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Nuclear Binding Energy

The total mass of a nucleus is less than the sum of the masses
of its individual nucleons. Therefore, the rest energy of the
bound system (the nucleus) is less than the combined rest
energy of the separated nucleons. This difference in energy is
called the binding energy of the nucleus and can be interpreted
as the energy that must be added to a nucleus to break it apart
into its components.

The mass energy mN c2 of a certain nuclide is its atomic mass
energy mAc2 less the total mass energy of Z electrons and the
total electronic binding energy:

where Bi is the binding energy of the ith electron.
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Nuclear Binding Energy

Electronic binding energies are of order 10-100 keV in heavy 
atoms, while atomic mass energies are of order A x 1000 MeV; 
thus we can neglect the last term of Eq. 1.

The binding energy B of a nucleus is the difference in mass 
energy between a nucleus Z

AXN and its constituent Z protons 
and N neutrons:

Grouping the Z proton and electron masses into Z neutral 
hydrogen atoms, we can rewrite Eq. 2
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Nuclear Binding Energy

With the masses generally given in atomic mass units, it is
convenient to include the unit conversion factor in c2, thus: c2

= 931.50 MeV/u.

The reported atomic masses of different isotopes of stable
elements are on the physical atomic scale of 12C. Masses of the
isotopes differ very slightly from integral numbers. This small
variation from whole numbers was expressed in terms of a
quantity called the packing fraction, f, and is defined as
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where M(A,Z) is the actual mass of a nuclide on the physical
atomic scale of C12 (or O16), and A is the mass number Z+N, Z
and N being the number of protons and neutrons, respectively.
The numerator in Eq. 4, M(A,Z)-A=Af , is called the mass
defect.

Other useful and interesting properties that are often tabulated
are the neutron and proton separation energies. The neutron
separation energy Sn is the amount of energy that is needed to
remove a neutron from a nucleus Z

AXN , equal to the difference

in binding energies between Z
AXN and Z

A-1XN-1 :
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In a similar way we can define the proton separation energy Sp as 
the energy needed to remove a proton:

The hydrogen mass appears in this equation instead of the proton
mass, since we are always working with atomic masses; you can see
immediately how the Z electron masses cancel from Equations 6 and
7.

Since the binding energy increases more or less linearly with A, it is
general practice to show the average binding energy per nucleon,
B/A, as a function of A (See Figure 3.16 in Introductory Nuclear
Physics by Kenneth S. Krane to see the variation of B/A with
nucleon number)
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Nuclear Binding Energy

The average binding energy per nucleon is obtained by dividing
the total binding energy of the nucleus by the mass number A.

Several remarkable features are immediately apparent from Figure
3.16 (Introductory Nuclear Physics by Kenneth S. Krane)

• First of all, the curve is relatively constant except for the very
light nuclei. The average binding energy of most nuclei is, to
within 10 %, about 8 MeV per nucleon.

• Second, we note that the curve reaches a peak near A = 60,
where the nuclei are most tightly bound.
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This suggests we can “gain” (that is, release) energy in two
ways-below A = 60, by assembling lighter nuclei into heavier
nuclei, or above A = 60, by breaking heavier nuclei into lighter
nuclei. In either case we “climb the curve of binding energy”
and liberate nuclear energy; the first method is known as
nuclear fusion and the second as nuclear fission.

Attempting to understand this curve of binding energy leads us
to the semiempirical mass formula, in which we try to use a
few general parameters to characterize the variation of B with
A.

The most obvious term to include in estimating B/A is the
constant term, since to lowest order B ~ A.
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Specific Nuclear Binding Energy:

The contribution to the binding energy from this “volume” term is
thus B = av A where av , is a constant to be determined, which should
be of order 8 MeV. This linear dependence of B on A is in fact
somewhat surprising, and gives us our first insight into the
properties of the nuclear force.

If every nucleon attracted all of the others, then the binding energy
would be proportional to A(A - l), or roughly to A2. Since B varies
linearly with A, this suggests that each nucleon attracts only its
closest neighbors, and not all of the other nucleons.

From electron scattering we learned that the nuclear density is
roughly constant, and thus each nucleon has about the same number
of neighbors; each nucleon thus contributes roughly the same
amount to the binding energy.
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An exception to the above argument is a nucleon on the nuclear
surface, which is surrounded by fewer neighbors and thus less
tightly bound than those in the central region. These nucleons do not
contribute to B quite as much as those in the center, and thus B = av

A overestimates B by giving full weight to the surface nucleons. We
must therefore subtract from B a term proportional to the nuclear
surface area.

Surface-Tension Effect:

The rapid decrease in the value of the binding energy per nucleon at
small A can be explained as the surface-tension effect if the nucleus
is viewed as a drop of liquid.
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Surface-Tension Effect:

The nucleons deep inside the nucleus are attracted from every side by
the neighboring nucleons while those on the surface are attracted only
from one side. This leads to a small value of the binding energy for the
surface nucleons. This effect is greater for nuclei with small A because
a greater fraction of the nucleons is near the surface as compared to the
nuclei with large A. If R is the radius of the nucleus, and S is the
coefficient of surface tension, the surface energy Es, is given by

Thus the surface nucleons contribute to the binding energy a term of
the form - as A2/3 (where as is approximately equal to 16.80 MeV.
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Coulomb Effect:

The drop in the binding energy curve at large values of A can be
explained by the coulomb effect. According to Coulomb’s law, the
protons inside the nucleus will repel each other, decreasing the
binding energy or increasing the mass of the nucleus. The repulsive
Coulomb force results in two consequences:

i. The mean binding energy per nucleon will drop as A increase.
This is apparent from Figure 3.16 (Introductory Nuclear
Physics by Kenneth S. Krane), which shows a gradual drop in
B/A at higher values of A.
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Coulomb Effect:

ii. The locus of the stable nuclei should depart from the line
N/Z=1 towards the direction of a higher number of neutrons
as shown in Fig. 5.7 in Fundamentals of Nuclear Physics by
Atam P. Arya. This figure shows the neutron number N
versus the proton number Z. Two smooth curves, one
through the stable isotopes and the other for N=Z , have
been drawn. It is clear from the figure that for low values of
N and Z, the stable isotopes have N/Z=1. For the heavier
elements, the stability curve gradually departs from the
N/Z=1 line, reaching a value of N/Z=1.6 for A=238.
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Coulomb Effect:

The total Coulomb-energy contributed to the binding-energy curve
may be calculated in the following manner. We again assume the
liquid-drop model of the nucleus even though the drop has a charge
of Ze, where Z is the number of protons inside the nucleus, and e is
the charge of each proton.

Furthermore, if it is assumed that the charge Ze is uniformly
distributed throughout the sphere, the charge density ρ is given by
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Coulomb Effect:

The total electrostatic energy, E , of this uniform spherical charge
distribution is given by

where r is the radial distance from the center of the nucleus and R
is the radius of the nucleus. Integrating Eq. 10

And substituting the value of ρ from Eq. 9 into Eq. 11, one gets
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Coulomb Effect:

Eq. 12 needs a correction term, because expression for E includes an
extra amount of fictitious self-energy of each proton resulting from
the assumption that the proton is spread over the whole volume.
This self-energy for a proton from Eq. 12 is 3e2/5R and for Z
protons is Z(3e2/5R). Subtracting Z(3e2/5R) from E, we get the total
Coulomb energy Ec, given by

The number of the proton-proton pairs in a nucleus of atomic
number Z (because each of the Z protons interacts with the other (Z-
1) protons) is Z(Z-1)/2.
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Coulomb Effect:

The factor of ½ comes in because each pair is counted twice. If
Z>>1, then Z(Z-1)  Z2 and Eq. 13 reduces to

Substitute for R=r0A
1/3 in Eq. 14

Where ac is a constant and equal to 0.72 MeV for r0=1.2 fm.
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Odd-Even Effect:

In addition to other factors, the total binding-energy of a nucleus is
determined not only by the ratio of the number of protons and
neutrons, but also by weather these numbers are odd or even.

The most stable nuclei tend to have an even number of both
protons and neutrons. The least stable nuclei are the odd-odd type.
The stabilities of the even-odd and odd-even types of nuclei are
almost identical and lie intermediate between the other two.

When we have an odd number of nucleons (odd Z and even N, or
even Z and odd N ) , this term does not contribute.
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Odd-Even Effect:

However, when both Z and N are odd, we gain binding energy by
converting one of the odd protons into a neutron (or vice versa) so
that it can now form a pair with its formerly odd partner.

There are only four nuclei with odd N and Z (2H, 6Li, 10B, 14N), but 
167 with even N and Z.

This pairing energy δ is usually expressed as + apA
-3/4 for Z and N

even, - apA
-3/4 for Z and N odd, and zero for A odd.
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Pairing of Nucleons (Symmetry Term):

We also note that stable nuclei have Z = A / 2 . If our binding
energy formula is to be realistic in describing the stable nuclei that
are actually observed, it must take this effect into account. This
term is very important for light nuclei, for which Z = A/2 is more
strictly observed. For heavy nuclei, this term becomes less
important, because the rapid increase in the Coulomb repulsion
term requires additional neutrons for nuclear stability. A possible
form for this term, called the symmetry term because it tends to
make the nucleus symmetric in protons and neutrons, is -asym(A –
2Z)2/A which has the correct form of favoring nuclei with Z = A/2
and reducing in importance for large A.
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Combining these five terms we get the complete binding energy:

The constants must be adjusted to give the best agreement with the
experimental curve of Figure 3.16 (Introductory Nuclear Physics
by Kenneth S. Krane). A particular choice of av = 15.5 MeV, as =
16.8 MeV, ac = 0.72 MeV, asym = 23 MeV, ap = 34 MeV, gives the
result shown in Figure 3.17 (Introductory Nuclear Physics by
Kenneth S. Krane), which reproduces the observed behavior of B
rather well.
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The Semiempirical Atomic-
Mass Formula

By analogy with the liquid drop it is possible to write the
semiempirical mass-formula for any atom having mass M(A,Z).
The procedure to evolve the mass formula for M(A,Z) is to first
write the masses of the constituents of the atom, and then apply the
necessary corrections. This results in the familiar Weizsacker
semiempirical mass formula. The first term is the mass of the
constituents of the atoms, the protons, neutrons, and electrons.

Where we have neglected the binding energy of the electron and
the proton to form the hydrogen atom.
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The Semiempirical Atomic-
Mass Formula

Adding mass of the constituents of the atom and all the five terms,
we get the following expression for the mass of an atom

where the value of δ (A,Z) is given by - apA
-3/4 for Z and N even, +

apA
-3/4 for Z and N odd, and zero for A odd.
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