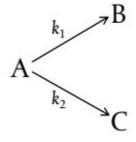


CEN416 PROCESS DESIGN II

Instantanenous Selectivity (S):

It is the ratio of the rate of formation of one product to the rate of formation of another product.

$$r_{B} = \frac{dC_{B}}{dt} = k_{1}C_{A}$$


$$r_{C} = \frac{dC_{C}}{dt} = k_{2}C_{A}$$

$$-r_{A} = (k_{1} + k_{2})C_{A}$$

$$S_{BC} = \frac{\frac{dC_B}{dt}}{\frac{dC_C}{dt}} = \frac{k_1 C_A}{k_2 C_A} = \frac{k_1}{k_2}$$

Overall Selectivity (\tilde{S}) :

Ratio of the amount of one product formed to the amount of another product.

$$\tilde{S} = \frac{C_B}{C_C}$$

Qualitative Analysis

R (desired product)
$$r_{\rm R} = \frac{dC_{\rm R}}{dt} = k_1 C_{\rm A}^{a_1}$$
A (unwanted product) $r_{\rm S} = \frac{dC_{\rm S}}{dt} = k_2 C_{\rm A}^{a_2}$

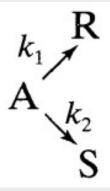
$$-r_A = r_R + r_S$$

$$\frac{r_{\rm R}}{r_{\rm S}} = \frac{dC_{\rm R}}{dC_{\rm S}} = \frac{k_1}{k_2} C_{\rm A}^{a_1 - a_2}$$

Parallel Reactions with Two Reactants

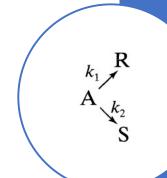
$$A + B \xrightarrow{k_1} \mathbf{R}$$

$$r_R = k_1 C_A^{\alpha_1} C_B^{\beta_1}$$


$$A + B \xrightarrow{k_2} \mathbf{S}$$

$$r_S = k_2 C_A^{\alpha_2} C_B^{\beta_2}$$

Instantaneous Selectivity:
$$S_{R/S} = \frac{r_R}{r_S} = \frac{k_1}{k_2} C_A^{\alpha_1 - \alpha_2} C_B^{\beta_1 - \beta_2}$$


Quantitative Analysis

•
$$Y_R = \frac{r_R}{r_A} = \frac{R \ formation \ rate}{A \ consumption \ rate} = \frac{\frac{dC_R}{dt}}{\frac{-dC_A}{dt}} = \frac{dC_R}{-dC_A}$$

The overall fractional yield is the mean of the instantaneous yields at all points within the reactor; thus we may write

•
$$\tilde{Y} = \frac{all\ R\ formed}{all\ A\ reacted} = \frac{C_{R_f}}{C_{Ao} - C_{A_f}} = \frac{C_{Rf}}{-\Delta C_A} = \bar{Y}_{in\ reactor}$$

REFERENCES

- 1. Sinnot, R.K. 1999, Coulson's & Richardson's Chemical Engineering, Volume
- 6, Chemical Engineering Design, ButterWorth Heinemann, Oxford.
- 2. Turton R., Bailie R.C., Whitin W.C., Shaeiwitz J.A. 1998, Analysis, Synthesis and Design of Chemical Processes, Prentice Hall, New Jersey.