Chapter 6: Basic radiation detectors

Set of 60 slides based on the chapter authored by C.W.E. VAN EIJK Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands of the IAEA publication (ISBN 978–92–0–143810–2): *Nuclear Medicine Physics: A Handbook for Teachers and Students*

Objective: To familiarize the student with the fundamental concepts of basic radiation detectors

Slide set prepared in 2015 by J. Schwartz (New York, NY, USA)

CHAPTER 6 TABLE OF CONTENTS

- 6.1. Introduction
- 6.2. Gas filled detectors
- 6.3. Semiconductor detectors
- 6.4. Scintillation detectors and storage phosphors

6.1. INTRODUCTION 6.1.1. Radiation detectors — complexity and relevance

- Radiation detectors are of paramount importance in nuclear medicine
- The detectors provide a wide range of information including:
 - Radiation dose of a laboratory worker
 - Positron emission tomography (PET) image of a patient

Consequently, detectors with strongly differing specifications are used

6.1. INTRODUCTION 6.1.2. Interaction mechanisms, signal formation and detector type

Radiation detectors

- Sensors that produce signals upon interaction with radiation
- Signals can be processed electronically to give requested information
- \Box X-rays & γ -rays interaction mechanisms
 - Photoelectric effect
 - Compton scattering
 - Pair production
 - Relative importance depends on
 - Radiation energy
 - Interaction medium
 - Result in production of energetic electrons
 - These will eventually transfer their energy to interaction medium by ionization and excitation

6.1. INTRODUCTION 6.1.2. Interaction mechanisms, signal formation and detector type

- Charged particles transfer their energy by ionization & excitation
- Ionization results in
 - Charge carriers production:
 - ✓ Electrons and ions in a gaseous detection medium
 - \checkmark Electrons and holes in a semiconductor material
 - ✓ Light quanta emission in scintillators

Radiation detectors

- Charge or current forms signal
- Signal created by charge motion in applied electric field
 - ✓ Gas filled detectors
 - Semiconductor detectors
- Light emission observed using light sensor that produces charge or current

✓ Scintillation detectors

6.1. INTRODUCTION 6.1.3. Counting, current, integrating mode

Radiology / radiotherapy radiation detectors

- Operated in current mode
- Intensities too high for individual counting of events

Nuclear medicine

- Primarily use counting mode
- Energy information
- Arrival time information

Personal dosimeters

- Detector used in integrating mode
- Dose is measured monthly
- Information extracted much later after actual interaction

6.1. INTRODUCTION 6.1.4. Detector requirements

Radiation detector quality expressed in terms of

- Sensitivity
- Energy resolution
- Time and position resolution
- Counting rate performance

6.1. INTRODUCTION 6.1.4. Detector requirements 6.1.4.1. Sensitivity

- Sensitivity depends on
 - Subtended solid angle
 - Detector efficiency for radiation interaction
 - Relevant energy range is ~30–511 keV, where it's governed by:
 - Photoelectric effect
 - Attenuation length (cm) ~ ρZ_{eff}^{3-4}
 - ρ = density, Z_{eff} = effective atomic number of the compound
 - Compton scattering
 - Almost independent of Z
 - Proportional to p
 - ρ of gas-filled detector is 3 orders of magnitude smaller than for solid state detector
 - Need highest possible ρ and Z_{eff} at 511 keV

Energy resolution

- Strongly coupled to number of information carriers
- Number of information carriers
 - Given by N = E/W
 - E = Radiation energy
 - W = Mean energy needed to produce information carrier
 - Largest number produced in semiconductors
 - Smallest number produced in inorganic scintillators + PMT's

Mean energies W to produce information carriers

Detector type	W(eV)
Gas filled (electron-ion)	30
Semiconductor (electron-hole)	3
Inorganic scintillator (light quantum)	25
Inorganic scintillator + PMT (electron)	100
Inorganic scintillator + Si diode (electron-hole pair)	35

Energy resolution definition:

$$\frac{\Delta E}{E} = \frac{\Delta N}{N} = 2.35 \sqrt{\frac{FW}{E}}$$

- $\Delta E = FWHM$
- N = E/W
- $\Delta N = 2.35\sigma$
- $\sigma^2 = FN$

EΑ

- F = Fano factor
 - Gas-filled detectors
 - Semiconductors
 - Scintillator

F = 0.05 - 0.20

- *F*≈0.12
- F = 1

Time resolution

- Mainly important for PET in nuclear medicine
- Time resolution depends on 2 main factors
 - Rise time of the signal pulses
 - Height of the signal pulses
 - Important because there is also noise
 - Easier to determine pulse position when the pulse is higher relative to noise
 - Time jitter due to pulse height (energy) variation is less important
- Inorganic Scintillators detectors preferred because they have
 - Fast response
 - Fast rise time
 - Light sensors' fast response

Position resolution

- Most easily obtained by pixelating detector at pitch corresponding to requested resolution
- In nuclear medicine, important in:
 - Gamma camera /SPECT
 - PET detection systems
 - Use of monolithic scintillator blocks recently studied
 - Light detection by pixelated sensors
 - Analogous to gamma camera
 - Broad light distribution measured using pixels smaller than centre of the distribution
 - Resolution better than the pixel size

- Achievable counting rate depends on
 - Detector response time
 - Time to transport charge carriers to form signal
 - Time to emit the scintillation light
 - Time needed to process the signals
 - Time needed to handle the data

Dead time (DT): Minimum time between true events at which these are counted separately

- Non-paralysable detectors
 - Second event $t < \tau \Rightarrow$ Not counted
 - Second event $t > \tau \Rightarrow$ Counted
 - DT fixed at τ

$$R = \frac{T}{1 + T\tau}$$

- *T* = true event rate
- R = counting rate
- $R\tau$ = Fraction of time system is dead
- $TR\tau$ = rate of loss of events = T R

- Paralysable detectors
 - Second event $t < \tau \Rightarrow$ not counted
 - > DT extended τ from time of second event
 - 3rd event at t > τ after 1st event & within τ after 2nd event ⇒ not counted
 - > DT extended another τ
 - DT is not fixed
 - Can become >> τ
 - i.e. 'extendable' dead time
 - Counted: event which occurs at $t > \tau$
 - Counting rate = rate of occurrences of time intervals > τ between events $R = Te^{-T\tau}$

Relation between R and T for

non-paralysable and paralysable cases

> if $\tau = 0$, than R = T

Energetic electrons

- Produce secondary electrons travelling through gas
- Secondary electrons drift to anode & ions to cathode

The mode of operation depends on applied voltage (V)

- Relatively low V
 - Recombination region
 - Produces weak electric field E
 - E too weak to efficiently separate the (-) and (+) charges
 - Some will recombine
 - Full signal not observed

Increasing V decreases recombination

- Relatively high voltage V
 - Full ionization

EA

- Heavier charged particles & higher rates \rightarrow higher V
- Signal becomes constant over wide V range
- Typical operating V of ionization chamber: 500 to 1000 V

Pulse height as a function of applied high V for gas filled detectors

- Operation at stronger electric field E
 - Examples:
 - cylindrical detector geometry
 - thin anode wire in centre
 - metal cylinder as cathode
 - $E(r) \propto V/r$
 - At V_{T} = threshold voltage
 - E near anode

(1–3 kV)

- Very strong
- Drifting electron gains enough energy to ionize gas atom
- Proportional region
 - For gain $M \approx 10^4$, M is independent of deposited energy
 - proportional counter
- At normal temperature and pressure $E_{\rm T} \approx 10^6$ V/m.
 - For parallel plate geometry with depth ~1 cm, $V_T \approx 10 \text{ kV} \rightarrow \text{not practicable}$
- Due to the r⁻¹ dependence manageable V can be applied for proportional operation

Cylinder geometry

- Operation at stronger electric field E
 - At further increased V
 - Space charge effects start to reduce effective E
 - Affect the gain
 - Process will start at lower V for higher primary ionization density events
 - Limited proportionality region is entered
 - At further increased V
 - Pulse height will become independent of the deposited energy
 - Geiger–Müller region is entered
 - V further increased
 - Ionization zone expands
 - Avalanche & significant amplification obtained

Multi-wire proportional chamber (MWPC)

- Alternate geometry
- Many equidistant parallel anode wires
 - Pitch of 1–2 mm
 - Positioned in a plane inside a box
 - Walls are cathode planes
- Employed in autoradiography
- Micro-patterned detectors made with photo-lithography
 - Operate analogously to the MWPC
 - Examples:
 - Micro-strip gas chamber
 - Gas electron multiplier
 - Spatial resolutions are of the order of 0.1 mm

- Semiconductor detector is a capacitor
 - After interaction
 - Electrons lifted from valence into conduction band
 - Charge carriers transported in applied electric field

- Applying voltage difference to electrodes on opposite sides of a slab of semiconductor leads to a current that's too high for practical use as detector
- At room temperature,

EA

- Electrons are lifted from valence to conduction band by thermal excitation due to small gap (E_{gap} ≈ 1 eV)
- Free electrons and holes cause a current
 - Make into a diode and operate in reverse bias

- **Example:** Silicon
 - Semiconductor-electronics used to make diode structure
 - N-type silicon
 - Doped with electron-donor impurities
 - Reduces number of holes
 - Electrons are the majority charge carriers
 - P-type silicon
 - Doped with electron-acceptor impurities
 - Strongly reduces number of free electrons
 - Holes are the majority charge carriers

- **Example:** Silicon
 - Junction diode
 - Formed when n-type brought into contact with p-type material
 - Depletion region
 - Space charge zone results at junction
 - Due to diffusion of majority charge carriers
 - Reverse-biased
 - Positive voltage applied on n-type side with respect to p-type side
 - Depletion layer thickness increased
 - High enough voltage fully depletes layer
 - No free charge carriers left
 - Virtually no current flows
 - Only small current remains (leakage or dark current)

- **Example:** Silicon
 - Diode
 - n-type doped with impurities in narrow zone
 - makes p⁺ n junction
 - *p*⁺: high doping concentration
 - Use high-purity Si & blocking contact for further leakage current reduction
 - n⁺ doping at n-type side
 - If the leakage current is still problematic, the temperature can be decreased
 - Use of high purity semiconductor material is important for reducing leakage current
 - Energy levels in the gap may trap charge carriers resulting from the interaction with radiation and the energy resolution of a detector would be reduced

- **Example:** $Silicon \rightarrow Other approaches to make a detector$
 - Start with p-type material and make n⁺p junction diode
 - Apply a combination of surface oxidation and deposition of thin metal layer
 - Called surface barrier contacts
 - For thicknesses <1 mm it's possible to use intrinsic Si with p⁺ & n⁺ blocking contacts on opposite sides (p–i–n configuration)
 - For thicker detectors impurities are compensated for by introducing interstitial Li ions
 - Use slightly p-type intrinsic Si
 - Li ions act as electron donors
 - Li ions can be drifted ~10 mm

EA

• For large enough band gap metal contacts will suffice

Important parameters of electrons and holes

- Mobilities: μ_{e} and μ_{h}
- Lifetimes: $\tau_{\rm e}$ and $\tau_{\rm h}$
- Drift velocity $v_{e,h}$ in electric field E
- The path length a charge carrier can travel in its lifetime is given by:

$$\nu_{\rm e,h}\tau_{\rm e,h} = \mu_{\rm e,h}\tau_{\rm e,h}E$$

- Mobilities for a given detector size and E
 - Provide drift times of charge carriers
 - Provide signal formation times
- Mobilities & lifetimes are related to the probability that charge carriers arrive at collecting electrodes

Semiconductor properties relevant for nuclear medicine

- Density ρ
- $Z_{\rm eff}$ for photoelectric effect
- E_{gap} and W value
- $\mu_{e,h}$ and their products with lifetimes
- Si primarily of interest for (position sensitive) detection of low energy X rays, beta particles and light quanta

	ρ	$Z_{\rm eff}$	E _{gap} (eV)	W ^a (eV)	Mobility (cm ² /Vs)		$\begin{array}{c} \text{Mobility} \times \text{lifetime} \\ (\text{cm}^2/\text{V}) \end{array}$	
	(g/chi)				$\mu_{\rm e}$	$\mu_{ m h}$	$\mu_{\rm e}\tau_{\rm e}$	$\mu_{\rm h} \tau_{\rm h}$
Si (300 K)	2.3	14	1.12	3.6	1 350	480	>1	~1
Si (77 K)			1.16	3.8	21 000	11 000	>1	>1
Ge (77 K)	5.3	32	0.72	3.0	36 000	42 000	>1	>1
CdTe (300 K)	6.2	50	1.44	4.7	1 100	80	$3 imes 10^{-3}$	2×10^{-4}
Cd _{0.8} Zn _{0.2} Te (CZT-300 K)	~6	50	1.5-2.2	~5	1 350	120	4×10^{-3}	1 × 10 ⁻⁴
HgI ₂ (300 K)	6.4	69	2.13	4.2	70	4	$5 imes 10^{-3}$	$3 imes 10^{-5}$

Nuclear Medicine Physics: A Handbook for Teachers and Students – Chapter 6 – Slide 30/60

- Detection of X-rays of 300 eV 60 keV
 - Si(Li)
 - Commercially available planar circular Li drifted p-i-n
 - Thickness up to 5mm
 - Diameters 4–20 mm
 - For typical E=1000 V/cm drift times to electrodes are on the order of tens of ns
 - Energy resolutions (FWHM) at 5.9 keV are 130–220 eV at 77 K
 - Position sensitive Si detectors commercially available with a large variety of pixel structures
 - Si detectors also used in personal dosimeters

High resolution gamma-ray spectroscopy uses Ge detectors

- Higher density & Z
- Made of high purity material
- Large volume detectors in coaxial geometry
 - Made of cylindrical crystals with core removed
 - High purity n-type or p-type used with corresponding junction
 - Contacts on outside and blocking contacts on inside
 - Operated at 77 K
- Commercially available cylindrical detectors
 - Diameter ≤ 10 cm, height ≤ 10 cm
- Drift times to electrodes ≤ 100 ns
- Typical energy resolutions
 - 1 keV at 122 keV γ-ray energy
 - 2 keV at 1332 keV γ-ray energy

CdTe (cadmium telluride) and CZT (cadmium zinc telluride)

- Z is significantly higher than for Ge
- Possible to operate at room temperature due to larger band gap
- High purity n-type or p-type material is used
- Worse energy resolution than Ge
 - e.g. 2.5% FWHM at 662 keV (primarily due to relatively short lifetime of holes, resulting in incomplete charge collection)
- To observe the electron signal only use either or both:
 - Electronic correction techniques
 - Detectors with special electrode configurations (small pixels or grids)
- Dimensions: ~ 25 × 25 × 10 mm³
- 16 × 16 pixels detectors are available
- e.g. used for SPECT innovation

Hgl₂ (mercury iodide) is attractive for efficient γ-ray detection

- Large density and high Z
- Room temperature operation possible due large band gap
- Cons
 - Mobilities are low
 - Charge collection, in particular of holes, is poor
 - Application is limited to thicknesses ≤10 mm
- *E* = 2500 V/cm
- Areas \approx 30 x 30 mm²

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 6.4.1. Basic principles

- Scintillation is prompt emission of light after radiation interaction
- In nuclear medicine, inorganic ionic crystals are most important
 - High density & Z
 - Fast response
 - High light yield
 - Large crystals can be grown
 - Primarily for X-ray and γ-ray detection
 - Metastable states (traps) are created in some materials
 - may live ms to months (storage phosphors)
- Organic scintillators are another group
 - Crystals, plastics and liquids
 - Low density & Z
 - Primarily for counting β particles

- A scintillation crystal is coupled to a PMT to make a detector
- Inside of entrance window to the evacuated glass envelope is covered with a photocathode which converts photons into electrons

- Photocathode consists of thin layer of alkali materials with very low work functions
 - Examples
 - Bialkali K₂CsSb
 - Multialkali Na₂KSb:Cs
 - Negative electron affinity (NEA) material such as GaAs:Cs,O

- Conversion efficiency of PMT is called Quantum Efficiency η
 - Strongly wavelength dependent
 - At 400 nm, η = 25–40%

6.4.2.1. Photomultiplier tubes

Emitted electrons focused onto first dynode via electrode structure

- Applied voltage = 200–500 V
- Collection efficiency $\alpha \approx 95\%$
- Typical materials are BeO–Cu, Cs₃Sb and GaP:Cs
 - The latter is an NEA material
- Electrons released by secondary emission if electron hits dynode
 - Focused onto next dynode
 - Secondary electrons emitted again
- N = Number of dynodes = 8–12
- Last dynode (anode) provides signal
- Multiplication factor
 - $\delta \approx 5$ per dynode at inter-dynode voltage = 100 V
 - First dynode has higher multiplication factor $\delta_1 \ge 10$
 - Improves single-electron pulse resolution & signal to noise ratio

6.4.2.1. Photomultiplier tubes

- Signal properties
 - Starting with N photons in the scintillator
 - Assuming full light collection on the photocathode
 - $N_{\rm el}$ = Number of electrons at anode is given by:

$$N_{\rm el} = \delta_1 \delta^{n-1} \alpha \eta N$$

- Gains of 10⁶–10⁷ are obtained
- Negative high voltage (1000–2000 V) often used with anode at ground potential
- Operational care
 - Care must be taken of metal parts near the cathode
 - Detector housing should never be opened with voltage on
 - Exposure to daylight would damage the photocathode permanently

- PMTs
 - Available with circular, square or hexagonal photocathodes
 - Cathode diameters = 10 150 mm
 - If diameter ~ 50 mm ⇒ length ~ 150 mm (including contact pins)
 - Also available pixelated with multi-anode
- Time resolution optimized by making special tubes with electron transit times as the anode, independent of cathode position where electron emitted
- Electron transit time ~ 30 ns
- Spread standard deviation ~ 250 ps
- Signal rise time ~ 1.5 ns

- Microchannel plate (MCP) PMT
 - Aimed at ultra-fast timing
 - Replaces dynodes for electron multiplication
 - Thickness ~ 1 mm
 - Has large number of closely packed hollow glass tubes
 - Channel diameter = 5–50 μm
 - Inner tube surface is covered with a secondary emission material (e.g. PbO)
 - The glass surfaces on the front and back side are covered with metal contacts
 - Placed in vacuum
 - 1000 V applied between contacts, positive on the back side

- Microchannel plate (MCP)
 - An electron enters glass tube on front side & hits wall
 - Secondary electron emission occurs
 - Electrons pulled to back side by E
 - Hit channel wall & produce secondaries, etc.
 - Eventually leave tube at back
 - Electron multiplication ≤ 10⁴

MCP-PMT uses 2 MCPs at close distance

- Structure called chevron
- Glass tubes at an angle
 - Prevent ions from gaining too much energy
- At 3000 V, stable gains ~ 10⁶
- Advantage: short path length of electrons
 - Transit times ~ few ns
 - Transit time spreads ~ 100 ps
- Commercially available as:
 - Circular with diameter = 10 mm
 - Square with multi-anode structures
- Sensitive between 115 nm (MgF₂ window) infrared

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 6.4.2. Light sensors 6.4.2.2. Silicon based photon sensors

- Si photodiodes preferred in some applications
 - PMTs have large size, high voltages, small quantum efficiency and sensitivity to magnetic fields
 - Si diodes are usually p-i-n structure (PIN diodes)
 - Thickness = 2 mm including packaging
 - Shapes: circular, rectangular or square, up to 30 mm × 30 mm
 - Bias voltages < 150 V

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 6.4.2. Light sensors 6.4.2.2. Silicon based photon sensors

- Si photodiodes preferred in some applications
 - Quantum efficiency can be
 > 80% at longer wavelengths

- Disadvantages
 - Large capacitance = 20–300 pF
 - Large leakage current ~ 1–10 nA
 - Significant noise level
 - Affects energy resolution negatively

6.4.2.2. Silicon based photon sensors

- Avalanche photodiode (APD)
 - Semiconductor analogue to proportional counter
 - A high E-field is created in small zone
 - Drifting electron can gain enough energy to produce (e-h) pair
 - An avalanche results
 - Critical field for multiplication = 10⁷ V/m
 - Higher V → higher gain
 - Voltages applied = 50–1500 V depending on type
 - Gains are $M \lesssim 1000$
 - Lifts signal well above noise as compared to Si diode
 - At a certain gain, the advantage is optimal

6.4.2.2. Silicon based photon sensors

- Avalanche photodiode (APD)
 - Break-down voltage V_{br}
 - Spontaneous charge multiplication occurs
 - At voltages > $V_{\rm br}$
 - For gains of M 10⁵ 10⁶
 - Geiger mode
 - Pulses are equal in magnitude
 - Signal quenching techniques have to be used
 - Available as circular & square with areas = sub-mm² -1 cm²
 - Available with various pixelations
 - e.g. of 4×8 at 2.5 mm pitch & fill factor $\leq 40\%$

- 6.4.2.2. Silicon based photon sensors
- Hybrid photomultiplier tube (HPMT)
 - Voltage between photocathode & Si diode ~ 10 kV
 - Si diode placed inside vacuum enclosure
 - Photoelectrons accelerated in resulting E field
 - Diode is relatively small
 - Reduces capacitance which reduces noise level
 - Need 3.6 eV to produce 1 e-h pair
 - 3000 e-h pairs produced per impinging electron
 - Signals from one or more photons are well separated
 - Possible overall gain with APD = 10⁵
 - Window diameters are as large as 70 mm

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 6.4.2. Light sensors 6.4.2.2. Silicon based photon sensors

- Silicon photomultiplier (SiPM)
 - Array of tiny APDs operating in Geiger mode
 - Dimensions: 20 × 20 μm² to 100 × 100 μm²
 - Number of APDs per $mm^2 = 2500 100$
 - Fill factor from < 30% to 80% for smallest to largest dimensions
 - All APDs signals are summed
 - Time spread < 100 ps
 - Excellent time resolutions

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 6.4.2. Light sensors 6.4.2.2. Silicon based photon sensors

- Silicon photomultiplier (SiPM)
 - Gains M = 10⁵-10⁶
 - Can easily obtain a signal from a single photon
 - Spontaneous Geiger pulses can be eliminated by setting a threshold above the one electron response
 - Available arrays
 - 2 × 2 pixels and 4 × 4 pixels
 - 3 × 3 mm² each
 - Pitch of 4 mm
 - A 16 × 16 pixel array of 50 × 50 mm² (recently introduced)
 - Blue sensitive SiPMs have detection efficiency of 25% at 400 nm, including a 60% fill factor

- Inorganic scintillator bandgap has to be relatively large so as to:
 - *E*_{gap} ≥ 4 eV
 - Avoid thermal excitation
 - Allow scintillation photons to travel in material without absorption
- Thus: inorganic scintillators are based on ionic-crystal materials

Three steps scintillation photons production

- 1. Interaction with bulk material & thermalization of electrons and holes
 - Electrons go to bottom of conduction band
 - Holes go to top of the valence band
- 2. Transport of charge carriers to intrinsic or dopant luminescence centres
- 3. Interaction with these centres
 - Excitation
 - Relaxation
 - Scintillation

Using this model, the number of photons N_{ph} produced under absorption of a gamma ray with energy E is:

$$N_{\rm ph} = \frac{E}{\beta E_{\rm gap}} SQ$$

- $E/\beta E_{gap}$ = number of e-h pairs at bandgap edge
- β≈2.5
- S & Q are the efficiencies of steps 2. and 3. in previous slide

6.4.3.1. Inorganic scintillators

Specifications of some inorganic scintillators

Scintillator	ρ (g/cm ³)	Z _{eff}	$1/\mu_{511}$ (mm)	Photoelectric effect (%)	λ_{\max} (nm)	N _{ph} (photons/MeV)	R ₆₆₂ (%)	τ (ns)
NaI:Tl ^a	3.67	51	29	17	410	41 000	6.5	230
CsI:Tl	4.51	54	23	21	540	64 000	4.3	800, 10 ⁴
BaF ₂	4.88		23		220	1500		0.8
					310	10 000		600
$Bi_3Ge_4O_{12}(BGO)$	7.1	75	10.4	40	480	8520		300
LaCl ₃ :Ce ^a	3.86	49.5	28	15	350	49 000	3.3	25
LaBr ₃ :Ce ^a	5.07	46.9	22	13	380	67 000	2.8	16
YAlO ₃ :Ce (YAP)	5.5	33.6	21	4.2	350	21 000	4.4	25
Lu _{0.8} Y _{0.2} Al:Ce (LuYAP)	8.3	65	11	30	365	11 000		18
Gd ₂ SiO ₅ :Ce (GSO)	6.7	59	14.1	25	440	12 500	9	60
Lu ₂ SiO ₅ :Ce,Ca (LSO)	7.4	66	11.4	32	420	~36 000	7	36–43
Lu _{1.8} Y _{0.2} SiO ₅ : Ce (LYSO)	7.1		12		420	30 000	7	40

^a Hygroscopic

Nuclear Medicine Physics: A Handbook for Teachers and Students – Chapter 6 – Slide 54/60

- The scintillators in the table are commercially available
- If hygroscopic, they are canned with reflective material
- Only BaF₂ and BGO have intrinsic luminescence centre
- Others have TI⁺ or Ce³⁺ ions as dopant luminescence centre
 - Ce doped scintillators show a relatively fast response
 - Of the order of tens of ns
 - Due to allowed $5d \rightarrow 4f$ dipole transition of the Ce ion
 - TI doped scintillators much slower because these transitions are forbidden

In general, mixed or co-doped crystals have advantages in:

- Crystal growing
- Response time
- Light yield
 - Large variation due to S < 1
- Afterglow effects

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 6.4.3. Scintillator materials 6.4.3.2. Organic scintillators — crystals, plastics and liquids

- Organic scintillators scintillation mechanism based on molecular transitions
 - Hardly affected by physical state of the material
- There are pure organic scintillator crystals such as
 - Anthracene
 - Plastics
 - Polystyrene
 - Liquids (Xylene)

6.4.3.2. Organic scintillators — crystals, plastics and liquids

- There are also solutions of organic scintillators in organic solid (plastic) and liquid solvents
 - Typical combinations: p-terphenyl in polysterene (plastic) and p-terphenyl in toluene
- There are also systems with POPOP added for wavelength shifting. In general:
 - Organic scintillators luminesce at ~420 nm, have a light yield of ~10 000 photons/MeV of absorbed γ-ray energy
 - Decay times are about 2 ns

6.4.3.3. Storage phosphors — thermoluminescence /optically stimulated luminescence

Storage phosphor

- Analogous to inorganic scintillator
- Difference: a significant part of interaction energy is stored in long-living traps
 - These are the memory bits of a storage phosphor
- The lifetime must be long enough for the application considered

Readout is done by thermal (heating) or optical stimulation

- Electron lifted from the trap into the conduction band and transported to a luminescence centre
- The intensity of the luminescence is recorded
- Processes called thermoluminescence & optically/photon stimulated luminescence

6.4.3.3. Storage phosphors — thermoluminescence /optically stimulated luminescence

LiF:Mg,Ti is widely used

- Commercial name TLD-100
- Sensitivity = 50 µGy to 1 Gy

LiF:Mg,Cu,P (GR-200)

- Newer & more sensitive
- Sensitivity = 0.2 μ Gy to 1 Gy

$\Box Al_2O_3:C$

- Optically stimulated luminescent material
- Recently introduced
- Sensitivity = 0.3 µGy to 30 Gy
- Also used in radiography
- Used for dosimetry for > 50 years
 - Thermoluminescence dosimeter

