

CEN4415 PROCESS DESIGN I

Tools for Evaluating Process Performance

Methods

- **1. KEY RELATIONSHIPS**
- **2. THINKING WITH EQUATIONS**
 - **2.1 GENI**
 - 2.2 Predicting Trends
- **3. BASE CASE RATIOS**
- 4. ANALYSIS OF SYSTEMS USING CONTROLLING RESISTANCES
- **5. GRAPHICAL REPRESENTATIONS**
 - **5.1. Moody Diagram for Friction Factors**
 - **5.2.** The System Curve for Frictional Losses
 - 5.3. The T-Q Diagram for Heat Exchanger

1. KEY RELATIONSHIPS

 In analyzing equipment performance, there are certain key relationships that are used over and over again.

Table 17.1 Typical Key Performance Relationships

Situation	Equation	Trends	Comments
Frictional loss for fluid flow	$\Delta P = \frac{2 p R_{eq} \mu^2}{D}$	$\begin{split} \Delta P &\simeq u^2 \\ \Delta P &\simeq D^{-5} \\ \Delta P &\simeq L \end{split}$	Assumes fully devel- oped turbulent flow, i.e., constant friction factor; for laminar flow $\Delta P \approx D^{-4}$.
Heat transfer	Of form $\left(\frac{hD}{k}\right) = c \left(\frac{Du\rho}{\mu}\right)^{\prime} \left(\frac{\mu C_{\mu}}{k}\right)^{\prime}$	$h_i \approx v^{0.8}$ inside closed channels $h_o \approx v^{0.6}$ cross flow outside pipes	Equations given are for no phase change; if phase change, weak flow dependence, but some ΔT dependence.
Kinetic5	$r = k \Pi c_i^{a_i}$ $k = k_i e^{-\left(\frac{k_i}{Kt}\right)}$	$\ln k$ vs 1/T is linear	As $T \uparrow_{k} k \uparrow$ for ideal gases $P \uparrow_{i} c_{i} \uparrow_{i}$ so $r \uparrow_{i}$
Reactor	mixed flow: $\frac{V}{F_{A0}} = \frac{\tau}{C_{A0}} = \frac{X}{-r_A}$ plug flow: $\frac{V}{F_{A0}} = \frac{\tau}{C_{A0}} = \int_{0}^{X} \frac{dX}{-r_A}$	τ ∝V as τ ↑ or V ↑, X ↑	τ is space time, V is reactor volume, X is conversion of limiting reactant, A assumes one reac- tion and constant volumetric flowrate.
Separator using mass separating agent	Not necessarily described by a single equation	As flow of mass separ- ating agent 1, or as number stages or height of packed tower 1, degree of separation 1	For certain cases, there are limitations to the ef- fect of increasing num- ber of stages or packed tower height.
Distillation	Not necessarily described by a single equation	As reflux ratio $\hat{\uparrow}$, degree of separation $\hat{\uparrow}$	Complicated analysis; see Chapter 18.

2.Thinking with Equations

- It is possible to quantify equipment performance without resorting to extensive, detailed calculations.
- This involves using equations to understand trends.
- The first step is to identify the equations necessary to quantify a given situation.
- Wales and Stager have termed this "thinking with equations" and have used the acronym GENI to describe the associated problem-solving strategy.
- The second step involves predicting trends from equations. These methods are described and then illustrated in an example.

2.1. GENI

GENI is a method for solving quantitative problems.

1. Goal: Identify the goal.

2. Equation: Identify the equation that relates the unknown to known values or properties.

3. Need: Identify additional relationships that are needed to solve the equation in Step 2.

4. Information: List additional information that is available to determine whether what is needed in Step 3 is known

REFERENCES

Sinnot, R.K. 1999, Coulson's & Richardson's Chemical Engineering, Volume
 Chemical Engineering Design, ButterWorth Heinemann, Oxford.

2. Turton R., Bailie R.C., Whitin W.C., Shaeiwitz J.A. 1998, Analysis, Synthesis and Design of Chemical Processes, Prentice Hall, New Jersey.