

Typical packing efficiencies						
System	Pressure $\mathbf{k P a}$	Column dia, m	Packing		$\begin{aligned} & \text { HTU } \\ & \mathbf{m} \end{aligned}$	$\begin{aligned} & \text { HETP } \\ & \mathbf{m} \end{aligned}$
			type	size, mm		
Absorption						
Hydrocarbons	6000	0.9	Pall	50		0.85
NH_{3}-Air- $\mathrm{H}_{2} \mathrm{O}$	101	-	Berl	50	0.50	
Air-water	101	-	Berl	50	0.50	
Acetone-water	101	0.6	Pall	50		0.75
Distillation						
Pentane-propane	101	0.46	Pall	25		0.46
IPA-water	101	0.46	Int.	25	0.75	0.50
Methanol-water	101	0.41	Pall	25	0.52	
	101	0.20	Int.	25		0.46
Acetone-water	101	0.46	Pall	25		0.37
	101	0.36	Int.	25		0.46
Formic acid-water	101	0.91	Pall	50		0.45
Acetone-water	101	0.38	Pall	38	0.55	0.45
	101	0.38	Int.	50	0.50	0.45
	101	1.07	Int.	38		1.22
MEK-toluene	101	0.38	Pall	25	0.29	0.35
	101	0.38	Int.	25	0.27	0.23
	101	0.38	Berl	25	0.31	0.31
Pall $=$ Pall rings, Berl $=$ Berl saddles, Int. $=I N T A L O X ~$ saddles						

Cornell Correlation

Equations and figures are given for a range of sizes of Raschig rings and Berl saddles.

$$
\begin{gathered}
\mathbf{H}_{G}=0.011 \psi_{h}(S c)_{v}^{0.5}\left(\frac{D_{c}}{0.305}\right)^{1.11}\left(\frac{Z}{3.05}\right)^{0.33} /\left(L_{k}^{*} f_{1} f_{2} f_{3}\right)^{0.5} \\
\mathbf{H}_{L}=0.305 \phi_{h}(S c)_{L}^{0.5} K_{3}\left(\frac{Z}{3.05}\right)^{0.15}
\end{gathered}
$$

Onda's Method

$$
\begin{aligned}
k_{L}\left(\frac{\rho_{L}}{\mu_{L} g}\right)^{1 / 3} & =0.0051\left(\frac{L_{w}^{*}}{a_{w} \mu_{L}}\right)^{2 / 3}\left(\frac{\mu_{L}}{\rho_{L} D_{L}}\right)^{-1 / 2}\left(a d_{p}\right)^{0.4} \\
\frac{k_{G}}{a} \frac{R T}{D_{v}} & =K_{5}\left(\frac{V_{w}^{*}}{a \mu_{v}}\right)^{0.7}\left(\frac{\mu_{v}}{\rho_{v} D_{v}}\right)^{1 / 3}\left(a d_{p}\right)^{-2.0}
\end{aligned}
$$

- It consists of useful correlations for the film mass-transfer coefficients k_{G} and k_{L} and the effective wetted area of the packing a_{w}, which can be used to calculate $\mathbf{H}_{\mathbf{G}}$ and $\mathbf{H}_{\mathbf{L}}$.
-

$$
\begin{aligned}
\mathbf{H}_{G} & =\frac{G_{m}}{k_{G} a_{w} P} \\
\mathbf{H}_{L} & =\frac{L_{m}}{k_{L} a_{w} C_{t}}
\end{aligned}
$$

COLUMN DIAMETER (CAPACITY)

The capacity of a packed column is determined by its cross-sectional area.

Normally, the column will be designed to operate at the highest economical pressure drop, to ensure good liquid and gas distribution.

For random packings the pressure drop will not normally exceed 80 mm of water per meter of packing height.

- Generalized pressure drop correlation

$$
K_{4}=\frac{13.1\left(V_{w}^{*}\right)^{2} F_{p}\left(\frac{\mu_{L}}{\rho_{L}}\right)^{0.1}}{\rho_{v}\left(\rho_{L}-\rho_{v}\right)}
$$

$V_{w}^{*}=$ gas mass flow-rate per unit column cross-sectional area, $\mathrm{kg} / \mathrm{m}^{2} \mathrm{~s}$
$F_{p}=$ packing factor, characteristic of the size and type of packing.
$\mu_{L}=$ liquid viscosity, $\mathrm{Ns} / \mathrm{m}^{2}$
$\rho_{L}, \rho_{v}=$ liquid and vapour densities, $\mathrm{kg} / \mathrm{m}^{3}$

REFERENCES

1. Sinnot, R.K. 1999, Coulson's \& Richardson's Chemical Engineering, Volume 6, Chemical Engineering Design, ButterWorth Heinemann, Oxford.
2. Turton R., Bailie R.C., Whitin W.C., Shaeiwitz J.A. 1998, Analysis, Synthesis and Design of Chemical Processes, Prentice Hall, New Jersey.
