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6.1. INTRODUCTION

6.1.1. Radiation detectors — complexity and relevance

❑ Radiation detectors are of paramount importance in 

nuclear medicine 

❑ The detectors provide a wide range of information 

including:

• Radiation dose of a laboratory worker 

• Positron emission tomography (PET) image of a patient 

❑ Consequently, detectors with strongly differing 

specifications are used
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6.1. INTRODUCTION

6.1.2. Interaction mechanisms, signal formation and 

detector type

❑ Radiation detectors

• Sensors that produce signals upon interaction with radiation 

• Signals can be processed electronically to give requested 

information

❑ X-rays & -rays interaction mechanisms 

• Photoelectric effect

• Compton scattering 

• Pair production

• Relative importance depends on 

• Radiation energy 

• Interaction medium

• Result in production of energetic electrons 

• These will eventually transfer their energy to interaction medium by 

ionization and excitation
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6.1. INTRODUCTION

6.1.2. Interaction mechanisms, signal formation and 

detector type

❑ Charged particles transfer their energy by ionization & 

excitation

❑ Ionization results in

• Charge carriers production:

✓ Electrons and ions in a gaseous detection medium 

✓ Electrons and holes in a semiconductor material

✓ Light quanta emission in scintillators

❑ Radiation detectors

• Charge or current  forms signal 

• Signal created by charge motion in applied electric field

✓ Gas filled detectors

✓ Semiconductor detectors 

• Light emission observed using light sensor that produces charge or 

current
✓ Scintillation detectors
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6.1. INTRODUCTION

6.1.3. Counting, current, integrating mode

❑ Radiology / radiotherapy radiation detectors 

• Operated in current mode 

• Intensities too high for individual counting of events 

❑ Nuclear medicine

• Primarily use counting mode 

• Energy information

• Arrival time information

❑ Personal dosimeters

• Detector used in integrating mode 

• Dose is measured monthly

• Information extracted much later after actual interaction 
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6.1. INTRODUCTION

6.1.4. Detector requirements

❑ Radiation detector quality expressed in terms of 

• Sensitivity

• Energy resolution

• Time and position resolution

• Counting rate performance
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6.1. INTRODUCTION

6.1.4. Detector requirements

6.1.4.1. Sensitivity

❑ Sensitivity depends on 

• Subtended solid angle

• Detector efficiency for radiation interaction 

• Relevant energy range is ~30–511 keV, where it’s governed by:

• Photoelectric effect 

• Attenuation length (cm) ~ ρZeff
3–4

ρ = density, Zeff = effective atomic number of the compound 

• Compton scattering

• Almost independent of Z

• Proportional to ρ

• ρ of gas-filled detector is 3 orders of magnitude smaller than for 

solid state detector 

• Need highest possible ρ and Zeff at 511 keV
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6.1. INTRODUCTION

6.1.4. Detector requirements

6.1.4.2. Energy, time and position resolution

❑ Energy resolution 

• Strongly coupled to number of information carriers

• Number of information carriers 

• Given by N = E/W 

• E = Radiation energy

• W = Mean energy needed to produce information carrier

• Largest number produced in semiconductors

• Smallest number produced in inorganic scintillators + PMT’s
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6.1. INTRODUCTION

6.1.4. Detector requirements

6.1.4.2. Energy, time and position resolution

Detector type W (eV)

Gas filled (electron–ion) 30

Semiconductor (electron–hole) 3

Inorganic scintillator (light quantum) 25

Inorganic scintillator + PMT (electron) 100

Inorganic scintillator + Si diode (electron–hole pair) 35

❑ Mean energies W to produce information carriers
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6.1. INTRODUCTION

6.1.4. Detector requirements

6.1.4.2. Energy, time and position resolution

❑ Energy resolution definition:

• ΔE = FWHM

• N = E/W

• ΔN = 2.35s

• s 2=FN

• F = Fano factor

➢ Gas-filled detectors F = 0.05–0.20 

➢ Semiconductors F ≈ 0.12

➢ Scintillator F = 1

2.35
E N FW

E N E

 
= =
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6.1. INTRODUCTION

6.1.4. Detector requirements

6.1.4.2. Energy, time and position resolution

❑ Time resolution 

• Mainly important for PET in nuclear medicine

• Time resolution depends on 2 main factors

• Rise time of the signal pulses

• Height of the signal pulses

• Important because there is also noise

• Easier to determine pulse position when the pulse is higher relative to 

noise

• Time jitter due to pulse height (energy) variation is less important

• Inorganic Scintillators detectors preferred because they have 

• Fast response 

• Fast rise time

• Light sensors’ fast response
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6.1. INTRODUCTION

6.1.4. Detector requirements

6.1.4.2. Energy, time and position resolution

❑ Position resolution 

• Most easily obtained by pixelating detector at pitch 

corresponding to requested resolution 

• In nuclear medicine, important in:

• Gamma camera /SPECT

• PET detection systems

• Use of monolithic scintillator blocks recently studied

• Light detection by pixelated sensors

• Analogous to gamma camera

• Broad light distribution measured using pixels smaller than 

centre of the distribution

• Resolution better than the pixel size
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6.1. INTRODUCTION

6.1.4. Detector requirements

6.1.4.3. Counting rate and dead time

❑ Achievable counting rate depends on

• Detector response time 

• Time to transport charge carriers to form signal 

• Time to emit the scintillation light

• Time needed to process the signals 

• Time needed to handle the data
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6.1. INTRODUCTION

6.1.4. Detector requirements

6.1.4.3. Counting rate and dead time

❑ Non-paralysable detectors

• Second event t < t   Not counted

• Second event t > t  Counted

• DT fixed at t

• T = true event rate 

• R = counting rate 

• Rτ = Fraction of time system is dead 

• TRτ = rate of loss of events = T – R

Dead time (DT): Minimum time between true events at which 

these are counted separately 

tT

T
R

+
=

1
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6.1. INTRODUCTION

6.1.4. Detector requirements

6.1.4.3. Counting rate and dead time

❑ Paralysable detectors

• Second event t < t  not counted

➢ DT extended t from time of second event

• 3rd event at t > t after 1st event & within t after 2nd event 

not counted 

➢ DT extended another t

• DT is not fixed 

• Can become >>t

• i.e. ‘extendable’ dead time 

• Counted: event which occurs at t >t

• Counting rate = rate of occurrences of time intervals > t
between events tTTR −= e
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6.1. INTRODUCTION

6.1.4. Detector requirements

6.1.4.3. Counting rate and dead time

❑ Relation between R and T for 

➢ non-paralysable and paralysable cases

➢ if t = 0, than R = T
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6.2. GAS FILLED DETECTORS

6.2.1. Basic principles 

❑ Energetic electrons 

• Produce secondary electrons travelling through gas

• Secondary electrons drift to anode & ions to cathode

The mode of operation depends on applied voltage (V)
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6.2. GAS FILLED DETECTORS

6.2.1. Basic principles 

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 6 –

➢ Relatively low V

• Recombination region

• Produces weak electric field E

• E too weak to efficiently separate the (-) and (+) charges 

• Some will recombine

• Full signal not observed 

Increasing V decreases recombination

➢ Relatively high voltage V

• Full ionization 

• Heavier charged particles & higher rates→ higher V

• Signal becomes constant over wide V range

• Typical operating V of ionization chamber: 500 to 1000 V
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6.2. GAS FILLED DETECTORS

6.2.1. Basic principles 

❑ Pulse height as a function of applied high V for gas filled  

detectors
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6.2. GAS FILLED DETECTORS

6.2.1. Basic principles 

❑ Operation at stronger electric field E

• Examples:

• cylindrical detector geometry 

• thin anode wire in centre 

• metal cylinder as cathode 

• E(r) V/r

• At VT = threshold voltage 

• E near anode 

• Very strong 

• Drifting electron gains enough energy to ionize gas atom

• Proportional region

• For gain M ≈ 104, M is independent of deposited energy

• proportional counter

• At normal temperature and pressure ET ≈ 106 V/m. 

• For parallel plate geometry with depth ~1 cm, VT ≈ 10 kV → not practicable

• Due to the r–1 dependence manageable V can be applied for proportional operation 

(1–3 kV)
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6.2. GAS FILLED DETECTORS

6.2.1. Basic principles 

❑ Operation at stronger electric field E

• At further increased V

• Space charge effects start to reduce effective E

• Affect the gain

• Process will start at lower V for higher primary ionization density 

events 

• Limited proportionality region is entered 

• At further increased V

• Pulse height will become independent of the deposited energy

• Geiger–Müller region is entered 

• V further increased

• Ionization zone expands 

• Avalanche & significant amplification obtained
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6.2. GAS FILLED DETECTORS

6.2.1. Basic principles 

❑ Multi-wire proportional chamber (MWPC) 

• Alternate geometry

• Many equidistant parallel anode wires 

• Pitch of 1–2 mm 

• Positioned in a plane inside a box 

• Walls are cathode planes

• Employed in autoradiography

• Micro-patterned detectors made with photo-lithography 

• Operate analogously to the MWPC

• Examples:

• Micro-strip gas chamber 

• Gas electron multiplier

• Spatial resolutions are of the order of 0.1 mm
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6.3. SEMICONDUCTOR DETECTORS

6.3.1. Basic principles

❑ Semiconductor detector is a capacitor

• After interaction

• Electrons lifted from valence into conduction 

band

➢Charge carriers transported in applied 

electric field

• Applying voltage difference to electrodes on opposite sides of 

a slab of semiconductor leads to a current that’s too high for 

practical use as detector

• At room temperature, 

• Electrons are lifted from valence to conduction band by thermal 

excitation due to small gap (Egap ≈ 1 eV)

• Free electrons and holes cause a current

 Make into a diode and operate in reverse bias
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6.3. SEMICONDUCTOR DETECTORS

6.3.1. Basic principles

❑ Example: Silicon

• Semiconductor-electronics used to make diode structure

• N-type silicon 

• Doped with electron-donor impurities

• Reduces number of holes

• Electrons are the majority charge carriers 

• P-type silicon

• Doped with electron-acceptor impurities 

• Strongly reduces number of free electrons

• Holes are the majority charge carriers
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6.3. SEMICONDUCTOR DETECTORS

6.3.1. Basic principles

❑ Example: Silicon 

• Junction diode 

• Formed when n-type brought into contact with p-type material

• Depletion region 

• Space charge zone results at junction

• Due to diffusion of majority charge carriers 

• Reverse-biased 

• Positive voltage applied on n-type side with respect to p-type side 

• Depletion layer thickness increased

• High enough voltage fully depletes layer

• No free charge carriers left 

• Virtually no current flows

• Only small current remains (leakage or dark current)
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6.3. SEMICONDUCTOR DETECTORS

6.3.1. Basic principles

❑ Example: Silicon 

• Diode

• n-type doped with impurities in narrow zone 

• makes p+ n junction

• p+: high doping concentration

• Use high-purity Si & blocking contact for further leakage current 

reduction 

• n+ doping at n-type side

• If the leakage current is still problematic, the temperature can be 

decreased

• Use of high purity semiconductor material is important for reducing 

leakage current

• Energy levels in the gap may trap charge carriers resulting from the 

interaction with radiation and the energy resolution of a detector would 

be reduced
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6.3. SEMICONDUCTOR DETECTORS

6.3.1. Basic principles

❑ Example: Silicon → Other approaches to make a detector

• Start with p-type material and make n+p junction diode 

• Apply a combination of surface oxidation and deposition of thin 

metal layer

• Called surface barrier contacts

• For thicknesses <1 mm it’s possible to use intrinsic Si with p+

& n+ blocking contacts on opposite sides (p–i–n configuration)

• For thicker detectors impurities are compensated for by 

introducing interstitial Li ions

• Use slightly p-type intrinsic Si

• Li ions act as electron donors

• Li ions can be drifted 10 mm

• For large enough band gap metal contacts will suffice
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6.3. SEMICONDUCTOR DETECTORS

6.3.1. Basic principles

❑ Important parameters of electrons and holes

• Mobilities: me and mh

• Lifetimes: te and th

• Drift velocity e,h in electric field E

• The path length a charge carrier can travel in its lifetime is 

given by:

• Mobilities for a given detector size and E

• Provide drift times of charge carriers 

• Provide signal formation times

• Mobilities & lifetimes are related to the probability that charge 

carriers arrive at collecting electrodes 

e,h e,h e,h e,h E t m t=
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6.3. SEMICONDUCTOR DETECTORS

6.3.2. Semiconductor detectors

❑ Semiconductor properties relevant for nuclear medicine

• Density ρ

• Zeff for photoelectric effect

• Egap and W value

• μe,h and their products with lifetimes

• Si primarily of interest for (position sensitive) detection of low energy 

X rays, beta particles and light quanta 
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6.3. SEMICONDUCTOR DETECTORS

6.3.2. Semiconductor detectors

❑ Detection of X-rays of  300 eV - 60 keV

• Si(Li)

• Commercially available planar circular Li drifted p–i–n

• Thickness up to 5mm

• Diameters 4–20 mm

• For typical E=1000 V/cm drift times to electrodes are on the order 

of tens of ns

• Energy resolutions (FWHM) at 5.9 keV are 130–220 eV at 77 K

• Position sensitive Si detectors commercially available with a 

large variety of pixel structures

• Si detectors also used in personal dosimeters
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6.3. SEMICONDUCTOR DETECTORS

6.3.2. Semiconductor detectors

❑ High resolution gamma-ray spectroscopy uses Ge detectors

• Higher density & Z 

• Made of high purity material

• Large volume detectors in coaxial geometry 

• Made of cylindrical crystals with core removed 

• High purity n-type or p-type used with corresponding junction 

• Contacts on outside and blocking contacts on inside

• Operated at 77 K

• Commercially available cylindrical detectors 

• Diameter ≤ 10 cm, height ≤ 10 cm

• Drift times to electrodes ≤ 100 ns

• Typical energy resolutions 

• 1 keV at 122 keV -ray energy 

• 2 keV at 1332 keV -ray energy 
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6.3. SEMICONDUCTOR DETECTORS

6.3.2. Semiconductor detectors

❑ CdTe (cadmium telluride) and CZT (cadmium zinc telluride)

• Z is significantly higher than for Ge

• Possible to operate at room temperature due to larger band gap 

• High purity n-type or p-type material is used 

• Worse energy resolution than Ge

• e.g. 2.5% FWHM at 662 keV (primarily due to relatively short lifetime of 

holes, resulting in incomplete charge collection)

• To observe the electron signal only use either or both:

• Electronic correction techniques 

• Detectors with special electrode configurations (small pixels or grids)

• Dimensions: ~ 25 × 25 × 10 mm3

• 16 × 16 pixels detectors are available 

• e.g. used for SPECT innovation
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6.3. SEMICONDUCTOR DETECTORS

6.3.2. Semiconductor detectors

❑ HgI2 (mercury iodide) is attractive for efficient -ray 

detection

• Large density and high Z

• Room temperature operation possible due large band gap

• Cons

• Mobilities are low 

• Charge collection, in particular of holes, is poor

• Application is limited to thicknesses ≤10 mm

• E = 2500 V/cm 

• Areas 30 x 30 mm2
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6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.1. Basic principles

❑ Scintillation is prompt emission of light after radiation interaction

❑ In nuclear medicine, inorganic ionic crystals are most important 

• High density & Z 

• Fast response 

• High light yield

• Large crystals can be grown

• Primarily for X-ray and -ray detection

• Metastable states (traps) are created in some materials 

• may live ms to months (storage phosphors)

❑ Organic scintillators are another group 

• Crystals, plastics and liquids

• Low density & Z

• Primarily for counting β particles 
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6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.1. Photomultiplier tubes

❑ A scintillation crystal is coupled to a PMT to make a  

detector

❑ Inside of entrance window to the evacuated glass envelope 

is covered with a photocathode which converts photons 

into electrons
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6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.1. Photomultiplier tubes 

❑ Photocathode consists of thin layer of alkali materials with 

very low work functions

• Examples

• Bialkali K2CsSb

• Multialkali Na2KSb:Cs 

• Negative electron affinity (NEA) 

material such as GaAs:Cs,O

• Conversion efficiency of PMT is called Quantum Efficiency h

• Strongly wavelength dependent

• At 400 nm, h = 25–40%
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❑ Emitted electrons focused onto first dynode via electrode structure

• Applied voltage  = 200–500 V

• Collection efficiency a ≈ 95%

• Typical materials are BeO–Cu, Cs3Sb and GaP:Cs

• The latter is an NEA material

• Electrons released by secondary emission if electron hits dynode

• Focused onto next dynode 

• Secondary electrons emitted again

• N = Number of dynodes  =  8–12

• Last dynode (anode) provides signal 

• Multiplication factor 

• d ≈ 5 per dynode at inter-dynode voltage = 100 V

• First dynode has higher multiplication factor d1≥ 10

• Improves single-electron pulse resolution & signal to noise ratio

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.1. Photomultiplier tubes 
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❑ Signal properties

• Starting with N photons in the scintillator

• Assuming full light collection on the photocathode

• Nel = Number of electrons at anode is given by:

❑ Gains of 106–107 are obtained 

❑ Negative high voltage (1000–2000 V) often used with anode at  

ground potential 

❑ Operational care

• Care must be taken of metal parts near the cathode

• Detector housing should never be opened with voltage on

• Exposure to daylight would damage the photocathode permanently

NN n ahdd 1

1el

−=

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.1. Photomultiplier tubes 
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❑ PMTs 

• Available with circular, square or hexagonal photocathodes

• Cathode diameters = 10 - 150 mm

• If diameter ~ 50 mm  length ~ 150 mm (including contact pins)

• Also available pixelated with multi-anode

❑ Time resolution optimized by making special tubes with 

electron transit times as the anode, independent of 

cathode position where electron emitted 

❑ Electron transit time ~ 30 ns

❑ Spread standard deviation ~ 250 ps

❑ Signal rise time ~ 1.5 ns

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.1. Photomultiplier tubes 
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❑ Microchannel plate (MCP) PMT 

• Aimed at ultra-fast timing 

• Replaces dynodes for electron multiplication

• Thickness ~ 1 mm

• Has large number of closely packed hollow

glass tubes

• Channel diameter = 5–50 mm 

• Inner tube surface is covered with a secondary emission material 

(e.g. PbO)

• The glass surfaces on the front and back side are covered with metal 

contacts

• Placed in vacuum

• 1000 V applied between contacts, positive on the back side

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.1. Photomultiplier tubes 
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❑ Microchannel plate (MCP)

• An electron enters glass tube on front side & hits wall 

• Secondary electron emission occurs

• Electrons pulled to back side by E

• Hit channel wall & produce secondaries, etc. 

• Eventually leave tube at back

• Electron multiplication ≤ 104

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 6 –
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6.4.2. Light sensors

6.4.2.1. Photomultiplier tubes 
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❑ MCP-PMT uses 2 MCPs at close distance 

• Structure called chevron

• Glass tubes at an angle 

• Prevent ions from gaining too much energy

• At 3000 V, stable gains ~ 106

• Advantage: short path length of electrons 

• Transit times ~ few ns

• Transit time spreads ~ 100 ps

• Commercially available as:

• Circular with diameter = 10 mm 

• Square with multi-anode structures 

• Sensitive between 115 nm (MgF2 window) - infrared

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.1. Photomultiplier tubes 
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❑ Si photodiodes preferred in some applications

• PMTs have large size, high voltages, small quantum efficiency 

and sensitivity to magnetic fields

• Si diodes are usually p–i–n structure (PIN diodes)

• Thickness = 2 mm including packaging

• Shapes: circular, rectangular or square, up to 30 mm × 30 mm

• Bias voltages < 150 V

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.2. Silicon based photon sensors
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6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.2. Silicon based photon sensors

❑ Si photodiodes preferred in some applications

• Quantum efficiency can be

> 80% at longer wavelengths

• Disadvantages

• Large capacitance = 20–300 pF

• Large leakage current ~ 1–10 nA

• Significant noise level 

• Affects energy resolution negatively
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❑ Avalanche photodiode (APD) 

• Semiconductor analogue to proportional counter

• A high E-field is created in small zone 

• Drifting electron can gain enough energy to produce (e–h) pair

• An avalanche results

• Critical field for multiplication = 107 V/m

• Higher V → higher gain

• Voltages applied = 50–1500 V depending on type 

• Gains are M 1000  

• Lifts signal well above noise as compared to Si diode

• At a certain gain, the advantage is optimal

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.2. Silicon based photon sensors

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 6 – Slide 46/60



IAEA

❑ Avalanche photodiode (APD) 

• Break-down voltage Vbr

• Spontaneous charge multiplication occurs

• At voltages > Vbr

• For gains of M 105 –106

• Geiger mode 

• Pulses are equal in magnitude 

• Signal quenching techniques have to be used 

• Available as circular & square with areas = sub-mm2 -1 cm2

• Available with various pixelations

• e.g. of 4 × 8 at 2.5 mm pitch & fill factor ≤ 40%

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.2. Silicon based photon sensors
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❑ Hybrid photomultiplier tube (HPMT)

• Voltage between photocathode & Si diode ~ 10 kV

• Si diode placed inside vacuum enclosure

• Photoelectrons accelerated in resulting E field 

• Diode is relatively small

• Reduces capacitance which reduces noise level

• Need 3.6 eV to produce 1 e–h pair

• 3000 e–h pairs produced per impinging electron

• Signals from one or more photons are well separated

• Possible overall gain with APD = 105

• Window diameters are as large as 70 mm

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.2. Silicon based photon sensors
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❑ Silicon photomultiplier (SiPM) 

• Array of tiny APDs operating in Geiger mode

• Dimensions: 20 × 20 μm2 to 100 × 100 μm2

• Number of APDs per mm2 = 2500 – 100

• Fill factor from < 30% to 80% for smallest to largest dimensions

• All APDs signals are summed

• Time spread < 100 ps

• Excellent time resolutions 

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.2. Silicon based photon sensors
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6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.2. Light sensors

6.4.2.2. Silicon based photon sensors

❑ Silicon photomultiplier (SiPM) 

• Gains M = 105–106

• Can easily obtain a signal from a single photon 

• Spontaneous Geiger pulses can be eliminated by setting a 

threshold above the one electron response

• Available arrays 

• 2 × 2 pixels and 4 × 4 pixels

• 3 × 3 mm2 each 

• Pitch of 4 mm

• A 16 × 16 pixel array of 50 × 50 mm2 (recently introduced)

• Blue sensitive SiPMs have detection efficiency of 25% at 400 nm, 

including a 60% fill factor 
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❑ Inorganic scintillator bandgap has to be relatively large so 

as to:

• Egap ≥ 4 eV

• Avoid thermal excitation 

• Allow scintillation photons to travel in material without 

absorption

❑ Thus: inorganic scintillators are based on ionic-crystal 

materials 

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.3. Scintillator materials

6.4.3.1. Inorganic scintillators
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❑ Three steps scintillation photons production

1. Interaction with bulk material & thermalization of electrons 

and holes 

• Electrons go to bottom of conduction band 

• Holes go to top of the valence band

2. Transport of charge carriers to intrinsic or dopant 

luminescence centres

3. Interaction with these centres

• Excitation

• Relaxation 

• Scintillation 

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.3. Scintillator materials

6.4.3.1. Inorganic scintillators
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❑ Using this model, the number of photons Nph produced 

under absorption of a gamma ray with energy E is:

• E/bEgap = number of e–h pairs at bandgap edge 

• β ≈ 2.5

• S & Q are the efficiencies of steps 2. and 3. in previous slide

SQ
E

E
N

gap

ph
b

=
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❑ Specifications of some inorganic scintillators

Scintillator ρ

(g/cm3)

Zeff 1/μ511

(mm)

Photoelectric

effect (%)

λmax

(nm)

Nph

(photons/MeV)

R662

(%)

τ

(ns)

NaI:Tla 3.67 51 29 17 410 41 000 6.5 230
CsI:Tl 4.51 54 23 21 540 64 000 4.3 800, 104

BaF2 4.88 23 220

310

1500

10 000

0.8

600
Bi3Ge4O12 (BGO) 7.1 75 10.4 40 480 8520 300
LaCl3:Cea 3.86 49.5 28 15 350 49 000 3.3 25

LaBr3:Cea 5.07 46.9 22 13 380 67 000 2.8 16

YAlO3:Ce (YAP) 5.5 33.6 21 4.2 350 21 000 4.4 25

Lu0.8Y0.2Al:Ce

(LuYAP)
8.3 65 11 30 365 11 000 18

Gd2SiO5:Ce (GSO) 6.7 59 14.1 25 440 12 500 9 60
Lu2SiO5:Ce,Ca (LSO) 7.4 66 11.4 32 420 ~36 000 7 36–43

Lu1.8Y0.2SiO5:

Ce (LYSO) 
7.1 12 420 30 000 7 40

a Hygroscopic
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❑ The scintillators in the table are commercially available 

❑ If hygroscopic, they are canned with reflective material

❑ Only BaF2 and BGO have intrinsic luminescence centre

❑ Others have Tl+ or Ce3+ ions as dopant luminescence  

centre

• Ce doped scintillators show a relatively fast response 

• Of the order of tens of ns

• Due to allowed 5d → 4f dipole transition of the Ce ion 

• Tl doped scintillators much slower because these transitions 

are forbidden

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.3. Scintillator materials

6.4.3.1. Inorganic scintillators

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 6 – Slide 55/60



IAEA

❑ In general, mixed or co-doped crystals have advantages in:

• Crystal growing

• Response time

• Light yield 

• Large variation due to S < 1

• Afterglow effects

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.3. Scintillator materials

6.4.3.1. Inorganic scintillators
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❑ Organic scintillators scintillation mechanism based on 

molecular transitions 

• Hardly affected by physical state of the material 

❑ There are pure organic scintillator crystals such as 

• Anthracene

• Plastics 

• Polystyrene

• Liquids (Xylene)

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 

6.4.3. Scintillator materials

6.4.3.2. Organic scintillators — crystals, plastics and liquids
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❑ There are also solutions of organic scintillators in organic 

solid (plastic) and liquid solvents 

• Typical combinations: p-terphenyl in polysterene (plastic) and 

p-terphenyl in toluene 

❑ There are also systems with POPOP added for 

wavelength shifting. In general:

• Organic scintillators luminesce at ~420 nm, have a light yield 

of ~10 000 photons/MeV of absorbed -ray energy 

• Decay times are about 2 ns 
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❑ Storage phosphor 

• Analogous to inorganic scintillator

• Difference: a significant part of interaction energy is stored in 

long-living traps

• These are the memory bits of a storage phosphor

• The lifetime must be long enough for the application considered 

❑ Readout is done by thermal (heating) or optical stimulation 

• Electron lifted from the trap into the conduction band and 

transported to a luminescence centre

• The intensity of the luminescence is recorded

• Processes called thermoluminescence & optically/photon 

stimulated luminescence 

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 
6.4.3. Scintillator materials

6.4.3.3. Storage phosphors — thermoluminescence /optically stimulated luminescence
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❑ LiF:Mg,Ti is widely used 

• Commercial name TLD-100

• Sensitivity = 50 μGy to 1 Gy

❑ LiF:Mg,Cu,P (GR-200)

• Newer & more sensitive

• Sensitivity = 0.2 mGy to 1 Gy

❑ Al2O3:C

• Optically stimulated luminescent material 

• Recently introduced

• Sensitivity = 0.3 μGy to 30 Gy

❑ Also used in radiography

❑ Used for dosimetry for > 50 years 

• Thermoluminescence dosimeter

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 6 –

6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 
6.4.3. Scintillator materials

6.4.3.3. Storage phosphors — thermoluminescence /optically stimulated luminescence

Slide 60/60


