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Photovoltaic Solar panels

• Physics behind Photovoltaic systems

• I-V curve

• Effect of temperature

• System calculation

• MPPT: Maximum power point tracker

• Inverter

• Charge Controller

• Grid Connected Systems

• Standalone Systems 
▫ Battery Charging

▫ Direct Connected Load
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PV Systems – 1.st configuration

• Grid-connected systems
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PV Systems – 2.nd configuration

• Stand-alone systems which charge batteries
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PV Systems – 3.rd configurations

• Stand-alone systems with directly-connected loads
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Load I-V Curves

• PV panels have I-V curves and so do loads

• Intersection of the two curves to tell where the system is actually 
operating

• Operating point – the intersection point at which the PV and the load I-
V curves are satisfied
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Resistive Load I-V Curve

• Straight line with slope 1/R

• As R increases, operating point moves to the right

V IR=
1

(9.1)I V
R

 
=  
 

• Can use a potentiometer to plot the PV 
module’s IV curve

• Resistance value that results in 
maximum power
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Resistive Load: Maximum power transfer

• Maximum power 
point (MPP) should 
occur when the load 
resistance R = VR/IR

under 1-sun 25˚C, AM 
1.5 conditions

• A MPP tracker maintains PV system’s highest efficiency as the amount of insolation
changes
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DC Motor I-V Curve

• DC motors have an I-V curve similar to a resistor

• e = kω is back emf, Ra is armature resistance

(9.3)aV IR k= +
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DC Motor I-V Curve
Linear Current Booster (LCB) 
helps the motor be able to 
start in low sunlight

Figure 9.10
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Battery I-V Curves

• Energy is stored in batteries for most off-grid applications

• An ideal battery is a voltage source VB

• A real battery has internal resistance Ri

(9.4)B iV V R I= +
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Battery I-V Curves
• Charging– I-V line tilts right with a slope of 1/Ri, applied voltage must be 

greater than VB

• Discharging battery- I-V line tilts to the left with slope 1/Ri, terminal 
voltage is less than VB

Figure 9.12
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Maximum Power Point Trackers

• Maximum Power Point Trackers (MPPTs) are often a standard part of PV 
systems, especially grid-connected

• Idea is to keep the operating point near the knee of the PV system’s I-V 
curve

• Buck-boost converter – DC to DC converter, can either “buck” (lower) or 
“boost” (raise) the voltage

• Varying the duty cycle of a buck-boost converter can be done such that 
the PV system will deliver the maximum power to the load
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MPPTs – Example 9.2
• A PV module has its maximum power point at Vm = 17 V and Im = 6A.  

• What duty cycle should its MPPT have if the module is delivering power 
to a 10Ω resistance?

• Max power delivered by the PVs is 17V*6A = 102W

2
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MPPTs – Example 9.2
• The converter must boost the 17 V PV voltage to the desired 31.9 V

• Solving gives:
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Hourly I-V Curves
• Current at any 

voltage is 
proportional to 
insolation

• VOC drops as 
insolation decreases

• Can just adjust the 
1-sun I-V curve by 
shifting it up or 
down
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Grid-Connected Systems

• Can have a combiner box and a single inverter or small inverters for 
each panel

• Individual inverters make the system modular

• Inverter sends AC power to utility service panel

• Power conditioning unit (PCU) may include
▫ MPPT

▫ Ground-fault circuit interrupter (GFCI)

▫ Circuitry to disconnect from grid if utility loses power

▫ Battery bank to provide back-up power
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Components of Grid-Connected PV
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Individual Inverter Concept

• Easily allow expansion

• Connections to house distribution panel are simple

• Less need for expensive DC cabling
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Interfacing with the Utility

• Net metering – customer only pays for the amount of energy that the 
PV system is unable to supply

• In the event of an outage, the PV system must quickly and 
automatically disconnect from the grid

• A battery backup system can help 
provide power to the system’s owners 
during an outage

• Good grid-connect inverters have 
efficiencies above 90%

http://www.pasolar.ncat.org/lesson05.php
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DC and AC Rated Power
• Estimating the AC output power under varying conditions is necessary.

• Pdc,STC = DC power of array from adding module ratings under standard test 
conditions (STC) (1-sun, AM 1.5, 25˚C)

• Conversion efficiency – includes losses from inverter, dirty collectors, 
mismatched modules, and differences in ambient conditions

• These losses can derate power output by 20-40%, even in full sun

, (Conversion Efficiency) (9.10)ac dc STCP P= 
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Losses from Mismatched Modules

• Illustrates the impact of slight variations in module I-V curves

• Only 330 W is possible instead of 360 W
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Losses due to Cell Temperature

• As temperature increases, power decreases

• PVUSA test conditions (PTC) – 1-sun insolation in plane of array, 20˚C 
ambient temperature, wind-speed of 1 m/s

• Pac(PTC) AC output of an array under PTC test conditions is a better 
indicator of actual power delivered in full sun than the more commonly 
used Pdc(STC)

• Describing a system based on Pdc(STC) without correcting for 
temperature and the inverter is misleading 
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Impact of Temperature

• VOC decreases by ~0.37% per ˚C for 
crystalline silicon cells

• ISC increases by about 0.05% per ˚C

• NOCT – Normal Operating Cell 
Temperature
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https://www.pveducation.org/pvcdrom/modules-and-arrays/nominal-operating-cell-temperature

https://www.pveducation.org/pvcdrom/modules-and-arrays/nominal-operating-cell-temperature


Example - PV Derating using PTC

• A PV array has rating of 1 kW under standard test conditions (STC).  
Nominal operating temperature (NOCT) from is 47˚C

• DC power output drops by 0.5%/ ˚C above the STC temperature of 25˚C

• Mismatched module loss= 3%

• Dirt loss = 4%

• Inverter efficiency = 90%

• Estimate Pac(PTC), the AC output power under PVUSA test conditions 
(PTC)  
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Example– “1 kW PV system” PTC Rated AC Power

• The estimated cell temperature is

• With DC losses at 0.5%/ ˚C above 25˚C, 

• Including inefficiencies, estimated AC rated power at PTC is

20
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0.8
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−  
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47 20
20 1 = 53.8
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 ,( ) 1 kW 1 0.005(53.8 25)  = 0.856 kWdc PTCP = − −

,( ) 8.56 kW 0.97 0.96 0.90 = 0.72 kWac PTCP =   
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“Peak-Hours” Approach

• 1-sun is 1 kW/m2

• We can say that 5.6 kWh/(m2-day) is 5.6 hours of “peak sun”

• If we know Pac, computed for 1-sun, just multiply by hours of peak sun 
to get kWh

• If we assume the average PV system efficiency over a day is the same as 
the efficiency at 1-sun, then

( )Energy (kWh/day)  kW h/day of "peak sun" (9.14)acP= 
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Capacity Factor of PV

   Energy kWh/yr  kW CF 8760 h/yr (9.15)acP=  

( )h/day of "peak sun"
CF (9.16)

24 h/day 
=

Figure 9.28 
PV Capacity 
Factors for 
US cities
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Stand-Alone PV Systems

• When the grid isn’t nearby, the extra cost and complexity of a stand-
alone power system can be worth the benefits

• System may include batteries and a backup generator 
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Stand-Alone PV - Considerations
• PV System design begins with an estimate of the loads that need to be 

served by the PV system 

• Tradeoffs between more expensive, efficient appliances and size of PVs 
and battery system needed

• Should you use more DC loads to avoid inverter inefficiencies or use 
more AC loads for convenience?

• What fraction of the full load should the backup generator supply?

• Power consumed while devices are off

• Inrush current used to start major appliances
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Power Requirements of Typical Loads

Table 9.10 – Power Requirements of some typical loads

Note that these tables are useful for getting an idea of the average values, but the best data 
comes from actual measurements!
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Consumer Electronics as Loads

• Consider the power when the device is actively used 

• Also consider the power consumed when device is in standby

Table 9.10 – Power requirements of some consumer electronics
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Batteries and PV Systems

• Batteries in PV systems provide storage, help meet 
surge current requirements, and provide a 
constant output voltage

• Lead-acid batteries are still the most commonly-
used batteries for PV systems

• The lead-acid battery is an electrical storage 
device that uses a reversible chemical reaction to 
store energy.

• Lead-acid batteries  date back to the 1860s
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Basics of Lead-Acid Batteries

+ 2

2 4 4 2Positive Plate: PbO + 4H + SO + 2 PbSO 2H O (9.21)e− − → +

2

2 4 4Negative Plate: PbO + SO PbSO 2e  (9.22)− −→ +
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Basics of Lead-Acid Batteries

• During discharge, voltage drops and specific gravity drops

• Sulfate adheres to the plates during discharge and comes back off when charging, but 
some of it becomes permanently attached
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Stand-Alone PV Systems – Design Summary

• Analysis of load
▫ Determine daily demands for power and energy

▫ What fraction of the worst month “design month” should you cover with 
the PV system?  How much should you cover with a backup generator?

▫ What PV system voltage should you have?

▫ Convert total DC load to amp hours @ system voltage

• PV sizing
▫ Pick a PV module based on insolation data for the site for the design 

month

▫ Determine how many parallel strings of modules and how many modules 
in each string
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Stand-Alone PV Systems – Design Summary

• Battery Sizing – How many days of storage needed?

• Generator Sizing

• System Costs

http://www.ecosolarenergy.com.au/How_a_Standalone_System_Works-28.htm
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