Cartography

Doç. Dr. Erkan Yılmaz

- Planar Projections

1. Equidistant Projection
2. Gnomonic Projection
3. Orthographic Projection
4. Stereographic Projection
5. Lambert Azimuthal Projection
6. Stab-Werner Projection
7. Globular Projection

Türkiye

$$
\begin{aligned}
& \overline{N A^{\prime}{ }_{N 36}}=R * \sin (90-36)=6,37 * 0,8090-5,15 \\
& \overline{N A^{\prime}{ }_{N 42}}=R * \sin (90-42)=6,37 * 0,7431=4,73
\end{aligned}
$$

$\overline{N A_{E}^{\prime}}=R * \sin (90-0)=6,37 * 1=6,37$

Orthographic Projection

Orthographic Projection (Polar Type)

- No more than one hemisphere at a time
- Maintains length along parallels.
- Its parallels are circle.
- Parallel spaces decrease away from the pole.
- Meridians are radial.
- The angle between the meridians is equal to their value on earth.
- The least error is around the tangent point.
- Distortion rates increase as you move away from the tangent point. All three types of projection are used.

Tangent Point 45 Degrees N. Central Meridian 36 Degrees E.

Usage

- Used in drawing hemisphere maps.
- Used to calculate the duration of daytime and nighttime (Equatorial type).
- Used for displaying the Earth from space

Gnomonic Projection

Drawing of the graticule (grid network) of the Gnomic projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey.

Türkiye
$\overline{N A}_{N 36}=R * \tan (90-36)=6,37 * 1,376=8,77$
$\overline{N A}_{N+2}=R * \tan (90-42)=6,37 * 1,111=7,08$ $N A_{N 00}=R * \tan (90-60)=6,37 * 0,5773=3,68$
$\overline{N B}^{\prime}{ }_{N 30}=R * \tan (90-30)=6,37 * 1,732=11,03$

Gnomonic Projection (Polar)

- Less than one hemisphere centered on a given pole of projection or map origin
- The Equator and the opposite hemisphere cannot be shown origin
- Parallels are circle
- Spacing increases rapidly away from the pole.
- The spaces is visible after 50 degrees parallel.
- Its meridians are radial.
- The angle between the meridians is equal to the angle values on the sphere.
- The least error is around the tangent point.
- Distortion rates increase as you move away from the tangent point.

- Meridian extensions have been cast to infinity.

Usage

- Aviation and maritime. Used in air flights and meteorological maps.
- Orthodrome. The shortest path between two points determined on the earth is the orthodrome, and this path is seen as a straight line in the Gnomic projection.

Stereographic Projection

Drawing of the graticule (grid network) of the Stereographic/projection at a scale
Dhe of $1 / 100,000,000$ (Interval: 30 degree) and showing the location of Turkey.

- One hemisphere conveniently; most but not all of the other hemisphere at accelerating scale.
- Parallels are circle.
- Space between parallels increases away from the pole.
- Its meridians are radial.
- The angle between the meridians is equal to the angle

Usage

- Commonly used in the polar aspect for topographic maps of polar regions.
- Oblique aspects are used to show paths of solar eclipses.
- Recommended for conformal mapping

GIS.North, South Stereografik

Conformal.
Distortions

Drawing of the graticule (grid network) of the Lambert azimuthal projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of

Türkiye

$$
\begin{aligned}
& \overline{N A^{\prime}{ }_{N 60}}=2 R * \sin \left(\frac{90-60}{2}\right)=12,74 * 0,2588=3,30 \\
& \overline{N A^{\prime}{ }_{N 30}}=2 R * \sin \left(\frac{90-30}{2}\right)=12,74 * 0,=6,37 \\
& \overline{N A^{\prime}}{ }_{E}=2 R * \sin \left(\frac{90-0}{2}\right)=12,74 * 0,7071=9,01 \\
& \overline{N A^{\prime}}{ }_{s 30}=2 R * \sin \left(\frac{90+30}{2}\right)=12,74 * 0,866=11,03 \\
& \overline{N A^{\prime}}=2 R * \sin \left(\frac{90+60}{2}\right)=12,74 * 0,965=9=12,31 \\
& \overline{N A^{\prime}}{ }_{S 50}=2 R * \sin \left(\frac{90+60}{2}\right)=12,74 * 1=12,74
\end{aligned}
$$

Lambert Projection (Polar Type)

- Entire world.
- Parallels are circle.
- The space of the parallels narrows as you go from the center to the periphery.
- Its meridians are radial.
- The angle between the meridians is equal to the angle values on the sphere.
- All three types of projection are used.

Lambert Azimuthal Equal-Area

 Zenithal Equal-Area Zenithal Equivalent QGIS-US National Atlas Equal Area

Tangent Point
45 Degrees N. Central Meridian 36 Degrees E.

Usage

- Used in maps aimed at area protection.
- Polar type is used for poles, oblique type is used for land and ocean areas, equatorial type is used for eastern and western hemisphere hemisphere notation.

Angle Distortion

High error

Distance Distortion

No error

Area Distortion
conform

