TITRATION IN VIRUSES

- VIRUS TITER: Numerical expression of the infectious power of a virus suspension
 - It expresses the <u>number of infectious virions</u> contained in a specific volume of virus suspension.
- Detection of infectious power of a virus is called TITRATION of that virus.

UNITS

- TCID₅₀: Tissue Culture Infective Dose 50=50%
 - Virus dilution that causes infection in the half of the host systems (cell culture) used in the test is determined and this expresses the infective power of the virus.
- EID₅₀: Egg Infective Dose 50=%50
- LD₅₀: Lethal Dose 50=%50 (for experimental animals)

Why do we need to quantify viruses?

- 1. Standardization of viruses to be used in virological and serological studies (eg, neutralization test)
- 2. Quantification and calculation the dose of virus for vaccine preparation
- 3. Evaluation of physico-chemical tests used in identification of viruses
- 4. Determination of inactivation kinetics
- 5. Purification of virus

Macro titration

Micro titration

CC: Cell Control

0.1 ml Earle with Sera

VC: Virus Control

- 0.05 ml VIRUS
- 0.05 ml Earle without Sera

Finally, 0.05 ml (1 DROP) cell suspension to ALL WELLS (BY DROPPER!)

Test is over

37°C ve %5 CO₂ incubator

We examine it every day under an invert microscope.

Calculation

- TCID₅₀ Virus dilution forming cpe at least half of the systems inoculated.
- Spearman & Kaerber Methods

Log10 DKID
$$_{50} = [Xo - d/2 + d \times (r/n)]$$

- X0 = last cpe dilution seen in cpe in all wells
- d = log10 of dilution coefficient $\rightarrow Log_{10}10 = 1$
- r = sum of all positives
- n = number of wells used for each dilution
- Reed & Müench Methods

Log10 DKID $_{50} = [Xo - d/2 + d \times (r/n)]$

Sulandırma Basamağı	CPE/Göz sayısı
10^{-1}	4/4
10-2	4 / 4
10-3	4 / 4
10-4	3 / 4
10-5	2 / 4
10-6	0 / 4
HK	0/4
VK	4 / 4 log1

$$log10 DKID_{50} = [(3 - \frac{1}{2} + 1 \times (9 / 4)]$$

$$log10 DKID_{50} = -4,75$$

DKID
$$_{50} = 10^{-4.75} / 0.1 \text{ ml}$$

100DKID
$$_{50} = 10^{-2.75} / 0.1 \text{ ml}$$

Easy calculation

```
10<sup>0</sup> 4/4 (not diluted virus)

10<sup>-1</sup> 4/4

10<sup>-2</sup> 4/4

10<sup>-3</sup> 4/4

10<sup>-4</sup> 3/4

10<sup>-5</sup> 2/4

10<sup>-6</sup> 1/4
```

$$100TCID_{50} = 10^{-3}/0,1mI$$

$$TCID_{50} = 10^{-5}/0,1ml$$

Total CPE: 22
$$22-2=20$$
 $20 \div 4=5$

↓ Constant

used well number

Plaque Assay/Test

- What is plaque?
- It identifies the limited virus reproduction areas in cell cultures.
- Plaque assays are the standard method that have long been used to determine the virus titer (ie, infectious dose).
- It determines the number of plaque forming units (PFU) in a sample.
- Typically, 10-fold serial dilutions of the virus stock are inoculated into each plate.
- Note that plaque assay is restricted to the viruses that induce cell lysis or death, such as picornavirus, influenza virus, and herpesvirus.

• The virus infected cell will lyse and spread the infection to adjacent cells. As the infection-to-lysis cycle is repeated, the infected cell area will form a plaque which can be seen visually.

• The PFU/mL result represents the number of infectious particles in the sample, assuming that each plaque is caused by a single infectious virus particle.

- Three types of plaque
- 1.Lytic: middle of it is empty.
- 2.Degenerative: There are degenerated cells in the center.
- 3. Proliferative: There are dense cell proliferations in the centers.

- 1. dilute the virus according to log₁₀
- 2. Inoculation is performed into two cell culture grown in petri dishes from each virus dilution.
- 3. The virus is cultivated in the cells of these petri dishes with adsorption.
- 4. After incubation, 2x Earle -1,8-2% Noble Agar is used as a virus growing media.
- 5. Incubate the petri dishes in an incubator at 37°C and with CO₂.
- 6. Crystal violet staining could be used to stain plates for better viewing.
- 7. Plaques are counted and the Plaque Formation Unit (PFU) is detected.

http://www.lumacyte.com/applications/rapidviraltiter/

https://en.wikipedia.org/wiki/Virus_quantification