decay processes are exoergic or exothermic

• Energy equivalent of Q is shared as EK between emitted particles & the 

daughter product

• Usually M(D) >> m → EK of daughter usually negligibly small

   2(P) (D)Q M M m c= - + 
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❑ Alpha decay is a nuclear transformation in which:

• Energetic a particle, 4He nucleus (4He2+) is emitted

• Atomic number Z of the parent decreases by 2

• Atomic mass number A of the parent decreases by 4

❑ Naturally occurring a’s 

• EK : 4-9 MeV

• Range in air: 1-10 cm

• Range in tissue:  10 - 100 mm

❑ Examples:

1.4. RADIOACTIVITY

1.4.6. Alpha decay 

αDHeDP 4

2

24

2

4

2 +=+→ -

-

+-

-

A

Z

A

Z

A

Z

1/2

1/2

226 222

88 861602y

222 218

86 843.82d

Ra Rn α

Rn Po α

T

T

=

=

⎯⎯⎯⎯→ +

⎯⎯⎯⎯→ +
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❑ Beta minus (b-) decay :

• Neutron-rich parent nucleus P 

• Transforms neutron into proton: 

• Ejects e- & antineutrino, which share available energy

• ZD = ZP + 1 

• AD = AP 

• Daughter D isobar of parent P

• Example of b- decay

1.4. RADIOACTIVITY

1.4.7. Beta minus decay 

1 eP D eA A

Z Z

-

+→ + + 

en p e-→ + + 
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❑ Beta plus (b+) decay:

• Proton-rich parent nucleus P 

• transforms a proton into a neutron

• Ejects e+ & e, which share available energy

• ZD = ZP – 1 

• AD = AP 

• Daughter D isobar of parent P

1.4. RADIOACTIVITY

1.4.8. Beta plus decay 

1 eP  D e νA A

Z Z

+

-→ + +

eνenp ++→ +
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1.4. RADIOACTIVITY

1.4.8. Beta plus decay 

❑ Radionuclides undergoing b+ decay often called positron 

emitters 

• Used in medicine for PET functional imaging

• Most common PET tracer is fluorodeoxyglucose (FDG) labelled 

with 18F

❑ Example of b+ decay

e

18

8min110

18

9 νeOF
2/1

++⎯⎯⎯ →⎯ +

=T
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❑ Electron capture is a nuclear transformation in which:

• Nucleus captures an atomic orbital electron (usually K shell)

• ZD = ZP - 1 

• AD = AP 

• Daughter D isobar of parent P

❑ Example of e- capture

• 125Te* is the excited state of 125Te 

• decays to 125Te ground state by  decay & internal conversion

1.4. RADIOACTIVITY

1.4.9. Electron capture 

eνnep +=+ -

1 eP e  D νA A

Z Z

-

-+ → +
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❑ a, b-, b+ and electron capture, may produce daughter (D) 

nucleus in excited state 

• Full amount of the decay energy available not expended

• Will reach ground (de-excite) state by:

• Emitting excitation energy as one or more 

• Internal conversion

• Transfer of excitation energy to atomic orbital electrons (usually 

K shell)

• Vacancy in shell filled by higher orbital electron

• Resulting in characteristic X rays and/or Auger electrons

1.4. RADIOACTIVITY

1.4.10. Gamma decay and internal conversion 
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❑ In most a & b decays de-excitation is instantaneous

• Thus, we refer to emitted 's as if produced by parent

• e.g. 60Co  rays

❑ Sometimes, D de-excites with time delay

• Excited state of D is referred to as a metastable state 

• De-excitation called isomeric transition

• e.g. 99mTc 
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❑  decay

• = excited stated of

Example:

• Where E1=1.17 MeV & E 2=1.33MeV

*X  X γA A

Z Z→ +

*XA

Z
XA

Z

60 60 *

27 28 e

60 * 60

28 28 1 2

Co Ni e

Ni Ni γ γ

-→ + + 

→ + +
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❑ Internal conversion

• = singly ionized state of

• Example:

*X  X e XA A A

Z Z Z

+ -→ + →

+XA

Z XA

Z

125 125 *

53 52 e

125 * 125

52 52

125 * 125

52 52

I e  Te ν

Te  Te γ (7%)

or    Te  Te e (internal conversion 93%)

-

-

+ → +

→ +

→ +
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❑ A large number of radionuclides used in nuclear medicine 

(e.g. 99mTc, 123I, 201Tl, 64Cu) decay by electron capture 

and/or internal conversion 

❑ Both processes leave the atom with a vacancy in an inner 

atomic shell

• Most commonly the K shell

• Inner shell vacancy filled by electron from higher level atomic shell

• Binding energy difference between the two shells is emitted as

• Characteristic X ray (fluorescence photon) 

• Or transferred to higher shell orbital electron 

• Then emitted from atom as Auger electron with EK equal to 

transferred energy minus the binding energy of the emitted 

Auger electron 

1.4. RADIOACTIVITY

1.4.11 Characteristic (fluorescence) X rays and Auger electrons 
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❑ Energetic charged particles (e.g. e- or e+) undergo 

Coulomb interactions with absorber atoms, i.e., with:

• Atomic orbital electrons

• Ionization loss

• Atomic nuclei

• Radiation loss

❑ Through these collisions the electrons may:

• Lose their kinetic energy (collision and radiation loss)

• Change direction of motion (scattering)

1.5. ELECTRON INTERACTIONS WITH MATTER
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❑ Interactions between the charged particle and absorber 

atom is characterized by a specific cross-section 

(probability) s

❑ Energy loss depends on 

• Particle properties (mass, charge, velocity & energy)

• Absorber properties (density & Z)

1.5. ELECTRON INTERACTIONS WITH MATTER
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❑ Gradual loss of energy of charged particle described by 

stopping power 

❑ Two classes of stopping power known

• Collision stopping power scol from interaction with orbital electrons of 

absorber 

• Radiation stopping power srad from interaction with nuclei of absorber

❑ Total stopping power: stot = scol + srad

1.5. ELECTRON INTERACTIONS WITH MATTER
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1.5. ELECTRON INTERACTIONS WITH MATTER

1.5.1. Electron–orbital interactions

❑ Inelastic collisions between the incident electron and an 

orbital electron are Coulomb interactions that result in:

• Atomic ionization:

• Ejection of the orbital electron from the absorber atom

• Absorber atom becomes ion

• Atomic excitation:

• Transfer of an atomic orbital electron from one allowed orbit (shell) 

to a higher level allowed orbit

• Absorber atom becomes excited atom

❑ Atomic excitations & ionizations result in collision energy 

losses and are characterized by collision (ionization) 

stopping power

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 – Slide 64/101



IAEA

1.5. ELECTRON INTERACTIONS WITH MATTER

1.5.2. Electron–nucleus interactions

❑ Coulomb interaction between the incident electron and an 

absorber nucleus results in:

• Electron scattering and no energy loss (elastic collision): 

characterized by angular scattering power

• Electron scattering and some loss of kinetic energy in the form of 

bremsstrahlung (radiation loss): characterized by radiation stopping 

power
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1.6. PHOTON INTERACTIONS WITH MATTER

1.6.1. Exponential absorption of photon beam in absorber

❑ The most important parameter used for characterization of 

X or  ray penetration into absorbing media is the linear 

attenuation coefficient m

❑ Linear attenuation coefficient m depends on:

• Energy h of photon

• Z of the absorber

❑ Linear attenuation coefficient may be described as the 

probability per unit path length that a photon will have an 

interaction with the absorber 
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❑ Attenuation coefficient, m, is determined experimentally by:

• Aiming narrowly collimated mono-energetic photon beam (E = h)

• Placing absorber material of varying thicknesses x between photon 

source and detector 

• x represents total thickness of the absorber 

• Measuring beam intensity I(x) in radiation 

detector

❑ As x increases, detector signal intensity 

decreases  
• From I(x=0) measured with no absorber 

• To I(x) measured with absorber of thickness x > 0
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1.6.1. Exponential absorption of photon beam in absorber
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❑ An absorber of thickness dx reduces beam intensity by 

dI(x)

• Fractional intensity reduction, -dI(x)/I(x) is proportional to:

• Attenuation coefficient m

• Layer thickness dx

• the negative sign indicates a decrease in signal I(x) with an increase 

in absorber thickness x

x
xI

xI
d

)(

)(d
m=-
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❑ Integrate over 

• absorber thickness x from 0 → x

• over intensity I(x) from I(0) →I(x)

❑ Resulting in:

• Assuming m is :

• uniform in the absorber 

• independent of x

 -=

xxI

I

x
xI

xI

0

)(

)0(

d
)(

)(d
m

xIxI m-= e)0()(
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1.6. PHOTON INTERACTIONS WITH MATTER

1.6.2. Characteristic absorber thicknesses 

❑ 3 special thicknesses used for characterization of photon 

beams: 

• Half-value layer (HVL or x1/2)

• Absorber thickness that attenuates original I(x) by 50 %

• Mean free path (MFP or ) 

• Absorber thickness which attenuates beam intensity by 1/e = 36.8%

• Tenth-value layer (TVL or x1/10)

• Absorber thickness which attenuates beam intensity to 10% of 

original intensity

x
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❑ HVL

❑ MFP

❑ TVL
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1.6. PHOTON INTERACTIONS WITH MATTER

1.6.3. Attenuation coefficients 

❑ In addition to the linear attenuation coefficient m, other related 

attenuation coefficients and cross sections are used for 

describing photon beam attenuation:

• Mass attenuation coefficient: mm

• Atomic cross section: am

• Electronic cross section: em

❑ The attenuation coefficients are related by:

• absorber mass density

• atoms Na per volume V of absorber

• m absorber mass 

• NA Avogadro’s number

• electrons per unit volume of absorber

m a en Znm m m m= = = a a aN N N
n

V m A
 = = =

AN
Zn Z

A
=
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❑ Energy transfer coefficient

• = mean energy transferred from photons to charged particles 

(e- and e+) per unit path length.

• h = primary photon energy

❑ Energy absorption coefficient

• = Mean energy absorbed in medium per unit path length

• In the literature, men is often used instead of mab

tr

tr

E

h
m m


=

trE

ab

ab

E

hν
m m=

abE
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❑ Light charged particles (e- & e+) released/produced in 

absorbing medium through various photon interactions will 

either:

• Deposit energy to medium via Coulomb interactions w/ orbital 

electrons of absorbing medium (collision loss also referred to as 

ionization loss)

• Radiate EK away as photons through Coulomb interactions with 

nuclei of absorbing medium (radiation loss)
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❑ Typical examples mass attenuation 

coefficient m/ plotted vs h

❑ Observations for C  (low Z absorber) & 

Pb (high Z absorber) for energy range: 

0.001 - 1000 MeV

• intermediate photon energies (~1 MeV)

• Have similar m/ 0.1 cm2/g 

• For low photon energies

• Pb m/ >> C m/

• at energies > 10 MeV

• C m/ essentially flat 

• Pb m/ of lead increases with energy
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1.6. PHOTON INTERACTIONS WITH MATTER

1.6.4. Photon interactions on the microscopic scale

❑ Photons may experience various interactions with absorber 

atoms involving either of the following: 

• Absorber nuclei 

• Photonuclear reaction: direct photon - nucleus interactions

• Nuclear pair production: photon - electrostatic field of the nucleus 

interactions

• Orbital electrons of absorbing medium: 

• Compton effect, triplet production: photon - loosely bound electron 

interactions

• Photoelectric effect, Rayleigh scattering: photon - tightly bound 

electron interactions
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❑ Loosely bound electron 

• Binding energy EB << E = h

• Interactions considered to be between photon and ‘free’ (i.e. 

unbound) electron

❑ Tightly bound electron 

• EB comparable to, larger than or slightly smaller than E = h

• Interactions occur if EB must be of the order of, but slightly smaller 

than E = h

• i.e. EB ≤ h

• Interactions considered to be between photon and atom as a whole
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❑ Two possible outcomes for photon after interaction with 

atom

• Photon disappears and is absorbed completely 

• Photoelectric effect

• Nuclear pair production

• Triplet production

• Photonuclear reaction

• Photon scattered and changes direction but keeps its energy 

(Rayleigh scattering) or loses part of its energy (Compton effect)
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❑ The most important photon interactions with atoms of the 

absorber are
• Those with energetic electrons released from absorber atoms (and 

electronic vacancies left):

• Compton effect

• Photoelectric effect

• Electronic pair production (triplet production)

• Those with portion of the incident photon energy used to produce free 

electrons and positrons

• Nuclear pair production

• Photonuclear reactions

❑ All these light charged particles move through the absorber 

and either 
• Deposit EK in the absorber (dose) 

• Transform part EK into radiation bremsstrahlung radiation
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❑ Electronic vacancies from photon interactions with 

absorber atoms 

• e- from higher shell fills lower shell vacancy

• Transition energy emitted as one of the following:

• Characteristic X ray (also called fluorescence photon)

• Auger electron 

• This process continues until the vacancy migrates to the outer 

shell of the absorber atom

• Free e- from environment eventually fills outer shell vacancy 

• Absorber ion reverts to neutral atom in ground state
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❑ Auger effect: Auger e- emissions from excited atom

• Each Auger transition converts 1 vacancy into 2 vacancies

• Leads to cascade of low energy Auger e-'s emitted from atom

• Auger e-'s have very short range in tissue

• May produce ionization densities comparable to those in an

alpha track

• Biologically damaging
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❑ Branching between characteristic  and Auger e- governed 

by fluorescence yield w 

• w = number of fluorescence 's emitted per vacancy in given shell

• w also defined as probability of emission of fluorescence photon for 

a given shell vacancy

• (1 – w) gives probability of emission of Auger e- for given shell 

vacancy
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❑ Photoelectric effect:

• Only happens if photon energy E = h > EB

• Higher probability of happening when h is closer to EB

•  interacts with tightly bound electron, i.e. with whole atom

• Photon disappears

• Orbital electron ejected from atom as a photoelectron 

• Ejected electron has kinetic energy EK

• h = incident photon energy 

• EB = binding energy of photoelectron

K B= -E h E
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1.6. PHOTON INTERACTIONS WITH MATTER

1.6.5. Photoelectric effect

❑ Schematic diagram of the photoelectric effect

• A photon interacts with an orbital electron

• Electron is emitted from the atom as a photoelectron
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❑ Photoelectric mass attenuation 

coefficient t/ plotted for C & Pb

(component of total attenuation 

coefficient m/ )

• Absorption edges:

• Sharp discontinuities when h = EB

of a given shell

• e.g., K absorption edge 

• For Pb: EB = 88 keV
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❑ Photoelectric atomic attenuation 

coefficients

• Atomic: at ~Z5/(h)3

• Mass: tm =t/ ~Z4/(h)3

❑ Photoelectric effect is the major 

contributor to m/ at

• Relatively low E = h ~ EB for K-shell 

• E < 0.1 MeV 

❑ At higher energies, major 

contributors to m/ are

• Compton effect (E ~ 1MeV)

• Pair production (E > 10MeV)
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1.6. PHOTON INTERACTIONS WITH MATTER

1.6.6. Rayleigh (coherent) scattering

❑ Rayleigh (coherent) scattering

• In coherent (Rayleigh) scattering the photon interacts with the full 

compliment of tightly bound atomic orbital electrons of the absorber 

atom

• Elastic

• Photon loses essentially none of its energy h

• Photon scattered through only a small angle q
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❑ Rayleigh (coherent) scattering

• Contributes m/ through elastic scattering process

• Rayleigh atomic attenuation coefficient

• asR ~  Z2/(h)2

• Rayleigh mass attenuation coefficient

• sR / ~  Z/(h)2

❑ Not important in radiation dosimetry because there’s no 

energy transfer from photons to charged particles in the 

absorber

❑ Amounts to only a few per cent of the total m/, but should 

not be neglected in attenuation calculations
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1.6. PHOTON INTERACTIONS WITH MATTER

1.6.7. Compton effect ("incoherent scattering")

❑ Compton effect ("incoherent scattering" or "Compton 

scattering")

• Interaction between  with E = h and a loosely bound (“free”)  e-

• ‘free’ because E >> EB , i.e. loosely bound means essentially 

‘free & stationary’

❑ Part of incident E = h transferred to “free” orbital electron 

which is emitted from the atom as the Compton (recoil) 

electron

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 – Slide 89/101



IAEA

❑ Photon is scattered through scattering angle q & its 

energy E' = h' is lower than E = h (incident photon 

energy)

❑ Angle f represents the angle between the incident 

direction and the Compton e- direction 
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❑ Conservation of energy

❑ Conservation of momentum (x axis)

❑ Conservation of momentum (y axis)
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1.6.7. Compton effect (incoherent scattering)

where

mec
2 rest energy of electron (0.511 MeV)

EK kinetic energy of recoil (Compton) electron

 velocity of recoil (Compton) electron

c speed of light in a vacuum (3×108 m/s)
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❑ Basic Compton equation (also referred to as the Compton 

wavelength-shift equation) follows from conservation of 

energy & momentum:

λ =  wavelength of the incident photon (c/ )

λ' =  wavelength of the scattered photon (c/')

Δλ =  wavelength shift in Compton effect (l' – l)

λC = Compton wavelength of the electron = 0.024Å

)cos1()cos1( C

e

qlqlll -=-==-
cm

h
'
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❑ Relationship between the scattered E & incident E is: 

❑ Relationship between the EK of recoil electron & incident E

is:

❑ Scattering q & recoil f angles are related as:
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❑ Energy of:

• forward scattered photons (q = 0)

• side-scattered photons (q = p / 2) 

• back-scattered photons (q = p)

❑ For h → 

• q = 0

• q = p / 2

• q = p
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❑ (Compton electronic attenuation coefficient)

• Steadily decreases with increasing h

• Theoretical value = 0.665 × 10–24 cm2/electron (Thomson cross-

section) at low E

• 0.21 × 10–24 cm2/electron at h = 1 MeV

• 0.51 × 10–24 cm2/electron at h = 10 MeV

• 0.008 ×10–24 cm2/electron at h = 100 MeV

• Independent of Z

• For C(Z = 6) and Pb(Z = 82) at E ~1 MeV, where Compton effect 

predominates, both are  0.1 cm2/electron irrespective of Z

❑ (Compton  atomic attenuation coefficient )

• Depends linearly on absorber Z (because Compton interaction is 

with free electron)

a Cs

e Cs
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❑ Compton maximum energy transfer fraction (fC)max :

• Maximum energy transfer to recoil electron occurs when photon is 

back-scattered (θ = π) 

❑ Mean energy transferred to the Compton electron 

normalized by h

• Very important in radiation dosimetry 

• fractional energy,  , transfer to recoil 

electrons is 

• = 0.02 at h = 0.01 MeV

• Rises and then reaches 1  

asymptotically at very high h
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Cf

Cf
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1.6. PHOTON INTERACTIONS WITH MATTER

1.6.8. Pair production 

❑ Pair production

• Production of  e- - e+ pair + complete absorption of incident photon 

by absorber atom

• Happens if : E = h > 2mec
2 = 1.022 MeV, with mec

2 = rest energy of 

e- & e+

❑ Conserves: 

• Energy

• Charge 

• Momentum
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❑ Two types of pair production are known:

• Nuclear pair production 

• Collision partner is absorber atomic nucleus 

• Characterized by: E > 2mec
2 = 1.022 MeV

• Electronic pair production or triplet 

production

• Less probable

• Pair production in Coulomb field of 

absorber orbital electron

• Threshold: E > 4mec
2 = 2.044 MeV
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❑ Pair production attenuation coefficients

• Usually as one parameter for nuclear & electronic 

• Nuclear pair production contributes > 90%

• Pair production atomic attenuation coefficient ak

• ak ~ Z2

• Pair production mass attenuation coefficient  k/ 

• k/ ~ Z

❑ Pair production probability 

• Zero for E < 2mec
2 = 1.022 MeV

• Increases rapidly with E > threshold
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❑ The probability for a photon to undergo any one of the 

various interactions absorber depends on:

• Photon energy h

• Absorber Z

• Pair production at high E

• Photoelectric effect generally predominates at low E

• Compton effect generally predominates at intermediate E
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1.6. PHOTON INTERACTIONS WITH MATTER

1.6.10. Macroscopic attenuation coefficients

❑ For a given h & Z:

• Linear attenuation coefficient m

• Linear energy transfer coefficient mtr

• Linear energy absorption coefficient mab (often designated men)

are given as a sum of coefficients for individual photon interactions

( )   PPaCCaPEa
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tratrCatra
A

tr fff
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N

A

N
kstkstm ++=++=
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= fraction of mean energy transferred from 

photons to charged articles  subsequently lost 

by charged articles through radiation losses
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