Cartography

Doc, Dr. Erkan Yilmaz

Poles

Equator
Prime Neridian
Equator Plane
Prime Merian and Timeline plane
Latitude Parallel
Eongitude, Meridian

Projections
Trigonometric Functions Usage of the table
Perpendicular and paralle drawings
Distance units
Scale
Projections and geo
Planar projections

Poles

Latitude

Latitude is the angle of the distance of a point on the earth to the equatorial plane. Latitude is the angle between the plumb line of a point on the earth (the line joining the point and the center of the earth) and the equatorial plane.

Parallel

Circle that are thought to pass parallel to the equator according to the determined latitude values are called parallel.

- Equator plane
- Latitude, Parallel.

Plane of Pr. Mer.

- Longitude, Meridian

Longitude

Longitude is the angle of the distance of a point on the earth from the determined meridian plane. Longitude is the angle between the plumb line of a point on the earth (the line joining the point and the center of the earth) and the determined meridian I plane.

Meridian

According to the determined longitude values, semicircular arcs that are thought to pass from one pole to the other pole are called meridians.

Degree
1 cycle $=360$ degree $\left(360^{\circ}\right)$
Minute 1 degree $=60$ minutes (60')
1 minute $=60$ seconds (60")
Second

Degree

Grad

NATO mil

Radian

Why Trigonometry?

 $$
\mathrm{a}=\overline{\mathrm{CB}}
$$

$$
\frac{\mathrm{a}}{\mathrm{~b}} \frac{\mathrm{a}}{\mathrm{c}} \quad \frac{\mathrm{~b}}{\mathrm{a}} \quad \frac{\mathrm{~b}}{\mathrm{c}}
$$

$$
\frac{a}{b}=\frac{e}{f}
$$

$$
\frac{a}{b}=\frac{e}{f}=\frac{h}{j}
$$

Trigonometric function for A angle

$\begin{gathered} \text { Enlem } \\ \varphi \end{gathered}$	Sin	Tg	Cotg	cos	$\begin{gathered} \text { Enlem } \\ \varphi \end{gathered}$		Enlem φ	Sin	Tg	Cotg	Cos	Enlem φ
0	0,0000	0,0000	$\stackrel{\infty}{ }$	1,0000	90							
1	0,0174	0,0175	57,290	0,9998	89	\sin	25 26	$\begin{aligned} & 0,4226 \\ & 0,4384 \end{aligned}$	$\begin{aligned} & 0,4663 \\ & 0,4877 \end{aligned}$	$\begin{aligned} & 2,144 \\ & 2,050 \end{aligned}$	$\begin{aligned} & 0,9063 \\ & 0,8988 \end{aligned}$	$\begin{aligned} & 65 \\ & 64 \end{aligned}$
2	0,0349	0,0349	28,636	0,9994	88	cos	26	0,4384	0,4877	2,050	0,8988	64
3	0,0523	0,0524	19,081	0,9986	87	tg	27	0,4540	0,5095	1,963	0,8910	63
4	0,0698	0,0699	14,301	0,9976	86	cotg	28	0,4695	0,5317	1,881	0,8829	62
5	0,0872	0,0875	11,430	0,9962	85		29	0,4848	0,5543	1,804	0,8746	61
6	0,1045	0,1051	9,514	0,9945	84		30	0,5000	0,5773	1,732	0,8660	60
7	0,1219	0,1228	8,144	0,9925	83		31	0,5150	0,6009	1,664	0,8572	59
8	0,1392	0,1405	7,115	0,9903	82							
9	0,1564	0,1584	6,314	0,9877	81		32	0,5299	0,6249	1,600	0,8480	58
10	0,1736	0,1763	5,671	0,9848	80		33	0,5446	0,6494	1,540 1,483	0,8387	57 56
11	0,1908	0,1944	5,145	0,9816	79		34	0,5592	0,6745	1,483	0,8290	
12	0,2079	0,2126	4,705	0,9781	78		35	0,5736	0,7002	1,428	0,8191	55
13	0,2249	0,2309	4,331	0,9744	77		36	0,5878	0,7265	1,376	0,8090	54
14	0,2419	0,2493	4,011	0,9703	76		37	0,6018	0,7535	1,327	0,7986	53
15	0,2588	0,2679	3,732	0,9659	75		38	0,6157	0,7813	1,280	0,7880	52
16	0,2756	0,2867	3,487	0,9613	74		39	0,6293	0,8098	1,235	0,7771	51
17	0,2924	0,3057	3,271	0,9563	73				0,003			
18	0,3090	0,3249	3,078	0,9511	72		40	0,6428	0,8391	1,192	0,7660	50
19	0,3256	0,3443	2,904	0,9455	71		41	0,6561	0,8693	1,150	0,7547	49
20	0,3420	0,3640	2,747	0,9397	70		42	0,6691	0,9004	1,111	0,7431	48
21	0,3584	0,3839	2,605	0,9336	69		43	0,6820	0,9325	1,072	0,7313	47
22	0,3746	0,4040	2,475	0,9272	68		44	0,6947	0,9657	1,035	0,7193	46
23	0,3907	0,4245	2,356	0,9205	67		45	0,7071	1,0000	1,000	0,7071	45
24	0,4067	0,4452	2,246	0,9135	66							
Enlem φ	Cos	Cotg	Tg	Sin	Enlem φ		Enlem φ	cos	Cotg	Tg	Sin	Enlem φ

Distance (The Metric System)

French scientists established an international measurement system in 1791. In this system, meters, kilograms and seconds

A meter is one ten-millionth (10-7) of the distance along the meridian between the equator and the north pole;second, $1 / 86,400$ of the mean solar day;kilogram, mass of a given amount of waterln 1960, this organization named its unit system based on the meter, kilogram, and second the International System, denoted by the abbreviation SI (corresponding to the French words Systeme International). The system is also known as the metric system or the mks system (meters, kilograms and seconds).

The definition of the meter has been changed many times. In 1889, a meter was defined as the length between two finely engraved marks on a platinum-iridium rod found in a museum near Paris. Although several mates of this stick have been distributed around the world, the drawbacks of accepting such a standard have emerged over time. For example, with the advancement of optical techniques, it has been seen that the scratches on the rod are unclear and inaccurate. In 1960, the length standard was tied to the wavelength of orange-red light emitted from the Krypton (86 Kr) isotope. Length measurement has required (and we need) greater precision over time; this Standard has also become inadequate. So in 1983, the 17th General Conference on Weights and Measures linked the standard length to the speed of light in vacuum (denoted c). One meter (m) is defined as the distance light travels in vacuum in 1/299,792,458 seconds.

Örnek	Sembol	Çarpan	
Eksa ${ }^{+}$	E	10^{18}	Peta
peta ${ }^{+}$	P	10^{15}	Tera
tera	T	10^{12}	Giga
giga	G	10^{9}	Mega
mega	M	10^{6}	Kilometer
kilo	k	10^{3}	Haktometer
hecto ${ }^{\dagger}$	h	10^{2}	Decameter
deka ${ }^{+}$	da	10^{1}	Meter
desi ${ }^{\dagger}$	d	10^{-1}	Decimeter
santi	c	10^{-2}	Centimeter
mili	m	10^{-3}	Millimeter
mikro	μ	10^{-6}	
nano	n	10^{-9}	Micro
piko ${ }^{+}$	f	10^{-15}	Nano
atto^{+}	a	10^{-18}	Pico

Projections

According to the Used Surface

- Planar (Azimuthal)
- Cylindric
- Conic
- Other

By Axis Status

- Normal
- Transversal
- Oblique

According to Protection Feature

- Angle
- Area
- Distance
- Shape
- No Protection Feature

By Field of View

- Perspective
- Non-Perspective

To Reality State

- Real
- Pseudo

Projections According to Used Surfaces

Rectangle Prism
Cube

Relationships Between Plane and Sphere

Relationships Between Cylinder and Sphere

Relationships Between Cone and Sphere

 Intersect the sphere

Axes coincident Outside the sphere

Axes are oblique
Outside the sphere

Axes are perpendicular Tangent the sphere

RADIUS OF EARTH
$\mathrm{R}=6,370 \mathrm{~km}$
CALCULATION OF THE EARTH RADIUS FOR DRAWING ACCORDING TO THE GIVEN SCALE

SAMPLE:
SCALE 1/100,000,000
$R=6,370 \mathrm{~km}$
This value is first converted to cm and then multiplied by the specified scale.
$\mathrm{R}=637.000 .000 \mathrm{~cm}$
$R=637.000 .000 \times 1 / 100.000 .000$
$\mathrm{R}=6.37 \mathrm{~cm}$
This is how the radius to be used in the drawing is found.
HOMEWORKS
SCALE 1/200.000.000
$\mathrm{R}=6,370 \mathrm{~km}$
$\mathrm{R}=637.000 .000 \mathrm{~cm}$
$R=637.000 .000 \times 1 / 200.000 .000$
$\mathrm{R}=3.185 \mathrm{~cm}$

PLANAR PROJECTIONS

1. Equidistant Projection
2. Gnomic Projection
3. Orthographic Projection
4. Stereographic Projection
5. Lambert Planar Projection
6. Stab-Werner Projection
7. Globular Projection
