Water Level Meters

Unconfined aquifer? Confined aquifer?

Hydrogeological Cross-section

Hydrogeological cross-sections are different from regular geologic cross-sections because they contain hydrologic and hydrodynamic structures like springs, water table or piezometric surface levels, groundwater flow directions.

Streamflow and groundwater

When a stream channel is in direct contact with an unconfined aquifer, the stream may recharge the groundwater or receive discharge from the groundwater, depending on the relative levels. A gaining stream is one receiving groundwater discharge A losing stream is one recharging groundwater

If contours are located apart, hydraulic gradient is low, hydraulic conductivity is high

Characteristics	Change	Hydraulic gradient (i)	Distance between equipotential lines
Hydraulic	Increase	Decreases	Increases
conductivity (K)	Decrease	Increases	Decreases
Discharge (Q)	Increase	Increases	Decreases
	Decrease	Decreases	Increases
Cross-sectional area (A)	Broadens	Decreases	Increases
	Narrows	Increases	Decreases

$$\frac{K_1}{K_2} = \frac{i_2}{i_1}$$

DARCY'S LAW IN THREE DIMENSIONS

In 3-D flow, hydraulic head is a function of all three-space coordinates, i.e., h=h(x, y, z). In three dimensions, specific discharge is a vector with components q_x , q_y and q_z . For an isotropic medium,

$$q_{x} = -K \frac{\partial h}{\partial x}, \qquad q_{y} = -K \frac{\partial h}{\partial y}, \qquad q_{z} = -K \frac{\partial h}{\partial z}$$

In vector notation: $\vec{q} = -K \nabla h$ where $\nabla h = \text{gradient vector of the head} = \left(\frac{\partial h}{\partial x}\vec{i} + \frac{\partial h}{\partial y}\vec{j} + \frac{\partial h}{\partial z}\vec{k}\right)$
 $\vec{i}, \vec{j}, \vec{k}$ are unit vectors in x, y and z coordinate directions, respectively.

$$\begin{bmatrix} q_{x} \\ q_{y} \\ q_{z} \end{bmatrix} = -\begin{bmatrix} K_{xx} & K_{xy} & K_{xz} \\ K_{yx} & K_{yy} & K_{yz} \\ K_{zx} & K_{zy} & K_{zz} \\ \end{bmatrix} \frac{\partial h}{\partial z}$$
Hydraulic conductivity tensor

3-D linear parabolic partial differential equation, the solution of which yields h(x, y, z, t) in a heterogeneous, anisotropic, confined aquifer.

$$\frac{\partial}{\partial x} \left(K_x \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial h}{\partial z} \right) = S_s \frac{\partial h}{\partial t}$$

For homogeneous but anisotropic aquifer

For horizontal flow (x, y)

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} = \frac{S_s b}{K b} \frac{\partial h}{\partial t} = \frac{S}{T} \frac{\partial h}{\partial t}$$

Laplace's Equation- solution of which gives h = h(x,y,z) in an isotropic and homogenous confined aquifer

For steady-state flow homogeneous and isotropic aquifer

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} = 0$$

In a unconfined aquifer, gradient of the water table is not constant; it increases in the flow direction.

To derive an equation of flow in an unconfined aquifer Dupuit assumptions should be accepted.

- 1) Hydraulic gradient is equal to the slope of the water table
- 2) For small water table slopes, the flow lines are horizontal and the equipotential lines are vertical (i.e. Horizontal flow).