

CEN4417 PROCESS DESIGN I

Heat Exchange Area:

Fundamental Heat Exchanger Design Equation:

$$\mathbf{Q} = \mathbf{U} \mathbf{A} \Delta \mathbf{T} \implies dQ = U \Delta T dA \implies dA = \frac{dQ}{U \Delta T}$$

- · dA: surface area where the heat dQ will be transferred through
- · U: Overall heat transfer coefficient
- ΔT : difference between the bulk temperatures of two fluids.

$$\frac{1}{U_0} = \frac{1}{h_0} + \frac{1}{h_{0d}} + \frac{d_0 \ln(d_0/d_i)}{2k_w} + \frac{d_0}{d_i} \frac{1}{h_{id}} + \frac{d_0}{d_i} \frac{1}{h_i}$$

 U_o : the overall heat transfer coefficient relative to the pipe outer surface area, $W/m^2 \,{}^{\circ}C$

 h_o , h_i : film coefficient of the fluid outside and inside the pipe, W/ $m^2 \,{}^{\circ}C$

 h_{od} , h_{id} : dirt (fouling) factors on the outer and inner surface of the pipe, W/ $m^2\,^\circ C$

 k_w : thermal conductivity of the pipe, W/ $m^2 \,^{\circ}C$

do, di: outer and inner diameters of the pipe, m

Heat transfer area

$$A_0 = \int_0^Q \frac{dQ}{U_0 \Delta T}$$

$$A_0 = \frac{Q_T}{U_0 \Delta T_m}$$

 $\Delta T_{\scriptscriptstyle m}$: mean temperature difference

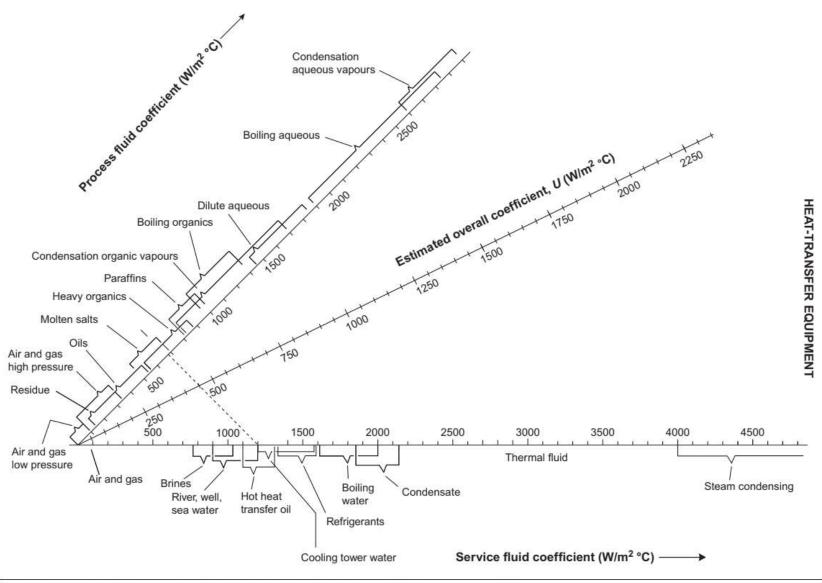


Figure 1. Nomograph, Overall coefficients (join process side duty to service side and read U from centre scale)

The effect of fouling is included in the design calculations by substituting it into the overall heat transfer coefficient in the \mathbf{U}_0 equation.

$$\frac{1}{U_0} = \frac{1}{h_0} + \frac{1}{h_{0d}} + \frac{d_0 \ln(d_0/d_i)}{2k_w} + \frac{d_0}{d_i} \frac{1}{h_{id}} + \frac{d_0}{d_i} \frac{1}{h_i}$$

Typical fouling coefficient values

Fluid	Coefficient (W/m ² °C)
River water	3000-12,000
Sea water	1000-3000
Cooling water (towers)	3000-6000
Towns water (soft)	3000-5000
Towns water (hard)	1000-2000
Steam condensate	1500-5000
Steam (oil free)	4000-10,000
Steam (oil traces)	2000-5000
Refrigerated brine	3000-5000
Air and industrial gases	5000-10,000
Flue gases	2000-5000
Organic vapours	5000
Organic liquids	5000
Light hydrocarbons	5000
Heavy hydrocarbons	2000
Boiling organics	2500
Condensing organics	5000
Heat transfer fluids	5000
Aqueous salt solutions	3000-5000

REFERENCES

- 1. Sinnot, R.K. 1999, Coulson's & Richardson's Chemical Engineering, Volume
- 6, Chemical Engineering Design, ButterWorth Heinemann, Oxford.
- 2. Turton R., Bailie R.C., Whitin W.C., Shaeiwitz J.A. 1998, Analysis, Synthesis and Design of Chemical Processes, Prentice Hall, New Jersey.