FEEDING MANAGEMENT OF THE DAIRY HEIFER FROM 4 MONTHS TO CALVING

Ali Calik Ph.D., Associate Prof.

GOAL

- Dairy heifers represent a large expense of resources including feed, buildings, and labor; yet they return no money to the farm until they calve.
 - Feed is the largest cost Control
 - The goal of dairy heifer management is to rear heifers at a low economic and environmental cost without compromising future lactation performance.

NUTRITIONAL MANAGEMENT

- Specifically, nutritional management from 4 mo of age until precalving must ensure that dairy heifers are fed adequately to achieve proper body size at an optimum age.
- nutritional management must facilitate dairy heifers reaching breeding BW at the appropriate age.
- prevent excessive energy intake during the rearing period to prevent excess deposition of adipose tissue
- **FAT HEIFER** = transitional metabolic disorders

BCS = 1

BCS = 3

BCS = 2

BCS = 4

BCS = 5

NUTRITIONAL MANAGEMENT

- dairy heifers have lower energy requirements than lactating dairy cows
- FORAGE BASED HIGH NDF DIETS = **ECONOMIC**
 - require several grains, protein, mineral, and vitamin supplementation to fully support a dairy heifer's total nutrient needs

SETTING HEIFER GROWTH TARGETS

- <u>Target Calving Age:</u>
- **ADGr** is calculated as [(precalving BW birth BW)/**DOF**)]
- For example, to rear a 40-kg Holstein calf to a 650-kg precalving BW at 22 mo of age requires an ADGr of 910 g/d.
- To rear the same 40-kg Holstein calf to a 650-kg precalving BW at 26 mo of age requires an ADGr of 770 g/d.

• REQIREMENTS CHANGE DEPENDING ON YOUR GOALS, DIET COMPOSITION

SETTING HEIFER GROWTH TARGETS

- optimum calving age <u>22 and</u>
 <u>24 mo</u> of age. (Related to 1st
 lactation)
- In commercial dairy herds, first lactation milk yield did not differ when heifers calved at >23 mo of age but declined precipitously when heifers calved at <22 mo of age.

Figure 1. The relationship between age at first calving and 305-d first-lactation milk yield. Data represent 69,145 first-lactation records from commercial dairy herds as adapted from Curran et al. (2013).

SETTING HEIFER GROWTH TARGETS

- Heifer Reproductive Efficiency.
- DOF is not the only determinant
- Al reproductive efficiency
 - not all heifers are bred at the same age nor conceive on the same AI service

SETTING HEIFER GROWTH TARGETS

- (1) setting a clearly defined target age of first calving,
- (2) defining a minimum and maximum AI service age,
- (3) defining a minimum BW at which a heifer can be bred
- (4) implementing an efficient AI breeding protocol, which results in heifer pregnancy rates >40%, and
- (5) limiting the number of AI services, which prevents excessive DOF and reduces the risk of overconditioned heifers.

BW: 55% of MBW 350-380 kg

BW: 92% of MBW 640-660 kg

MATURE BW(MBW): 700-720 kg (Holstein)

Fig. 1. Growth curves for heifers with estimated MBW of 590, 682, and 772 kg. Legend includes average daily gain needed to attain precalving weight. (*Courtesy of* P.C. Hoffman, MS Dairy Science, Marshfield, WI: Universal Heifer Growth Chart; http://fyi.uwex.edu/heifermgmt/growth-charts.)

TABLE 11-2 Target Weights, Ages, and Daily Gains for Growing Dairy Cattle

	Percent of		
	Mature BW	Holstein	Jersey
Mature BW	100	700	520
Birth BW	6	42	31
Weaning BW	12	84	62
Conception BW	55	385	286
First calving prepartum BW	91	638	426
First calving postpartum BW	82	574	474
Second calving postpartum BW	92	644	478
Conception age, months		13	13
First calving age, months		22	22
Prepubertal ADG	0.13	0.90	0.67
Postpubertal ADG	0.10	0.69	0.51
Postpubertal gain + pregnancy	0.13	0.92	0.69
First-lactation ADG	0.027	0.19	0.14
Second-lactation ADG	0.022	0.15	0.11

FEED INTAKE OF DAIRY HEIFERS

- DRY MATTER INTAKE:
- **Precise DMI estimation = Efficient Nutrient intake**
- Predicting DMI of dairy heifers is considered one of the most important aspects of dairy heifer nutrition
- DMI of dairy heifers was related to heifer BW
 - DMI (% of BW) = 0.0000007 x BW² 0.0023 x BW + 3.6564.
- NDF intake = upto 1% of BW limits DMI
- NDF levels helps to control energy intake = prevent overconditioning

HEIFER DIET FORMULATION

DIETARY ENERGY

•Total ME req. (Mcal/d) = $ME_M + ME_G + ME_{pre}$

DIETARY ENERGY

- ENERGY: mostly forage + concetrate
- Watch weight gain and BCS
- Heifer body condition should be observed for excess adipose deposition, especially when feeding for faster weight gains to allow for earlier breeding and calving

DIETARY ENERGY

- From about 3 to 9 months of age, mammary development occurs at a faster rate than in other organs (allometric growth) and can be affected by nutrition during this period.
- When fed excess energy, epithelial tissue cell proliferation was decreased and additional adipose tissue was deposited in the mammary gland, which was associated with reduced later milk production

PROTEIN

- Linked to dietary energy and heifer growth rate
- Optimum Protein nutrition
 - Optimize lean tissue and structural growth
 - Maximize mammary development

Maintain at least 30 to 35% **soluable protein** of total CP - **UREA RUP:** 25-35% of total CP – no need bypass proteins

WEANING TO 6 MONTHS

- Forage based TMR Limited corn silage
- Diets based on 2.5-3 kg concentrate/day
- 900-1000 g ADG
 - Over gains negatively impact mammary development
- TMR CP: 16% 30-35% can be soluble.
- WATCH BCS 2.75 (2.5-3.0)

6 MONTHS TO PUBERTY/BREEDING

- Diets based on forage
- 1-1.5 kg/day concentrate
- CP: 15%
- Rumen degradable proteins
- BCS: 3.0 (2.75 3.25)
- TMR

BREEDING TO PRE-CALVING

- Forage based diets (limit corn silage)
 - NDF limit 1% BW
- Cheaper feeds can be used and intake adjusted accordingly
- 13-14% CP need soluble and RDP sources
- BCS: 3.0-3.5
- TMR

THANK YOU